

April 29, 1998

William L. Daigle, P.E.

Acting Director

Bureau of Central Remedial Action

Division of Environmental Remediation

New York State Department of Environmental Conservation

50 Wolf Road

Albany, NY 12233-7010

Re:

Final Remedial Investigation Report

Former GE Court Street 5/5A Site

Town of Dewitt, Onondaga County, New York

NYSDEC Site No. 734070

Dear Mr. Daigle:

In accordance with Section III, Paragraph D of the Order on Consent (Index #D7-0001-96-05) relating to the Former GE Court Street 5/5A site, please find enclosed three copies of the final Remedial Investigation (RI) Report. Lockheed Martin Corporation (LMC) has prepared the final RI Report based on the New York State Department of Environmental Conservation's (NYSDEC) March 19, 1998 comments on the January 1998 draft RI Report and LMC's April 16, 1998 responses to NYSDEC's comments, and NYSDEC's April 20, 1998 letter accepting LMC's responses and providing contingent approval of the RI Report, subject only to receipt of the enclosed final RI Report.

Once NYSDEC provides final approval, LMC will submit a copy of the final RI Report to the document repository and commence preparation of the Feasibility Study. Please contact me at (315) 456-3199 if you have any questions.

Sincerely,

Patrick D. Salvador, P.E.

Fatule Salvador

Principal Engineer

Enclosures

cc: Robert K. Davies, Esq. - NYSDEC (without enclosure)

Sandra Lee Fenske, Esq. - Lockheed Martin (without enclosure)

Henriette Hamel - NYSDOH (with enclosures)

Kenneth P. Lynch, Esq. - NYSDEC Director, Region (with enclosure)

Virginia C. Robbins, Esq. - Bond, Schoeneck & King, LLP (with enclosure)

REMEDIAL INVESTIGATION REPORT FORMER GE COURT STREET BUILDING 5/5A SITE NYSDEC SITE NO. 734070 TOWN OF DEWITT, ONONDAGA COUNTY, NEW YORK

Prepared for

Lockheed Martin Corporation Syracuse, New York

April 1998

Prepared by

EMCON Crossroads Corporate Center One International Blvd., Suite 700

Mahwah, New Jersey 07495

Project 86143-001.000

Remedial Investigation Report Former GE Court Street Building 5/5A Site NYSDEC Site No. 734070 Town of Dewitt, Onondaga County, New York

The material and data in this report were prepared under the supervision and direction of the undersigned. All activities described herein were performed in accordance with the New York State Department of Environmental Conservation-approved Remedial Investigation/Feasibility Study Work Plan (August 1997, revised January 1997).

EMCON

Curtis B. Taylor II, CHMM

Project Manager

Steven P. Goldberg, Ph.D., CPG

Senior Hydrogeologist

Tamara L. Sorell, Ph.D.

Senior Toxicologist

CONTENTS

1 INTRODUCTION	1-1
1.1 Site Location and Description	1-1
1.2 Site Background	1-2
1.3 Remedial Investigation Objectives	1-6
2 METHODOLOGIES	2-1
2.1 Soil Investigation	2-1
2.2 Groundwater Investigation	2-3
2.3 Surface Water/Storm Sewer Outfall Investigation	2-8
2.4 Survey	2-9
2.5 NYSDEC Split Samples	2-9
3 RESULTS	3-1
3.1 Site Geology	3-1
3.2 Site Hydrogeology	3-2
3.3 Nature and Extent of Contamination	3-6
4 INTERIM REMEDIAL MEASURES (IRM)	4-1
4.1 Previous IRMs	4-1
4.2 Additional Storm Sewer Rehabilitation	4-2
4.3 Groundwater Collection and Treatment System	4-4
5 PRELIMINARY RISK ASSESSMENT	5-1
5.1 Introduction and Scope	5-1
5.2 Site Description	5-2
5.3 Pathway Analysis	5-7
6 CONCLUSIONS	6-1
6.1 Findings Summary	6-1
6.2 Conclusions	6-3

CONTENTS (Continued)

REFERENCES

TABLES

- 1 Monitoring Well Construction Details
- 2 Monitoring Well, Staff Gauge, and Piezometer Transect Groundwater Elevation Data
- 3 Vertical Hydraulic Gradients
- 4 Soil Sample Analysis Summary
- 5 Groundwater Sample Analysis Summary Organics
- 6 Groundwater Sample Analysis Summary Metals
- 7 Surface Water, Storm Sewer Outfall and Sediment Sample Analysis Summary
- 8 Plant Species
- 9 Wildlife Species
- 10 Summary of Human Health Exposure Pathways
- 11 Summary of Complete Ecological Exposure Pathways
- 12 Summary of Surface Water Screening Values for Contaminants of Concern
- 13 Summary of Sediment Screening Values for Contaminants of Concern

FIGURES

- 1 Site Location Map
- 2 Piezometer Transects
- 3 Piezometer Transect T3
- 4 Groundwater Collection and Treatment System
- 5 Land Use/Vegetation Cover Map
- 6 National Wetlands Inventory Map
- 7 NYSDEC Wetlands Map

DRAWINGS

- 1 Base Map
- 2 Geologic Cross-Section A-A¹
- 3 Geologic Cross-Section and Piezometric Profile B-B¹
- 4 Shallow Groundwater Elevation Contour Map June 1997
- 4A Shallow Groundwater Elevation Contour Map April 1997
- 5 Deep Groundwater Elevation Contour Map June 1997
- 5A Deep Groundwater Elevation Contour Map April 1997
- 6 Isoconcentration Map of VOCs March 1997

CONTENTS (Continued)

APPENDICES

APPENDIX A BORING LOGS

APPENDIX B SAMPLING LOGS

APPENDIX C VALIDATED ANALYTICAL LABORATORY REPORTS

APPENDIX D THIRD PARTY DATA VALIDATION

APPENDIX E ENVIRONMENTAL SETTING CORRESPONDENCE

1 INTRODUCTION

This document presents the methods, findings and conclusions of the Remedial Investigation (RI) performed at the Former General Electric (GE) Court Street Building 5/5A site located in the Town of Dewitt, Onondaga County, New York. The RI was performed in accordance with a New York State Department of Environmental Conservation (NYSDEC) approved Remedial Investigation/Feasibility Study (RI/FS) Work Plan prepared for the site by Blasland, Bouck & Lee, Inc. (August 1997, revised January 1997), on behalf of Lockheed Martin Corporation (LMC). The RI was completed in accordance with Section III of the June 11, 1996 Order on Consent (Index No. D7-0001-96-05) between NYSDEC and LMC. The site is currently classified as a Class 3 site on the New York State Registry of Inactive Hazardous Waste Disposal Sites (No. 734070). The Class 3 designation is assigned to sites that do not present a significant threat to the public health or environment.

The RI was implemented to supplement site data obtained during previous investigations. Site data from the RI and previous investigations will be used to support the Interim Remedial Measures (IRM) program, and the subsequent Feasibility Study (FS). Both RI and IRM activities are described herein.

1.1 Site Location and Description

The Former GE Court Street Building 5/5A site ("site") is located at the intersection of Deere Road and Route 298 in the Town of Dewitt, Onondaga County, New York. The site location and site features are shown on Figure 1 and Drawing 1.

The Former GE Court Street Building 5/5A site consists of approximately 14.1 acres. Building 5 occupies approximately 256,000 square feet, and Building 5A occupies approximately 83,200 square feet. The remainder of the site is paved with only small landscaped areas present adjacent to the buildings. The site is bordered on the north by property owned by Ronald G. Gustafson, Sanders Creek and Route 298, on the east by Deere Road, on the south by property owned by Dennis and Pauline Fehr, and on the west by property owned by Onondaga County, and the South Branch of Ley Creek.

1.2 Site Background

This Section provides information regarding parties that have an interest in current site activities, a summary of historical operations and previous environmental investigations at the site, and an overview of recent activities which have been conducted at the Building 5 property by the current owner.

1.2.1 Introduction of Parties

The following is a list of parties that have an interest in current site activities related to this RI:

- DE & JD Associates, Inc. Current owner of Building 5 property;
- G & A Properties Current owner of Building 5A property;
- Lockheed Martin Corporation Responsible for remedial activities at the Former GE Court Street Building 5/5A Site; and
- Onondaga County Owner of property west of the site (i.e., between the site and the South Branch of Ley Creek).

The following is a list of parties that participated in conducting the RI:

- EMCON completed RI field activities and developed RI report.
- Parratt-Wolff, Inc. performed RI drilling services under supervision of EMCON.
- Columbia Analytical Services, Inc. performed analytical laboratory services related to RI samples.
- Environmental Quality Associates, Inc. provided third party data validation of RI sample results.
- Modi Engineering and Land Surveying, Inc. completed survey of RI sample locations.

1.2.2 Operational History

Building 5 was constructed in 1956, and was leased to GE by several owners until 1993. Building 5A was leased to the Continental Can Company until 1958, after which it was leased to GE. The last owner to lease the Building 5 and Building 5A properties to GE

was DE & JD Associates, Inc. (DE & JD) after it acquired title to these properties in 1988. GE used Building 5 primarily for the manufacture of sonar and radar equipment, printed circuit boards, and power packs. The building also housed laboratories and offices. GE used Building 5A to warehouse production equipment and raw materials, and as an auxiliary radar and sonar testing and repair shop.

Although GE operations in both Buildings 5 and 5A had ceased by December 31, 1991, GE continued to lease these properties until April 2, 1993, when GE assigned the leases to Martin Marietta Corporation (MMC) in connection with the transfer of GE's Aerospace business. MMC leased the buildings from April 2, 1993 to December 30, 1993, but, during this period, MMC did not conduct any operations at the site other than remedial activities. On December 30, 1993, MMC terminated the leases on the Building 5 and Building 5A properties. At that time, DE & JD granted to MMC a permanent access easement to ensure MMC's continued access to the site to perform remedial activities. On January 28, 1995, MMC merged with its parent corporation, LMC. LMC is the successor by merger to MMC. Presently, LMC continues to conduct remedial activities at the site.

After GE ceased its operations in December 1991, Building 5 remained vacant until recently when DE & JD undertook renovations and leased the building to Climax Manufacturing Corporation (a trucking and warehouse company). Building 5A, and the property between Building 5 and Building 5A, is currently owned by G&A Properties. G&A Properties leases space to W.J.W. Associates, Raymond Corporation and C&S Technical Services (metal garage, at the southwest corner of Building 5).

Nine, 250-gallon underground storage tanks (USTs) formerly located on the west side of Building 5 provided storage of virgin solvents and thinners used in GE's manufacturing operations. All nine tanks were taken out of service in 1960, although they were not removed from the ground until 1986. Liquids stored in the tanks were dispensed above ground and transported inside the building for use. Following the closure and removal of the USTs, the solvent storage pad (formerly located on the west side of Building 5) was used for dispensing of virgin solvents and thinners used in GE's manufacturing operations. Dispensing of solvents from the solvent storage pad was performed above ground and solvents were piped through the wall and dispensed inside the building for use.

As a component of the power distribution system at the site, electrical transformers were installed inside and outside Buildings 5 and 5A. These transformers were manufactured with polychlorinated biphenyl (PCB)-containing oils. GE removed and/or replaced all but two of the transformers in 1989 and 1990. The two transformers not replaced were located north of Building 5. Transformers were replaced with dry, non-PCB-containing units. Analysis of the transformers not replaced indicated that oil within the transformers contained PCBs at concentrations less than 500 parts per million (ppm).

1.2.3 Previous Investigations

In 1991, GE initiated an assessment of the site in anticipation of the termination of the lease agreement for the facility buildings. The purpose of this assessment was to identify potential environmental impacts related to historic GE operations. Among the findings of this assessment were the identification of the former location of nine USTs, the solvent storage pad, and the former and present location of transformers at Buildings 5 and 5A. Based on these findings, a subsurface investigation was completed.

Subsurface investigations performed in 1992 indicated that volatile organic compound (VOC)-impacted soil and groundwater were present at the site. This investigation indicated the primary source area was located along the western property boundary adjacent to Building 5. Specifically, three locations were cited as contributing to the VOC impacts. These areas included the location of the former USTs, the former solvent storage pad, and an area adjacent to a former metal shed located on the south side of Building 5. The investigation concluded that groundwater impacts were primarily limited to the shallow groundwater. In addition, the investigation showed that VOC-impacted groundwater had migrated off-site in a westerly direction to property owned by Onondaga County where the County maintains a 48-inch diameter sanitary sewer line.

In an effort to control the source of VOCs, subsequent IRMs were undertaken in 1992. The IRM for the VOC-impacted soils included the removal of soils in the vicinity of the former USTs, solvent storage pad, and former metal shed locations. In addition, groundwater that accumulated in the excavations was also removed from the site. This IRM work consisted of soil removal to depths below the shallow groundwater table followed by confirmatory sampling for VOCs. The confirmatory sampling indicated that the majority of the VOC-impacted soil was removed in the former UST area and solvent storage pad area, while complete VOC removal was accomplished adjacent to the former metal shed. Only trace level residual VOCs remained in the solvent storage pad area and the unsaturated zone of the UST area. Higher residual levels of VOCs remained below the water table in the former UST area.

In an effort to control potential off-site transport of VOC-impacted groundwater, IRM activities were also performed in 1992 on the storm sewer systems which discharged to both the South Branch of Ley Creek and Sanders Creek. The purpose of this IRM activity was to modify the storm sewer system to prevent the infiltration of VOC-impacted groundwater into the catch basins and clay tile piping. Modifications performed included the abandonment, relocation, and reconstruction of two catch basins, grouting of select clay pipe sections, replacement of select sections of clay tile pipe, and grouting of pipe joints.

A Remedial Action Plan was developed in 1993 (Wehran-New York, Inc., March 1993), based on the results of the previous investigations. The Remedial Action Plan alternative

selected for the site was to collect and treat VOC-impacted groundwater in an effort to mitigate the off-site migration of VOCs in groundwater. This Remedial Action Plan , in combination with the previous source area soil removals, was proposed to reduce the volume of constituents in the site soil and groundwater, and control the areal migration of impacted groundwater.

As described in the Remedial Action Plan Addendum (Wehran-New York, Inc., October 1993), additional storm sewer IRM activities were performed in 1993. The purpose of this work was to eliminate groundwater infiltration in a section of storm sewer which had not been rehabilitated during the previous storm sewer IRM work. Similar to the previous work, catch basins and clay tile pipe were removed and replaced.

The final remedial action (RA) alternative for site groundwater was selected and presented in the 1993 Remedial Action Plan Addendum, and included the installation of a collection trench to be constructed parallel to the northern and western boundaries of the site. Groundwater collected in the trench would be treated on-site and discharged to the South Branch of Ley Creek. The length of the collection trench was defined by the location of upgradient source areas (i.e., the former UST area and solvent storage pad), and the direction of groundwater flow. The vertical alignment of the trench was defined by the vertical distribution of VOC-impacted media and the location of discontinuous sand lenses located in the shallow subsurface.

In March 1995, in response to a request by DE & JD (the property owner), MMC removed soil in the area of the former transformer pad located adjacent to Building 5A. The soil was removed based on analytical data from a composite soil sample, collected by a consultant retained by a prospective buyer of the property, near a drain outlet from the transformer pad that reportedly contained 27.4 ppm PCBs. As part of the soil removal project, MMC collected three confirmatory soil samples from the excavation and one sample from soil removed and stockpiled in a roll-off container. The confirmatory soil sample analytical laboratory report was provided to NYSDEC in the attachment to an October 27, 1995 letter. No PCBs were detected (less than 1 ppm per Aroclor and total PCBs) in the three confirmatory soil samples. These data were not reviewed by a third party data validator. The soil was removed and disposed of off-site as non-regulated waste.

1.2.4 Site Owner Activities

DE & JD has recently undertaken renovation activities at Building 5. These activities included both interior and exterior renovation, as briefly discussed below.

Based on observation of renovation activities and review of DE & JD drawings, identifying proposed site modifications, the interior renovation of Building 5 included select demolition, build out and painting. Exterior renovations at Building 5 included

demolition of the 400,000-gallon steel water tank and pump house, the cooling tower and the transformer pad formerly located north of Building 5. Waste material handling practices have been the subject of numerous correspondence among LMC, NYSDEC, and DE & JD during this renovation period.

As discussed below (Section 1.3), the transformer pad formerly located north of Building 5, demolished by DE & JD, is the subject of a specific objective of the RI. LMC has requested information regarding the demolition of this transformer pad (including analytical data) from DE & JD, but it has not been received.

1.3 Remedial Investigation Objectives

The overall objective of the RI is to provide data to supplement site information obtained during previous investigations in support of the IRM program and the FS. All information will be used to fully assess current site conditions and evaluate the IRMs for the site. Based on this general objective, the following specific objectives were established as part of the NYSDEC-approved RI/FS Work Plan for the RI:

- 1. Define the vertical extent of VOCs in the former UST and solvent storage pad areas;
- 2. Define the vertical and horizontal extent of groundwater impacted by VOCs;
- 3. Assess the potential presence of PCBs in the soil adjacent to the existing transformer pad on the north side of Building 5;
- 4. Evaluate the potential influence of the 48-inch diameter sanitary sewer line located on adjacent County property on the groundwater flow patterns west of Building 5 at the site;
- 5. Assess the results of storm sewer rehabilitation IRMs by determining the presence or absence of infiltration of VOCs in stormwater discharges at the outfalls in Sanders Creek and in the South Branch of Ley Creek;
- 6. Define whether the migration of VOC-containing groundwater at the site has impacted surface water quality in the South Branch of Ley Creek;
- 7. Assess the potential presence of VOCs in the sediment near two storm sewer outfalls;
- 8. Provide data necessary to evaluate the proposed IRM for groundwater remediation; and
- 9. Provide data necessary for the preparation of a FS to evaluate potential final remedial alternatives for the site. In this regard, the IRM (i.e., the groundwater

collection and treatment system described in Section 4.3) is intended to be the final remedy for site groundwater.

2 METHODOLOGIES

This section includes a description of the field activities and methods used in the physical and chemical characterization of the site performed as part of this RI. Field activities included the drilling of soil borings, the installation of piezometers and groundwater monitoring wells, and the sampling and analysis of soil, groundwater, surface water and sediment. The field activities were completed between February 1997 and June 1997. Drawing 1 shows the test locations associated with the investigation together with pre-existing installations that provide the basis for characterizing the site. A discussion of the field activities is provided below.

2.1 Soil Investigation

The soil investigation activities described below were completed to achieve the following objectives of the NYSDEC-approved RI/FS Work Plan:

- 1. Define the vertical extent of VOCs in the former UST and solvent storage pad areas; and
- 2. Assess the potential presence of PCBs in the soil adjacent to the transformer pad on the north side of Building 5.

2.1.1 Deep Soil Borings

Deep soil borings were performed on February 10 and 11, 1997 in the area of the former solvent storage pad (SB-50) and the area of the former USTs (SB-49). Drilling was performed by Parratt-Wolff of Syracuse, New York, under the observation of an EMCON geologist. The borings were advanced utilizing 4¼-inch inside diameter hollow-stem augers, mounted on a CME-75 truck rig. Since shallow residual VOCs in these areas had been adequately characterized during previous investigations, the RI investigative activities were limited to an evaluation of the vertical extent of VOCs.

Continuous soil samples were taken from the unconsolidated deposits utilizing a 2-foot split-spoon sampler, in accordance with ASTM D1586. Upon removal from the borehole, the split-spoon was opened and screened with a photoionization detector (PID) equipped with an 11.7 electron volt lamp, for detecting the presence of VOCs. The soil

 $\begin{array}{lll} ene-mtown1-j:\lockheed\86143001.000\\ & 2-1 \end{array}$

Rev. 0, 4/27/98

was also visually classified according to a system modified after Burmister. A representative portion of the soil was placed in a laboratory sample container if analysis was anticipated, while the remaining fraction was placed in a driller's glass soil jar, then covered with a sheet of aluminum foil for subsequent head space analysis. Headspace analysis was performed using a PID, approximately 1 hour after sample collection.

The initial field screening (immediately upon opening of spoon) and the jar head space values were recorded, and are referenced in the remarks column of the geologic boring logs included in Appendix A.

In accordance with the NYSDEC-approved RI/FS Work Plan, the sample interval with the highest headspace reading from SB-49 (18- to 20-foot depth beneath the ground surface at the former UST area), and the sample interval immediately beneath the backfill at SB-50 (4- to 6-foot depth beneath the ground surface at the former solvent storage pad) were analyzed for target compound list (TCL) VOCs, and semi-volatile organic compounds (SVOCs) by Analytical Services Protocol (ASP) Methods 95-1 and 95-2, respectively. In addition, the sample interval from SB-49 which appeared to represent the vertical extent of VOCs (the 22- to 24-foot depth interval) was analyzed for TCL VOCs by ASP Method 95-1. Quality Control (QC) samples were collected by EMCON, in accordance with the NYSDEC-approved RI/FS Work Plan, for QC by a third party validator (Environmental Quality Associates, Inc.).

Upon completion of each test boring, the borehole was sealed from its bottom to the surface with a cement bentonite grout mixture, utilizing the tremie rod method.

Throughout the drilling program, all downhole tools were steam cleaned between boring locations. All decontamination water was pumped from the decontamination area to a 55-gallon drum, which was labeled, sealed, and placed in the drum storage building on site. All excess soil cuttings were collected and placed in 55-gallon drums, labeled, sealed, and placed in the drum storage building on site. In accordance with Section 4.4 of the Sampling and Analysis Plan (RI/FS Work Plan, BB&L, January 1997), all investigation-derived wastes were characterized and disposed of off-site by Laidlaw Environmental Services, Inc.

2.1.2 Transformer Pad

To assess the potential presence of PCBs in the soil adjacent to the existing transformer pad on the north side of Building 5, 3 shallow hand auger borings (SB-51, SB-52, and SB-53) were performed on February 10, 1997 by EMCON field personnel. SB-51 was installed to the west of the concrete pad and SB-53 was installed to the east of the concrete pad, using a hand-operated, stainless steel bucket auger. SB-52 was installed through the concrete pad to the north of the transformers and was advanced through

4 inches of concrete utilizing an electric rotary corer prior to sample retrieval with the bucket auger.

Samples for laboratory analysis were collected from the first 6 inches of soil encountered beneath a surficial gravel layer at these locations. Soil was removed from the bucket auger with a stainless steel spoon, and placed into a stainless steel tray, to composite the soils for a representative sample. Depths were measured and soil descriptions recorded, and the soil placed in laboratory glass jars for shipment to the laboratory for analysis.

Upon completion of the shallow test borings, the unused soil cuttings were placed back in the borehole and the borehole was grouted to the surface with concrete. Sample locations are identified on Drawing 1.

All three samples were analyzed for PCBs by NYSDEC ASP Method 95-3, in accordance with the NYSDEC-approved RI/FS Work Plan. QC samples were collected by EMCON, in accordance with the NYSDEC-approved RI/FS Work Plan, for QC by a third party data validator (Environmental Quality Associates, Inc.).

2.2 Groundwater Investigation

The groundwater investigation activities described below were completed to achieve the following objectives of the NYSDEC-approved RI/FS Work Plan:

- 1. Define the vertical and horizontal extent of groundwater impacted by VOCs;
- 2. Evaluate the potential influence of the 48-inch diameter sanitary sewer line located on adjacent Onondaga County property on the groundwater flow patterns west of the site; and
- 3. Provide data necessary to evaluate the groundwater collection and treatment system IRM.

2.2.1 Deep Monitoring Well MW-6D

A deep monitoring well (MW-6D) was installed downgradient of the former UST area adjacent to the existing shallow monitoring well MW-6S using a track-mounted Ingersol Rand A-300 drill rig. MW-6D was installed to monitor the deep sand unit downgradient of previously identified areas of VOC-impacted groundwater. The borehole for MW-6D was advanced using 8.75-inch inside diameter hollow-stem augers, and was continuously sampled in accordance with ASTM D1586. This created a minimum outside diameter borehole of 12 inches. Soil samples were screened with the PID as described in Section 2.1.1. At a depth of 20 feet, the auger plug was removed and the inside of the

auger flights were filled with cement bentonite grout via the tremie rod method of placement. This was followed by the removal of the augers from the borehole.

After removal of the augers, a 10-inch diameter steel casing was advanced through the grout to a depth of 20 feet, then pressed 1 foot further (into undisturbed soils) to a depth of 21 feet, which was approximately 7 feet into the clay and silt unit. After setting the steel casing, the tremie rods were again placed back down the casing to a depth of 20 feet, and the excess grout within the casing was flushed out with potable water. The grout was then allowed to set for approximately 64 hours. Subsequently, the boring was advanced with 4½-inch hollow-stem augers inside the 10-inch steel casing (taking continuous split-spoon samples) to the required depth. Upon completion of the boring, a 3-foot long, 2-inch diameter, schedule 40, flush-joint PVC screen and solid PVC riser pipe was installed. The annular space around the screen was filled with silica sand to a depth of 2 feet above the top of the screen, followed by a 3-foot bentonite seal and then a cement bentonite grout via the tremie method to the ground surface. This double-cased method of drilling minimized the potential for inducing the migration of VOC-impacted groundwater from the shallow soils to the deep sand unit.

The installation was completed with a locking protective steel casing and surface concrete pad. The geologic boring log for MW-6D is included in Appendix A. After 24 hours, MW-6D was developed by bailing and submersible pumping in accordance with the NYSDEC-approved RI/FS Work Plan and the procedures described in Section 2.2.6.

2.2.2 Monitoring Well Couplets

Three monitoring well couplets (MW-16A and MW-16B; MW-17A and MW-17B; MW-18A and MW-18B) were installed near existing monitoring wells MW-4S, MW-10, and MW-11, respectively. As shown in Table 1, the monitoring well couplets consisted of a shallow monitoring well (A series) screened at a depth interval from approximately 2 feet below the ground surface to approximately 10 feet below the ground surface, and a deeper well (B series) screened at a depth interval from approximately 12 to 21 feet below the ground surface. These wells were installed to evaluate the depth and alignment of the groundwater collection and treatment system IRM (described in Section 4.3). The shallow wells were designed to screen the interval to be intercepted by the collection trench, while the deeper wells were designed to screen the interval immediately beneath the collection trench.

Each of these wells were advanced using 4½-inch hollow-stem augers attached to the track-mounted drill rig. Continuous soil samples were obtained from each boring by driving the 2-foot long split-spoon sampler. Each soil sample was characterized for soil type, color, texture, grain size and moisture content, and was screened for the presence or absence of VOCs utilizing the PID. Upon reaching the target depths, a 2-inch diameter

well screen and appropriate length riser, was installed. The annular space of the wells was filled with silica sand to a depth of 2 feet above the top of screen, followed by a 2-foot thick bentonite seal and cement bentonite grout.

The wells were completed at ground surface with a protective steel casing or flush-mount enclosure and concrete pad. The geologic boring logs for these wells are included in Appendix A. After 24 hours, each well was developed by bailing or submersible pumping in accordance with the NYSDEC-approved RI/FS Work Plan and the procedures described in Section 2.2.6.

2.2.3 Shallow Monitoring Well MW-19S

In order to help define the horizontal extent of groundwater impacted by VOCs in the northern portion of the site, shallow well MW-19S was installed on June 9, 1997. Drilling of this well was performed by Parratt-Wolff, utilizing 4¼-inch hollow-stem augers on a CME-75 truck rig. Continuous soil samples were obtained from each boring using a split-spoon sampler in accordance with ASTM D1586. Each soil sample was characterized for soil type, color, texture, grain size and moisture content, and was screened for the presence or absence of VOCs utilizing the PID.

The location of this well was designed to provide lithology of subsurface conditions at this portion of the site, as well as to provide a groundwater monitoring point for VOCs. Therefore, the boring was advanced to a depth of 16 feet below ground surface to determine the presence/absence of sand lenses. Subsequently, based on the absence of sand lenses, the lower interval of the boring was sealed with bentonite to isolate the well screen interval to the approximate intended interval of the groundwater collection and treatment system IRM collection trench (described in Section 4.3).

Upon completion of the boring, the bottom 5 feet was sealed with bentonite, and then a 2-inch PVC screen was installed within the silt and clay unit to intercept the water table. The annular space around the screen to a depth of 2 feet above the screen was filled with silica sand followed by a bentonite seal. The installation was completed with a concrete surface seal with a flush-mounted protective locking casing. The geologic boring log for MW-19S is included in Appendix A.

2.2.4 Replacement of Monitoring Well MW-11

During clearing activities for the construction of the groundwater collection and treatment system IRM, it was observed that MW-11 was damaged beyond repair. LMC proposed to abandon MW-11 and install a new replacement well (MW-11R) in a December 5, 1997 letter to NYSDEC. In accordance with NYSDEC's December 11, 1997 approval,

MW-11 was abandoned and replaced with a new monitoring well designated as MW-11R.

Monitoring well MW-11 was abandoned in accordance with NYSDEC's "Groundwater Monitoring Well Decommissioning Procedures" (Malcolm Pirnie, Inc., Revised October 1996). Specifically, MW-11 was abandoned by puncturing the bottom of the PVC casing and grouting the boring using the casing as a tremie while removing the casing.

The replacement well, MW-11R, was installed approximately 5 feet upgradient (northeast) of the abandoned well. The borehole for MW-11R was advanced to the same approximate depth as MW-11 using 4½-inch ID hollow-stem augers. Continuous split-spoon samples were obtained through the screen interval using a split-spoon sampler in accordance with ASTM D1586. Each soil sample was characterized for soil type, color, texture, grain size and moisture content, and was screened for the presence or absence of VOCs utilizing the PID. Following completion of the borehole, the well was constructed similar to MW-11 with a 5-foot section of 2-inch diameter 0.10 slot PVC screen and riser. The geologic boring log for MW-11R is included in Appendix A.

MW-11R was developed on January 20, 1998, in accordance with the requirements of the NYSDEC-approved RI/FS Work Plan and the procedures described in Section 2.2.6, and will be sampled in the future in place of MW-11.

2.2.5 Piezometers

To assess groundwater flow patterns along the Onondaga County operated 48-inch diameter sanitary sewer line, three sets of piezometers (PZ-T1, PZ-T2, and PZ-T3) were installed in a line perpendicular to the sanitary sewer line. The purpose of these piezometers was to obtain water level elevation data to compare to site-wide groundwater elevation data to evaluate the possible influence of the sanitary sewer line on groundwater flow.

At each transect location, 4 piezometers were installed (12 piezometers total), as follows:

- East approximately 8 feet east of the sewer line;
- West approximately 8 feet west of the sewer line;
- Edge along the eastern edge of the sewer line; and
- Center installed above the sewer line.

The boreholes for the piezometers were advanced using 4¼-inch hollow-stem augers attached to a track-mounted drill rig. The boreholes were drilled to a depth of approximately 5 feet into the zone of saturation, with the exception of the "Center"

piezometers whose depths were limited to the top of the sanitary sewer line. Borehole cuttings were observed and classified in the field with regard to texture and the presence of saturation. Following advancement of each borehole to the required depth, a 1½-inch piezometer was installed consisting of a 5-foot section of PVC screen and appropriate length riser. A sand pack was placed around the screen interval to prevent clogging of the installation, and a bentonite seal was installed at the surface to prevent surface infiltration. Boring logs for the piezometers are included in Appendix A.

Following the acquisition of water level measurements, all of the piezometers were abandoned with the exception of the three "East" installations. The abandonment procedures were the same as those described for MW-11 (Section 2.2.4). The three remaining piezometers have been retained for hydraulic monitoring of the groundwater collection and treatment system IRM.

2.2.6 Monitoring Well and Piezometer Development

Development of the monitoring wells and piezometers was completed in accordance with the NYSDEC-approved RI/FS Work Plan to ensure the hydraulic connection with their formation materials which may have been disturbed or affected during drilling and well construction activities. Development for each of the wells was considered complete after evacuating a minimum of 3 well volumes and achieving turbidity values of less than 50 NTU and a stabilization of temperature, pH, and conductivity each to within a range of 10 percent, or evacuating the well up to a maximum of 10 well volumes.

Prior to development, the bottom of the well was measured to confirm the as-built construction, and a static water level measurement was obtained to calculate the total well volume. A clean Teflon bailer, equipped with a new piece of polypropylene retrieval rope, was used to remove any heavier sediments, if present, and to evacuate slower recovering wells. A low-flow rate submersible pump was used to develop the faster recovering wells.

2.2.7 Reinstallation of Staff Gauges

A total of 6 staff gauges were installed along Sanders Creek (SG-1, SG-2, and SG-3) and the South Branch of Ley Creek (SG-4, SG-5, and SG-6) during previous investigations. These gauges had subsequently been either damaged or removed during high flow events. Five of these staff gauges (SG-1 through SG-5) were reinstalled into the stream bed to provide surface water elevation data for the site. It was determined that SG-6 was not needed due to its proximity to SG-4, and therefore SG-6 was not reinstalled. Where possible, a spike was placed in a tree stump above the newly-installed gauge (at SG-1, SG-4, and SG-5) to act as a duplicate measurement point.

2.2.8 Sampling and Analysis

In accordance with the NYSDEC-approved RI/FS Work Plan, monitoring wells MW-1D, MW-2D, MW-3D, MW-5D, MW-6D, MW-3S, MW-7S, MW-8S, MW-12, MW-13, MW-14, MW-15, MW-16A, MW-16B, MW-17A, MW-17B, MW-18A, and MW-18B were sampled and analyzed for TCL VOCs by ASP Method 95-4 in March 1997. In addition, MW-17B and MW-19S were sampled and analyzed for TCL VOCs by ASP Method 95-4 in June 1997. Monitoring wells MW-7 and MW-12 were sampled and analyzed for TCL SVOCs by ASP Method 95-2 in March 1997. Monitoring wells MW-7, MW-10, MW-11, and MW-12 were sampled and analyzed for TAL Metals by ASP Inorganic Methods to evaluate the inorganic quality of the groundwater. QC samples were collected by EMCON and analyzed in accordance with the NYSDEC-approved RI/FS Work Plan for QC by a third party validator (Environmental Quality Associates, Inc.). Sample logs for the above referenced RI samples are included as Appendix B.

2.3 Surface Water/Storm Sewer Outfall Investigation

The surface water and storm sewer outfall investigation activities described below were completed to achieve the following objectives of the NYSDEC-approved RI/FS Work Plan:

- 1. Assess the results of storm sewer rehabilitation IRMs by determining the presence or absence of infiltration of VOCs in stormwater discharges at the outfalls in Sanders Creek and in the South Branch of Ley Creek;
- 2. Define whether the migration of VOC-containing groundwater at the site has impacted surface water quality in the South Branch of Ley Creek; and
- 3. Assess the potential presence of VOCs in the sediment near two storm sewer outfalls.

2.3.1 Surface Water Sampling

On March 13, 1997, two surface water samples were collected for VOC analysis in the South Branch of Ley Creek at locations SW-4 and SW-6. The surface water samples were collected by direct immersion of the sample containers into the stream.

2.3.2 Sediment Sampling

On March 13, 1997, one upstream and one downstream sample of fine-grained sediments from the top 6 inches of the stream bed were collected near OF-01 (Sanders Creek; currently OF-01A since being replaced as part of an IRM completed in August of 1997), and OF-02 (South Branch of Ley Creek). These samples were collected using a stainless steel Wildco hand corer with a Lexan insert. Samples were extruded into a stainless steel pan. Samples to be analyzed for VOCs were collected directly from the extruded core. Subsequently, remaining sediment from the downstream location at each outfall was homogenized for total organic carbon analysis.

Upstream sediment samples were collected approximately 10 to 15 feet upstream of each outfall. Downstream samples were collected approximately 10 to 15 feet downstream of each outfall.

2.3.3 Storm Sewer Outfall Sampling

On March 13, 1997, storm sewer outfall dry-weather discharge water samples were collected for VOC analysis from OF-01 (Sanders Creek; currently OF-01A since being replaced as part of an IRM completed in August of 1997), and OF-02 (South Branch of Ley Creek). These samples were collected by direct collection using sample containers placed into the outfall's discharge flow.

2.4 Survey

Following the completion of RI field activities, the new monitoring wells, transect piezometers, and staff gauges were surveyed for both horizontal and vertical control by Modi Engineering and Land Surveying of Syracuse, New York. These data were used to develop the base map for the site (Drawing 1). Vertical data was used to determine groundwater and surface water elevations.

2.5 NYSDEC Split Samples

During RI field activities at the site, NYSDEC collected split samples of subsurface soils, groundwater, sediment, storm sewer discharge water, and surface water at select sample locations. NYSDEC provided analytical data for these samples to LMC on April 25, 1997 and on July 3, 1997. Comparison of the results from NYSDEC split samples indicated that the data was consistent with data obtained by LMC. NYSDEC split sample analytical data did not undergo third party validation. Since the data sets were generally consistent, and NYSDEC data was not subjected to validation, Section 3 of this RI Report presents the sample results obtained by LMC.

3 RESULTS

Site geology and hydrogeology have been previously characterized at the site and are described in the 1993 Remedial Action Plan and 1993 Remedial Action Plan Addendum. These investigations identified the stratigraphic units and groundwater flow relationships across the site. The areal distribution of the VOCs in the groundwater regime was also described. The following sections summarize and update as applicable, site characteristics relative to site geology, site hydrogeology and the nature and extent of VOCs in soil, groundwater, surface water, and sediment.

3.1 Site Geology

The site geology has been characterized based on data obtained from a total of 89 test borings. These locations are shown on Drawing 1. Drawing 2 and Drawing 3 present geologic cross-sections depicting the subsurface stratigraphy relationships across the site. Geologic logs for each soil boring, monitoring well, and piezometer location are presented in Appendix A.

In descending order, subsurface stratigraphic units have been classified as follows: fill; clay and silt (which includes discontinuous interbedded sand/silt/peat layers); clayey silt; glacial sand; and a basal glacial till unit. The following discussion provides an overview of the units encountered.

3.1.1 Fill Deposits

Fill materials found at the site consisted of predominantly asphalt macadam and a coarse-grained sand and gravel subbase which had a typical combined thickness of 2 feet. Borings completed on the Onondaga County property encountered approximately 6 feet of reworked clay and silt soils. Fill materials (asphalt) and/or soils were encountered in 58 of the 89 test borings. During construction of the groundwater collection and treatment system IRM, a surficial layer of discarded china, approximately 1-2 feet thick was encountered in an area along the collection trench alignment in the vicinity of monitoring wells MW-10, MW-11, and MW-12.

3.1.2 Clay and Silt Deposits

This stratigraphic unit consists mainly of glaciolacustrine deposits of clay and silt with occasional partings of fine sand. The clay and silt deposits range in thickness across the site from approximately 15 to 20 feet and are characterized as quite plastic. Below a depth of 10 feet, these deposits are almost viscous and lack cohesive strength. Mottling, which is indicative of seasonal water level fluctuations (alternating oxidized and reduced conditions), was observed in the upper few feet of this unit. The clay and silt unit in certain areas of the site contains discontinuous lenses and thinly-bedded silts and fine sands, fine to medium sands, and isolated beds of peat soils.

3.1.3 Clayey Silt Deposits

The clayey silt unit consists mainly of silt with varying smaller percentages of clay. Fine sands can be typically found as partings, while the basal portion of the unit develops a higher percentage of fine sand at several locations. Geologically, the stratigraphic distinction was based on visual observations and field textural classification according to a system modified after Burmister.

3.1.4 Glacial Sand Unit

Underlying the clayey silts is a continuous deposit of fine to coarse glacial sands with smaller percentages of fine gravels and silts. Some stratification was evident as fine sands and silts at the upper portions of the unit graded to coarser sands with fine gravels towards the bottom. The sand unit encountered ranged in thickness from 4 to 10 feet.

3.1.5 Basal Glacial Till Unit

A dense layer of red-brown till was encountered beneath the sand layer. The till consists of an unsorted, unstratified mixture of silt and clays, sands and gravels, and appears to be continuous across the site. The thickness of the till is unknown since all of the deep borings were terminated within the upper portion of the unit.

3.2 Site Hydrogeology

Groundwater occurs within each of the stratigraphic units discussed above. However, this investigation focuses on the flow regimes where there is the potential for migration of VOCs. For this site, the upper clay and silt unit is important since it is known to have received VOCs from the former UST area and the former solvent storage pad area. In addition, the sand unit underlying the clayey silt deposit is of interest since it is

potentially extensive and, relative to the silt and clay deposits, is more permeable and transmissive.

In order to define the direction of groundwater flow within these two units, water-level data were obtained from monitoring wells which were screened within each of the respective units. Table 1 summarizes monitoring well construction details. Table 2 summarizes the groundwater elevation data obtained during the RI field activities completed in March 1997, April 1997, and June 1997. These data were used to construct cross-sectional and plan view groundwater contour maps. Drawing 2 and Drawing 3 present cross-sections and a piezometric profile which depict the hydrologic relationships between the strata. Plan view maps are presented in Drawing 4, Drawing 4A, Drawing 5, and Drawing 5A for the shallow (clay and silt) and deep (sand) units, respectively.

3.2.1 Shallow Groundwater Flow System

The shallow groundwater flow system was characterized by the use of monitoring wells and piezometers screened at or just below the groundwater surface (MW-1S through MW-19S, and the sanitary sewer line transects PZ-T1, PZ-T2, and PZ-T3), in addition to staff gauges in Sanders Creek and the South Branch of Ley Creek which provided surface water elevation data. Depth to water varies with regional precipitation patterns and typically ranges from 1 to 3 feet below the ground surface. The groundwater elevation contour map constructed from elevation data obtained on June 16, 1997 (Drawing 4), depicts a northwesterly and semi-radial flow pattern with discharge toward the South Branch of Ley Creek (located to the west) and Sanders Creek (located to the north). These two surface water bodies serve as discharge boundaries for the shallow groundwater flow system. Horizontal hydraulic gradients ranged from about 0.01 ft/ft to 0.04 ft/ft across the site. Horizontal permeabilities encountered in the shallow system at the site range from 10⁻⁴ cm/sec down to 10⁻⁶ cm/sec.

Drawing 4A depicts the configuration of the shallow groundwater based on water level measurements obtained on April 23, 1997, which would be representative of spring conditions. Generally, the water table contours reflect a semi-radial flow pattern as described above. It is worthwhile to note that relative to the June 1997 groundwater contour configuration, the April 1997 conditions reflect a more pronounced northerly component of flow toward Sanders Creek. This could be attributable to the influence of seasonal water table fluctuations with the effect of higher groundwater elevations during the spring months inducing a more northerly flow component toward Sanders Creek. Alternatively, or in addition to seasonal effects, the differences between the April 1997 and June 1997 events could be a function of specific groundwater elevation control points north of Building 5 that were used to construct the groundwater contours. Groundwater elevation data from monitoring well MW-19S, installed on June 9, 1997, was used to

construct the June 1997 groundwater contour map. This additional control point was not used in the construction of the April 1997 groundwater contour map.

As part of the RI, an evaluation was conducted to determine if the 48-inch diameter sanitary sewer line that traverses the Onondaga County property (parallel to the South Branch of Ley Creek), was acting as a preferential pathway for shallow groundwater flow. In order to characterize localized groundwater flow in relation to the sanitary sewer line, piezometers were installed as described in Section 2.2.5.

Drawing 1 and Figure 2 provide the location of the piezometer transects. Table 2 summarizes the groundwater elevation data from the transects. A cross-section through PZ-T3, representing the hydraulic relationship between the shallow groundwater and the sanitary sewer line (based on April 1997 groundwater elevation measurements) is provided in Figure 3. Boring logs for the piezometers are presented in Appendix A.

The results of this investigation indicate that the sanitary sewer line is not acting as a preferential pathway for groundwater flow. The boring logs indicate that the subsurface soils used for backfill for the sanitary sewer line installation are all silts and clays typical of the native deposits at the site. This conclusion is based on those piezometers that were installed above and immediately adjacent to the sanitary sewer line. Specifically, piezometers designated as "Edge" were drilled within inches of the sanitary sewer line. The subsurface materials were all characterized as silts and clays. There were no indications of higher permeability bedding materials, such as sands or gravels, that would suggest a preferential pathway.

Figure 3 depicts a cross-section along PZ-T3 showing groundwater elevations obtained on April 23, 1997. Included along this transect is the groundwater elevation data from MW-10. This cross-section was chosen since it represents the greatest head drop between the upgradient and downgradient locations. The downgradient piezometer at this transect (T3 West) is also the piezometer nearest to the topographic decline to the South Branch of Ley Creek. There is an approximate 6-foot drop in elevation over less than 10 feet horizontally between the western-most piezometer and the Creek. Based on this observation, it is evident that the head drop across this transect is not due to any hydraulic influence of the sanitary sewer line, but rather to topographical changes across the site, and the hydraulic control of the South Branch of Ley Creek.

The groundwater elevation data do not suggest preferential flow along the sanitary sewer line. The elevation data are consistent with the overall configuration of the surficial groundwater flow regime at the site (Drawing 4). The surficial groundwater regime is topographically controlled and there is no evidence of any convergence of flow in the vicinity of the sanitary sewer line that would indicate a preferential pathway.

3.2.2 Deep Groundwater Flow System

Drawing 5 shows the direction of groundwater movement for the deeper sand unit based on water level elevation data obtained on June 16, 1997 from the installations completed within this unit (MW-1D, MW-2D, MW-3D, MW-5D, MW-6D, and PZ-1). As previously characterized in the 1993 Remedial Action Plan and 1993 Remedial Action Plan Addendum, the sand unit is confined by the overlying low permeability clay and silt unit.

Examination of the deep groundwater elevation contours shown on Drawing 5, indicates that groundwater in the deep sand unit flows in a north-northwesterly direction. The hydraulic gradient, as determined using June 16, 1997 data, is approximately 0.001 ft/ft. The horizontal permeability encountered in the sand system at the site is in the 10^{-2} cm/sec to 10^{-3} cm/sec range.

Previous groundwater elevation data were evaluated for the deep groundwater system. Drawing 5A depicts groundwater contours based on groundwater levels obtained on April 23, 1997. The directional component of flow is similar to that depicted for the June 16, 1997 event (Drawing 5).

3.2.3 Vertical Head Differences

The potential for contamination to move from the shallow flow system to the deeper flow system can be characterized by examination of the vertical water level elevation difference between the two flow systems, or vertical head differences. Vertical head differences were evaluated by installing monitoring wells as couplets or triplets screened in the shallow, intermediate, and deep hydrostratigraphic systems, respectively. Table 3 summarizes vertical gradients based on water elevations recorded in March 1992 (high precipitation period) and August 1992 (low precipitation period), and also presents values for June of 1997 for these same locations and the new monitoring well couplets (MW-6S/D, MW-16A/B, MW-17A/B, and MW-18A/B). Drawing 3 depicts the vertical gradient and presents a piezometric profile (based on June 16, 1997 water level data) in a northerly to southerly direction.

The June 1997 results are consistent with the findings presented in the 1993 Remedial Action Plan and 1993 Remedial Action Plan Addendum. With minor exceptions, the prevailing vertical gradient between the deeper versus shallower groundwater is upward. In other words, there is a tendency for groundwater to flow from deeper to shallower strata. Some localized reversals (i.e., flow from shallow to deeper strata) have been observed, which are probably due to low recharge periods.

3.3 Nature and Extent of Contamination

The following sections present the analytical results obtained from the soil, groundwater, surface water, storm sewer discharge water, and sediment sampling performed in accordance with the NYSDEC-approved RI/FS Work Plan, and describe the nature and extent of the contamination found at the site. Drawing 1 shows the sampling locations for the different media. Appendix C contains the validated analytical laboratory reports from the RI samples (Columbia Analytical Services, Inc.), and Appendix D contains the results of third party data validation (Environmental Quality Associates, Inc.).

The RI included collecting samples from the following media:

- Soil;
- Groundwater:
- Surface Water;
- · Sediment; and
- Storm Sewer Discharge Water.

A discussion of each of the media is presented below.

3.3.1 Soil

As indicated in Section 1.2.3, IRMs were implemented at the site to address soil contamination in 1992. These IRMs are also discussed in Section 4.1 These IRMs involved the excavation of VOC-impacted soils in the former UST area and the former solvent storage pad area on the west side of Building 5, and a former metal shed on the southwest side of Building 5. Solvents were initially dispensed from 9 USTs and later from 55-gallon drums staged on an exterior concrete pad (Drawing 1). The metal shed was used for storage of maintenance equipment.

The objective of the soil removal operations was to excavate the majority of contaminated soils from the unsaturated zone and continue to remove soils from the upper saturated zone until groundwater conditions made excavation impractical.

Details of these remedial measures are found in the 1993 Remedial Action Plan. In summary, the IRM completed in 1992 was successful in removing the majority of VOC-contaminated soils from the site. Confirmatory sampling conducted following the removal of the contaminated soils indicated that only trace level residual VOCs remained in the solvent storage pad area, and in the unsaturated zone of the UST area. Higher residual VOC concentrations remained below the water table in the former UST area. Complete VOC removal was accomplished adjacent to the metal shed.

The objectives of the NYSDEC-approved RI/FS Work Plan with respect to soils, were as follows:

- 1. Define the vertical extent of VOCs in the former UST and solvent storage pad areas; and
- 2. Assess the potential presence of PCBs in the soil adjacent to the existing transformer pad on the north side of Building 5.

As part of the RI, soil samples were obtained in the area of the former solvent storage pad and in the area of the former USTs. This sampling was initiated from the bottom of the previous IRM excavations. All sampling was performed in the saturated zone. Soil samples, collected from within the former UST and solvent storage pad areas, were analyzed for VOCs and SVOCs. In addition, surficial and shallow subsurface soil samples were obtained at the transformer pad for analysis of PCBs. Table 4 summarizes the soil sample analytical data.

Former Underground Storage Tank Area

Soil samples were obtained, within the former UST area, at intervals of 18 to 20 feet below ground surface (BGS) and 22 to 24 feet BGS. These intervals are well within the saturated zone. The 18- to 20-foot interval represented the interval of soil exhibiting the highest level of organic vapors during field screening. The 22- to 24-foot interval represented the interval where a significant decrease in organic vapors was observed based on field screening. At the 18 to 20-foot interval, concentrations of VOCs were detected ranging from 1.1 ppm of 1,2-dichloroethane (1-2, DCA) to 280 ppm of trichloroethene (TCE). SVOCs detected were limited to trace levels of 2-methylphenol and 4-methylphenol at concentrations of 0.11 ppm and 0.16 ppm, respectively. Consistent with the much lower detection of organic vapors during field screening, concentrations of VOCs were more than an order of magnitude less at the 22 to 24 foot BGS interval, ranging from non-detect to 17 ppm for TCE. The extent of VOCs has been defined in the UST area.

Former Solvent Storage Pad

Analysis of the soil sample taken from beneath the backfill installed during the 1992 IRM indicated only trace levels of both VOCs and SVOCs. Most of the VOCs detected were found at estimated concentrations of less than 0.010 ppm. TCE and 1,1,1-trichloroethane (1,1,1-TCA) were detected at 0.019 ppm and 0.018 ppm, respectively. SVOCs detected were limited to trace levels (less than 0.25 ppm) of phthalates. The extent of VOCs has been defined in the former solvent storage pad area.

Existing Transformer Pad

Shallow hand auger borings were performed at the transformer pad on the north side of Building 5. In accordance with the NYSDEC-approved RI/FS Work Plan, these shallow soil samples (designated as SB-51, SB-52 and SB-53) were taken at worst case locations (i.e., at the immediate edge of the concrete pad, or beneath an expansion joint in the concrete pad). The samples were analyzed for PCBs. PCB Arochlor 1260 was detected at a concentration of 0.23 ppm in SB-52 (below the expansion joint in the concrete pad). No other PCBs were detected in these samples. Based on these results, no release of PCBs has occurred from these transformers which would require further action.

3.3.2 Groundwater

Twenty-eight groundwater monitoring wells have been installed across the site to characterize groundwater quality conditions in the shallow and deep groundwater. Previous site investigations have established that contamination was primarily limited to shallow groundwater, with the highest concentrations detected in the shallow wells installed in the vicinity of the former UST area and the former solvent storage pad area. Based on historical data and as discussed in the 1993 Remedial Action Plan, no evidence of non-aqueous phase liquid (NAPL) contamination was identified.

Overall, there has been no significant vertical migration of VOCs, relative to the high levels present in certain areas of the shallow system. The only apparent vertical migration was observed at the MW-1 triplet location. Based on sampling summarized in the 1993 Remedial Action Plan, the intermediate well (MW-II) and deep sand well (MW-ID) showed relatively low levels of several constituents (1,1-DCA, 1,1-DCE, and 1,1,1-TCA) as compared to the shallow well (MW-IS). At the MW-2 triplet, no chlorinated VOCs were detected in MW-2I or MW-2D. No chlorinated VOCs were detected in MW-3D above New York State's Part 703 groundwater quality standards.

Characteristic groundwater contamination has previously been identified as chlorinated and aromatic VOCs. The most prevalent VOC detected in the groundwater is 1,1-DCA. Other site contaminants that have been detected historically include vinyl chloride, 1,1 dichloroethene (1,1-DCE), 1,1,1-TCA and the aromatics toluene, ethylbenzene, and xylenes.

The objective of the NYSDEC-approved RI/FS Work Plan with respect to groundwater was as follows:

1. Define the vertical and horizontal extent of groundwater impacted by VOCs.

Table 5 summarizes the groundwater analytical data for organics obtained from monitoring wells sampled during the RI. Sampling and analysis were conducted on

ene-mtown1-j:\lockheed\86143001.000\reminv\final\ri.doc-95\mlennon:1 86143-001.000 3-8

Rev. 0, 4/27/98

selected shallow wells which monitor the surficial groundwater regime, and the deep wells which are screened in the deep sand unit.

VOCs were detected at trace concentrations in the deep sand well, MW-1D. The highest concentration detected was for 1,1-DCA at 22 ppb followed by 1,1,1-TCA at 6 ppb. The only VOC detected in any of the other deep wells sampled (MW-2D, MW-3D, MW-5D, and MW-6D) was 1,1-DCA in MW-6D (at an estimated concentration of 0.9 ppb, below the detection limit). Drawing 5 shows the configuration of the groundwater contours in the deep sand unit. Based on the groundwater contours, monitoring wells MW-2D and MW-6D, are hydraulically downgradient from MW-1D. As such, groundwater in the deep sand unit at MW-1D would be intercepted at MW-2D and MW-6D. downgradient locations show no, or extremely trace (i.e., below contract-required quantitation limit) levels of VOCs. These levels comply with New York State's Part 703 groundwater standards. The upward gradients observed within the impacted areas (Drawing 3 and Table 3) are expected to minimize migration of VOCs into the deeper The overlying clay and silt units exhibit very low vertical hydraulic conductivity (k_v) characteristics. As discussed in the 1993 Remedial Action Plan, k_v values of 10⁻⁸ cm/sec to 10⁻⁹ cm/sec are characteristic of the overlying clays and silts. As presented in the March 1993 Remedial Action Plan, these samples contained primarily silts and clays (between 95.5 percent and 99.8 percent). If sandier materials were present in the samples, higher k_v values would be expected. These k_v values translate into very low vertical seepage velocities which would impede the vertical migration of VOC-impacted groundwater from the overlying units to the sand layer below.

Drawing 6 depicts the distribution of total VOCs in the shallow groundwater regime as detected in the shallow wells in March 1997. These shallow wells are screened to provide groundwater within about 10 feet of the ground surface. It should be noted that not all of the shallow wells were recently sampled. For example, MW-1S and MW-2S were not included in the scope of the RI because these installations are in close proximity to the former UST and solvent storage pad areas and have historically exhibited relatively high concentrations of VOCs.

As shown on Drawing 6, the areal extent of groundwater impacted by VOCs has been defined. For all practical purposes, there has been no significant migration of VOC-impacted groundwater beyond the Onondaga County sanitary sewer line which runs parallel to the South Branch of Ley Creek. MW-13 which is located downgradient of the sanitary sewer line, exhibited only trace levels of two VOCs (1,1-DCA and cis-1,2-DCE) at estimated concentrations of 2 ppb, and 0.8 ppb, respectively. Analytical results from MW-14 indicate that VOC-impacted groundwater has not migrated along a pathway beyond the South Branch of Ley Creek. The absence of VOC contamination at MW-14, which is on the western side of the South Branch of Ley Creek, is consistent with the groundwater flow characteristics as discussed in Section 3.2.1, which indicates that historically, the shallow groundwater regime in the area discharges toward the Creek.

While shallow monitoring wells near the former UST and solvent storage pad areas (MW-1S and MW-2S) were not sampled as part of the RI, historical groundwater quality data in these areas indicated the highest levels of VOCs nearest to the sources. The VOC isoconcentration map (Drawing 6) shows a rapid attenuation of contamination in downgradient flow directions. Attenuation with distance from the source areas is attributable to dilution via dispersive mechanisms and/or natural biodegradation. addition, sorption to soils is likely to contribute to this attenuation. A review of the analytical database including the data presented in the 1993 Remedial Action Plan and 1993 Remedial Action Plan Addendum, indicates that chemical or biological degradation of the organic contamination may be taking place. This is based on the presence of chlorinated constituents other than 1,1-DCA, TCE and 1,1,1-TCA (i.e., the compounds that were believed to be used at the site) in the groundwater. Specifically, vinyl chloride has been detected in a number of shallow wells such as in MW-7S, MW-11, and MW-16A, that are in the downgradient flow direction from the former source areas. Chloroethane has also been detected in MW-11. These constituents are specific degradation products of 1,1-DCA, TCE, and 1,1,1-TCA. In addition, it is worthwhile to note that, whereas the aromatic hydrocarbons such as xylene and ethylbenzene were detected in the former source areas, these constituents are virtually absent in This is additional supportive evidence that biodegradation is downgradient wells. occurring since these substances are expected to biodegrade to carbon dioxide and water.

Table 6 summarizes the groundwater sample analytical data for metals obtained from monitoring wells sampled during the RI. Metals analyses were performed at selected monitoring wells for the purpose of characterizing treatment requirements for the groundwater collection and treatment system IRM. Metals have not been identified as constituents of concern at the site and no source areas have been identified that would result in metals impact to groundwater. Many of the metal constituents whose significant presence would suggest anthropogenic origin, including lead, mercury, and arsenic, were either not-detected or detected at trace concentrations. The metals that have been detected (e.g., aluminum, calcium, iron, magnesium, potassium, sodium, zinc, etc.) reflect ambient groundwater conditions reflective of the natural presence of these constituents in earth materials. The results of the metal analysis do not suggest any impacts related to site activities.

3.3.3 Surface Water

As part of the 1993 Remedial Action Plan Addendum, surface water samples were obtained from the South Branch of Ley Creek in areas immediately downgradient of the VOC-impacted groundwater zone as well as upstream and downstream of the site. These sampling locations (SW-1 through SW-7) are shown on Drawing 1. The purpose of the 1993 sampling was to determine if VOCs were present in the South Branch of Ley Creek as a result of groundwater discharge. The results of the analysis indicated the presence of

trace levels (up to 5 ppb) of TCE both upstream and downstream of the site. However, because the distribution of TCE was fairly ubiquitous, it was concluded that there was no appreciable increase in TCE levels or concentration gradients in the TCE, and that detections may have been attributable to background levels or to artifact.

The objective of the NYSDEC-approved RI/FS Work Plan with respect to surface water was to:

1. Define whether the migration of VOC-containing groundwater at the site has impacted surface water quality in the South Branch of Ley Creek.

During the RI, surface water samples were obtained from the South Branch of Ley Creek, at two sampling stations established in 1993, to re-confirm that groundwater discharge to the Creek is not impacting surface water quality.

Table 7 summarizes the surface water analytical data obtained. The location of the surface water samples are shown on Drawing 1. As was previously identified, trace levels of VOCs were detected in the upstream (SW-6) and downstream (SW-4) surface water samples. Both the upstream and downstream samples exhibited comparable concentrations. It is noted that the upstream sample contained slightly higher concentrations of all detected VOCs. Based on the analytical data, it is evident that the groundwater discharges to the South Branch of Ley Creek are not impacting surface water quality, re-confirming the conclusions presented in the 1993 Remedial Action Plan Addendum.

An important fate and transport mechanism relative to VOCs in surface water is volatilization, which is the tendency for a compound to partition into the air phase from the water phase. For estimating releases from water to air, the Henry's Law constant is a good indication of volatilization potential. This constant represents the partition coefficient that expresses the ratio of the chemical concentrations between air and water at equilibrium. Organic compounds with Henry's Law constants in the range of 10^{-3} atmospheres-meter³ per mole (atm-m³/mole) and larger can be expected to volatilize readily from water; those values ranging between 10^{-3} to 10^{-5} atm-m³/mole are associated with significant, but lesser volatilization, while compounds with values less than 10^{-5} atm-m³/mole volatilize from water only to a limited extent (Lyman, et al., 1990). All of the VOCs detected in the surface water have a Henry's Law constant greater than 10^{-4} atm-m³/mole and are, therefore, expected to volatilize from surface water.

3.3.4 Sediment

The objective of the NYSDEC-approved RI/FS Work Plan with respect to sediment was to:

1. Assess the potential presence of VOCs in the sediment near two storm sewer outfalls.

Table 7 summarizes the results of the VOC analysis for sediment samples that were obtained upstream and downstream of the South Branch of Ley Creek and Sanders Creek outfalls. At the South Branch of Ley Creek outfall, all detected VOCs were at trace levels. For example, chloroethane was detected in the upstream sediment sample at a concentration of 11 ppb, while the downstream level was 21 ppb. Likewise, 1,1-DCA was detected at a concentration of 10 ppb and 22 ppb at the upstream and downstream locations, respectively. At the Sanders Creek outfall, trace levels (estimated concentrations, below detection limits) of VOCs were identified in both upstream and downstream samples.

There was no identifiable impact to sediment quality based on a comparison of upstream and downstream sediment samples at the Sanders Creek outfall. The sediment quality data at the South Branch of Ley Creek outfall do not suggest that the sediments in the South Branch of Ley Creek have been adversely impacted from the discharges from the outfall to the Creek. The reasons for this are as follows:

- The differences in the individual detected VOC concentrations between the sediment sample obtained upstream of the South Branch of Ley Creek outfall, and the sediment sample obtained downstream from the outfall were very minor (i.e., less than a factor of three). The individual VOC concentration differences between the upstream and downstream samples were only several parts per billion.
- There is no correlation between the quality of the dry weather discharges from the storm sewer outfalls and VOC concentrations in the sediments. VOC concentrations in the dry weather discharge from the storm sewer outfall were highest at Sanders Creek (i.e., higher than the VOC concentrations detected in the dry weather discharge in the storm sewer outfall into the South Branch of Ley Creek). Therefore, higher VOC concentrations would be anticipated in the sediment sample downstream of the Sanders Creek outfall if there were a correlation between the dry weather discharge and VOC concentrations in the sediments. However, no impact to sediment quality is indicated by the data at this location.

It is apparent from both the sediment and the surface water sampling results (Section 3.3.3) that there are upstream sources of VOCs in the South Branch of Ley Creek.

Downstream movement of the sediments would only take place via erosion and redeposition processes. Such processes would disperse the sediments resulting in even lower sediment VOC concentrations downstream. The VOCs detected in creek sediments in Sanders Creek and in the South Branch of Ley Creek represent negligible mass, with respect to any further downstream migration.

3.3.5 Storm Sewer Outfalls

The objective of the NYSDEC-approved RI/FS Work Plan with respect to storm sewer outfalls was to:

1. Assess the results of storm sewer rehabilitation IRMs by determining the presence or absence of infiltration of VOCs in stormwater discharges at the outfalls in Sanders Creek and in the South Branch of Ley Creek.

Samples of dry weather flow from storm sewer outfalls in Sanders Creek and the South Branch of Ley Creek were collected to assess results of storm sewer rehabilitation IRMs.

Table 7 summarizes the storm sewer outfall analytical data obtained. Analysis of the storm sewer outfall samples for the South Branch of Ley Creek (OF-02) and Sanders Creek (OF-01) indicate that there were minor contributions of VOCs from infiltration of groundwater to the storm sewer system. For the South Branch of Ley Creek outfall, several low-level VOCs were detected, with the highest concentration being 1,1-DCA at 29 ppb. This dry-weather flow is not expected to adversely impact the South Branch of Ley Creek. This is supported by the surface water results discussed in Section 3.3.3. Downstream surface water sample SW-4 (approximately 900 feet downstream of the outfall), did not exhibit VOC concentrations greater than those detected in the upstream sample location.

Somewhat higher VOC levels were detected in the Sanders Creek outfall (OF-01). Specifically, vinyl chloride, 1,1-DCA and cis-1,2-DCE were detected at estimated concentrations of 87 ppb, 140 ppb, and 42 ppb, respectively.

As discussed in Section 4 of this document, due to the results of the RI field activities, a storm sewer system IRM was completed in August 1997. This IRM has further minimized VOC-impacted groundwater infiltration to the South Branch of Ley Creek storm sewer system, and eliminated all groundwater infiltration to the Sanders Creek storm sewer system.

4 INTERIM REMEDIAL MEASURES (IRM)

This Section of the RI report provides a summary of IRMs conducted at the site prior to commencement of RI field activities, as well as IRM activities conducted based on the results of the RI sample analyses (i.e., additional storm sewer rehabilitation) and the groundwater collection and treatment system IRM.

4.1 Previous IRMs

Previous use of the site by GE included the storage of solvents in nine USTs, and a solvent storage pad for dispensing of virgin paint solvents and thinners. Subsurface investigations performed in 1992 indicated that VOC-impacted soil and groundwater were present at the site, primarily along the western site boundary, adjacent to Building 5. Three source areas were identified including the former USTs, the solvent storage pad, and an area adjacent to a former metal shed at the southwest corner of Building 5. In 1992, IRMs were completed to remove VOC-impacted soils from these areas. Groundwater which accumulated in the excavations was also removed from the site.

Confirmatory sampling indicated that the majority of VOC-impacted soils in the former UST area and the former solvent storage pad area were removed, and that complete VOC removal was performed adjacent to the former metal shed. A Remedial Action Plan was prepared in 1993, which recommended collection and treatment of groundwater to prevent migration of residual VOCs in groundwater towards the South Branch of Ley Creek. The 1993 Remedial Action Plan was proposed to control the areal migration of impacted groundwater.

During the process of evaluating the migration pathways for VOC-impacted groundwater, it was recognized and confirmed that certain site storm sewers were acting as a preferential pathway for migration of VOC-impacted groundwater. The original storm sewer system at the site consisted of bell and spigot clay tile piping with brick catch basins. This type of construction typically allows infiltration of groundwater into the piping and catch basins. In 1992 and 1993, IRM activities (detailed in the 1993 Remedial Action Plan and the 1993 Remedial Action Plan Addendum) related to the storm sewer system were completed to prevent the infiltration of groundwater from VOC-impacted areas into the storm sewers. These activities included abandonment and relocation of catch basins, grouting of existing sections of clay tile piping, and installation of new

ene-mtown1-j:\lockheed\86143001.000\reminv\final\ri.doc-95\mlennon:1 86143-001.000 4-1

Rev. 0, 4/27/98

storm sewer piping. Post-IRM sampling of the outfalls confirmed that the IRMs were successful in mitigating the infiltration of VOCs to the storm sewer system at that time.

4.2 Additional Storm Sewer Rehabilitation

Subsequent storm sewer outfall sampling (performed in March 1997 as part of this RI) indicated that low-level VOCs were present in the Sanders Creek and the South Branch of Ley Creek storm sewer outfalls. This information was utilized to develop the Storm Sewer IRM Work Plan (EMCON, June 1997), which was approved by the NYSDEC. The Engineering Certification Report for the IRM (EMCON, November 1997) details the construction work completed and the results of the first round of post-construction sampling.

4.2.1 Sanders Creek Outfall (OF-01)

Laboratory data from the March 1997 sampling indicated that a total of 269 ppb of VOCs were detected at the Sanders Creek outfall. The compounds detected in the OF-01 outfall sample (vinyl chloride, 1,1-DCA, and 1,2-DCE) were also detected in MW-16A. MW-16A is located adjacent to the storm sewer line between catch basins CB-3 and CB-4. This segment of storm sewer was not replaced during IRMs conducted at the site in 1992 and 1993. The construction of this segment of storm sewer was bell and spigot clay tile pipe which allowed infiltration of groundwater into the storm sewer system.

To address discharges to Sanders Creek, LMC completed the following IRM activities in August 1997:

- 1. Approximately 320 feet of the bell and spigot clay tile pipe from CB-3 to OF-01 was abandoned and sealed (pressurized grout);
- 2. Brick catch basin (CB-4) was replaced with a new catch basin CB-4A near the previous location of CB-4;
- 3. A new catch basin (CB-20) was installed;
- 4. Outfall (OF-01) was abandoned and a new outfall (OF-01A) was constructed; and
- 5. New watertight piping was installed to connect the system catch basins to the new outfall.

No post-construction sample was obtained from the outfall to Sanders Creek (OF-01A), due to the absence of dry weather flow in September 1997. The observation by EMCON

and NYSDEC personnel of the absence of dry weather flow at OF-01A confirms that the IRM was successful in preventing infiltration of groundwater to the northwestern site storm drainage system during the September 1997 sampling period. Post-construction sampling will be performed again in the Spring of 1998 to re-confirm the effectiveness of the IRM.

4.2.2 South Branch of Ley Creek Outfall (OF-02)

Laboratory data from the March 1997 sampling indicated that a total of 44 ppb of VOCs (1,1-DCA, 1,2-DCE, 1,1,1-TCA, and TCE) were detected at this outfall. A significant portion of the storm sewer system was replaced as part of an IRM conducted in 1992 and 1993, to eliminate the infiltration of impacted groundwater into the system. Observations of the catch basins in April 1997 indicated that groundwater appeared to enter the system through a seam in catch basin CB-5 and through the bell and spigot clay tile storm sewer lines east and south of CB-7. Although CB-5 was replaced as part of the previous IRM, settling had separated a seam in the manhole which resulted in groundwater seepage into the new system. The portion of the storm sewer system east and south of CB-7 was not replaced during the 1992 and 1993 IRMs.

To address discharges to the South Branch of Ley Creek, LMC replaced CB-5 with a one-piece (seamless) manhole which will not be subject to future separation due to settling. The old system, east and south of CB-7, is upgradient of the former metal shed, UST area, and solvent storage pad, and therefore, no further storm sewer replacement was attempted.

Post-construction dry weather flow samples (infiltrating groundwater only) were collected from the outfall to the South Branch of Ley Creek (OF-02) in September of 1997. As shown below, the sample results indicate lower concentrations of VOCs in discharges to the South Branch of Ley Creek outfall, as compared to RI samples collected in March 1997 (prior to IRM construction).

Compound	March 1997 (Pre-IRM) Concentration (ppb)	September 1997 (Post-IRM) Concentration (ppb)
1,1-Dichloroethene	2 UJ	0.8 J
1,1-Dichloroethane	29 J	12
c-1,2-Dichloroethene	2 J	0.5.1
1,1,1-Trichloroethane	5 J	2
Trichloroethene	8 J	0.5
Total Detected	44	15.8

Notes "J" denotes an estimated value, "U" denotes a compound which was not detected at the stated detection limit.

The post-IRM sample data have not been reviewed by a third party data validator and, therefore, have not been included in the data tables and appendices of this report. The analytical report, including this data, was provided in the Engineering Certification Report for the IRM (EMCON, November 1997).

The concentration of total VOCs detected in the post-construction sample from OF-02 was approximately 35 percent of the concentration of VOCs detected in the March 1997 sample. While VOCs persist in dry weather flow from this portion of the storm sewer system, their concentrations appear to have decreased as a result of the IRM (i.e., catch basin CB-5 replacement).

4.3 Groundwater Collection and Treatment System

The groundwater collection and treatment system for the site has been designed to intercept and collect groundwater containing residual VOCs from its natural flow path towards the South Branch of Ley Creek and Sanders Creek.

The system includes a collection trench and sump from which groundwater is pumped to the treatment system. The collection trench is approximately 830 feet in length, as shown in Figure 4. The collection trench discharges into a collection sump located north of Building 5. The collected groundwater is then treated prior to discharge to Sanders Creek. The design of the collection trench and treatment system is briefly described below. Details regarding the system are provided in the IRM Work Plan for the Groundwater Collection and Treatment System (EMCON, November 1997).

4.3.1 Groundwater Collection Trench

The conceptual design of the collection trench presented in the 1993 Remedial Action Plan Addendum was based on subsurface data from test borings and monitoring wells that paralleled the planned collection trench alignment. To prepare the final design, eight additional monitoring wells were installed during the RI to confirm the vertical and horizontal extent of VOCs in groundwater in the vicinity of the proposed collection trench alignment, and to add details regarding the depth and continuity of sand lenses that were to be intercepted. These monitoring wells were installed as part of the RI performed in accordance with the NYSDEC-approved RI/FS Work Plan. The collection trench layout specifically intercepts those areas where sand lenses have been confirmed as the pathways for VOC migration.

Based on evaluation of the test boring logs and groundwater sampling results obtained in support of this design, the depth, alignment and length of the collection trench were modified to intercept the affected subsurface media. Figure 4 shows the final alignment

of the collection trench. The trench has a total length of approximately 830 feet, with a collection pipe slope of 0.2 percent. Based on variations of the surface elevation, the final depth of the collection trench ranges from 8 to 14 feet bgs. The groundwater sample results from the RI (Table 5) confirm that there were no detectable VOCs present in groundwater at either end of the trench (MW-12 and MW-19S), or below the base elevation of the trench (MW-16B, MW-17B, and MW-18B) prior to the trench construction. Accordingly, the groundwater collection trench will intercept VOC-impacted groundwater moving toward Sanders Creek and the South Branch of Ley Creek.

4.3.2 Groundwater Treatment System

A brief description of the groundwater treatment system is presented below. Details regarding the system design are provided in the IRM Work Plan for the Groundwater Collection and Treatment System (EMCON, November 1997).

The pumps within the collection sump transfer groundwater to a common header pipe located within the treatment building. The header pipe discharges into a diffused aeration tank air stripper to remove VOCs. The effluent from the air stripper flows by gravity to a transfer tank. From the transfer tank, the groundwater is pumped through bag filters. The treated water flows by gravity to a catch basin (CB-20) and through storm sewer piping to Sanders Creek (Outfall OF-01A).

The collection trench is designed to intercept and remove groundwater containing residual VOCs. The nature and extent of VOCs in site groundwater is discussed in Section 3 of this report. As part of the RI, samples of groundwater were also collected for metals analysis from monitoring wells within the collection area to identify the inorganic characteristics of the groundwater which would be treated. These results are presented in Table 6. Anticipated concentrations of metals and suspended solids in the treatment system influent were estimated from these data. Based on a comparison of the estimated influent concentrations for these parameters to NYSDEC effluent requirements for the system, removal of solids was also required prior to discharge to reduce certain metals concentrations (i.e., iron).

5 PRELIMINARY RISK ASSESSMENT

The scope of the risk assessment (RA) for the site has been developed by LMC in conjunction with NYSDEC, the New York State Department of Health (NYSDOH), and the United States Environmental Protection Agency (USEPA) through a series of correspondence and meetings.

5.1 Introduction and Scope

The RI process includes a RA to evaluate the potential for hazards associated with contaminants of concern (COCs) at the site. The human health component of the RA assesses risks to public health, while the ecological RA (ERA) addresses the potential for site-related contamination to impact biota. Risks are evaluated in the context of site use by humans and wildlife, available habitat, and local/regional conditions.

The human health RA will follow the guidelines established by the EPA in performing assessments for RI/FS sites (USEPA, 1989, 1990, 1992). The ERA process, developed in cooperation with and approved by the NYSDEC, the NYSDOH and the USEPA, will use a combination of the NYSDEC's Fish and Wildlife Impact Analysis (FWIA) for Inactive Hazardous Waste Sites (1992) and USEPA's ERA guidance for Superfund sites (1997). The initial step will be based on the FWIA Step I, with additional input from USEPA's ERA guidance Step 1. As part of this step, standards, criteria and guidelines (SCGs) relevant to the site will be identified. The assessment will then proceed using USEPA ERA's Steps 2 through 7. The need for completing subsequent components of the ERA (FWIA Steps III through V and USEPA ERA Step 8) will be determined during later phases of the RI/FS process.

This preliminary RA, presented as part of the draft RI Report, includes the following:

- 1. A Site Description, including:
 - A general description of land use in the area; and
 - An inventory of ecological resources and vegetative cover mapping.
- 2. A Pathway Analysis, including:

- An evaluation of all potential exposure pathways and routes, and identification of those that are potentially complete;
- Identification of SCGs; and
- Selection of COCs for both the human health RA and ecological RA.

Following resolution of coordinated NYSDEC, NYSDOH and USEPA comments on the draft RI Report, the remaining steps of the RA will be completed and submitted with the final RI Report.

5.2 Site Description

The following site characterization survey incorporates the components of FWIA Step I. The purpose of the survey was to evaluate the site and nearby surrounding area, to document the occurrence of wildlife species and habitat present at the site, and to examine the potential pathways for contamination migration to affect fish and wildlife species found in the area.

A site visit was conducted on August 14, 1997 to observe the environmental setting of the site. On-site and nearby off-site areas were visually inspected for observation of human activity and wildlife. Human use of the area was evaluated based on the accessibility and appeal of the area, and recent use evidenced by footprints, fresh foot pathways or recently deposited trash. Avian species were identified by sight, song, or calls. Mammals were identified by sight, nest, burrow, track or scat. Fish were observed by sight. Plant species were also identified along with the location at which they were present.

Biological information regarding the site was also gathered by contacting various Federal and State agencies, including the NYSDEC, the United States Department of Agriculture (USDA) and the United States Fish and Wildlife Service (USFWS), as follows:

NYSDEC Division of Environmental Permits	
NYSDEC Wildlife Resource Center/National Heritage	Program
NYSDEC Freshwater Wetlands Map	
NYSDEC Regional Bureau of Fisheries	
USDA Soil Conservation Service, Soil Survey	
USFWS National Wetland Inventory (NWI)	
USFWS Cortland Field Office	

Information obtained from these offices regarding the environmental setting at the site is included as Appendix E.

The site consists of former manufacturing buildings and a paved parking lot. The site is bordered to the north by a small strip of herbaceous vegetation, Sanders Creek, and Route 298 (a 4-lane highway). Other boundaries are formed to the east by Deere Road, to the south by industrial/commercial buildings, and to the west by a wooded corridor and the South Branch of Ley Creek. This corridor varies in width along the South Branch of Ley Creek from approximately 200 feet across (near Route 298), to up to 800 feet across near the southern site boundary.

As described in Section 4, several IRMs have been completed at the site, including removal of VOC-impacted soils and installation of a groundwater collection and treatment system. The treatment building is located near the northwest corner of Building 5.

5.2.1 Stream Classification

Both the South Branch of Ley Creek (NYSDEC Waters Index No. P154-3-2) and Sanders Creek (NYSDEC Waters Index No. P154-3-3), which form the west and north site boundaries, are designated Class C waters by the NYSDEC in the sections adjacent to the site. Information from the NYSDEC Region 7, Division of Permits, has indicated that the South Branch of Ley Creek is a Protected Stream Area north of Route 298 near NYSDEC Wetland SYE-6. Sanders Creek flows into the South Branch of Ley Creek immediately north of the site. The South Branch of Ley Creek continues north approximately 1,500 feet to its confluence with the North Branch of Ley Creek, where Ley Creek begins. Ley Creek flows west to Onondaga Lake approximately 5 miles downstream of the site.

5.2.2 Human Site Use

Due to its small size, isolated nature, and presence between manufacturing buildings and highways, the vegetated areas along the South Branch of Ley Creek and Sanders Creek near the site offer no particular recreational value to humans. The nearest residential area is over ½ mile to the south.

During the site inspection, there was no evidence of recent use of the area by the public. Trash observed near the creek banks appeared to have been washed downstream from upstream sources.

5.2.3 Vegetation

The site, and areas along the South Branch of Ley Creek, represent highly disturbed areas that appear to have historically been filled and altered by industrial land development.

Further impacts have occurred due to powerlines, highways, railroads, and sanitary sewer line construction. The United States Geological Society (USGS) Soil Survey for Onondaga County indicates that most of the site is urban land (filled), with areas along Route 298 mapped as cut and fill lands. Both of these designations indicate severe filling and/or soil movement, which would significantly alter vegetative composition.

A land use/vegetative cover map is included as Figure 5. Plant species identified in the vicinity of the site are indicated on Table 8. Mature tree species along the South Branch of Ley Creek include black willow (Salix nigra) and eastern cottonwood (Populous deltoides) with lesser amounts of red maple (Acer rubrum), black ash (Fraxinus nigra), and slippery elm (Ulmnus rubra). Understory tree species included box elder (Acer negundo), wild raisin (Viburnum cassinoides), silky dogwood (Cornus amomum), and others.

There are no trees or shrubs along Sanders Creek west of Deere Road before the confluence with the South Branch of Ley Creek. Herbaceous vegetation consists of typical old field species in open, unforested areas. Along Sanders Creek, loosestrife (Lythrum salicaria) is dominant. No submerged or stream bed vegetation was noted in any area. All vegetation was restricted to the stream banks and areas topographically elevated above the Creek.

5.2.4 Aquatic Insects

Although not abundant, in several areas along the South Branch of Ley Creek some aquatic insects, such as water striders (Gerris conformis), whirligig beetles (Gyrinidae spp.) and others were noted. Tracks of crawling benthic species were noted on several mud banks. Dragonflies were present throughout.

5.2.5 Fish

Fish (minnows) were noted throughout the South Branch of Ley Creek. Their distribution was very spotty, and is likely attributable to physical disturbances such as channelization, sediment particle size characteristics, and other physical parameters of the stream. Two large groups of fish were noted just upstream of the site north of the Old Court Street Road crossing, and in the vicinity of the rail spur that enters the southern end of the site.

No fish were observed in Sanders Creek, although the water was extremely turbid and visibility was minimal.

Contacts with the NYSDEC (Appendix E) have indicated that no significant fishery resources are present in the subject streams.

ene-mtown1-j:\lockheed\86143001.000\reminv\final\ri.doc-95\mlennon:1 86143-001.000 5-4

Rev. 0, 4/28/98

5.2.6 Avian Species

Avian species noted in the study are present in Table 9 (Wildlife Species).

Several avian species were present due to the grassland/old field habitat along Sanders Creek. These species include sparrows (Spizella spp.), robins (Turdus migratorius), and starlings (Sturus yulgaris).

Other species noted along the South Branch of Ley Creek were more typical of wooded areas. Noteworthy were two species of piscivorous birds along the South Branch of Ley Creek: Green heron (Butorides virescens) and belted kingfisher (Megaceryle alcyon). Green heron utilize varied habitats including ponds, lakes, streams, marshes, sloughs, and wet meadows. Their habits and behavior can be colonial or solitary in their nesting or feeding activities. Their feeding habits include both stand and wait or slow walk techniques. Shallow water (flowing), shallow bottom or wetland vegetation, are common substrates from which heron feed. Major food groups include small fish, crustaceans, mollusks, terrestrial and aquatic insects, reptiles, amphibians, spiders, and leeches. Kingfishers breed near ponds, lakes, rivers, and streams that contain fish. Fish are a staple of this species, but they will also feed on crayfish, insects, mollusks, and tadpoles. Prey is taken by perching and diving into shallow water (less than 2 feet). availability of small fish and suitable perches, specific habitat features that are favorable to both species, are likely to exist in the area of the site. However, the high turbidity of the water would discourage use by these birds.

5.2.7 Mammals

Mammalian species noted in the study area are presented in Table 9 (Wildlife Species). Four mammal species were noted during the field survey. Raccoon (Procyon lotor) tracks were observed in the mud banks of the South Branch of Ley Creek just north of the rail spur crossing. Woodchuck (Marmota monax) borrows were noted in the old field areas near the confluence of Sanders Creek and the South Branch of Ley Creek. One gray squirrel (Sciurus carolinensis) was observed on the mowed lawn area just north of the site, and one muskrat (Ondatra zibethicus) was observed in the South Branch of Ley Creek north of the site (downstream), and just north of the Route 298 traffic circle west of the site in NYSDEC Freshwater Wetland SYE-6. Muskrat are also likely to occur along other sections of the South Branch of Ley Creek closer to the site.

Although, not noted, other species likely to be found include mice, voles, shrews, and bats. Due to the limited extent of natural vegetation, the congested traffic patterns of the area roads and the degree of human presence, large mammals (e.g., deer, fox, etc.) are not expected to utilize the site or the surrounding area as habitat, although they could pass through the area using the vegetated area as a travel corridor.

Rev. 0, 4/28/98

5.2.8 Endangered, Threatened, or Special Concern Species

Contacts to both the USFWS and the NYSDEC have indicated that no Endangered, Threatened, or Special Concern Species are known to occur on or nearby the site (Appendix E).

5.2.9 Wetlands

Based on a review of available NYSDEC and NWI Maps, there are no Federal- or State-Regulated wetlands on-site. The NWI Map is included as Figure 6 and the NYSDEC Wetlands Map is included as Figure 7. The closest NYSDEC Wetland, SYE-6, is located 1,200 feet north (downstream) of the site. The next closest NYSDEC Wetland is SYE-29, approximately 2,400 feet southeast (upstream) of the site along the South Branch of Ley Creek.

Wetland SYE-6 has been divided into several smaller hydrologically linked areas. Major influences on SYE-6 have been industrial/urban development, road construction including the New York State Thruway, powerlines, and several smaller roads. Parts of the wetland included forested as well as emergent wetland components. The emergent areas are largely vegetated by phragmites.

The NWI map indicates that the South Branch of Ley Creek has been mapped as a ravine, lower-perennial, permanent open water wetland. This definition translates to a permanent flowing water system confined in channels. The gradient is low, and water velocity is slow. Much of the stream bottom is expected to be silt and clay. Organisms, typically able to survive in the substrate, must be able to tolerate low oxygen concentrations. Visual inspection of the stream confirms this classification.

5.2.10 Fish and Wildlife Resource Value

The site has been and is intended to be used as an industrial site. Therefore, the developed portion of the site does not offer any value to wildlife or potential residential use for humans.

Due to development impacts on Sanders Creek in the site vicinity, this creek offers limited value as potential wildlife habitat. Sanders Creek offers no value to humans except for stormwater conveyance and flood control.

Due to preservation of remnant mature trees along the South Branch of Ley Creek, this area does provide some value to wildlife, primarily avian species. The area serves as a corridor/greenway linking other areas. Due to configuration and size the area is not likely to be a critical breeding, nesting, or feeding area for any specific species, but does

ene-mtown1-j:\lockheed\86143001.000\reminv\final\ri.doc-95\mlennon:1 86143-001.000 5-6

Rev. 0, 4/28/98

provide suitable habitat to meet the criteria for all of these activities for certain individuals of a larger population. Primary impacts to this area have resulted from habitat alterations due to development pressure, such as filling, channelization, utility construction, rail line maintenance, and road construction.

5.3 Pathway Analysis

Field observations and regional information, along with information from current and previous environmental investigations, are used in the pathway analysis. The pathway analysis identifies the mechanisms by which human or ecological biological receptors may be exposed to site-related contaminants. USEPA guidance defines an exposure pathway as a mechanism by which a contaminant may travel to a receptor, and an exposure route as the point of entry or contact between the receptor and the contaminated medium. Although developed for ecological assessments, these definitions are useful for both the human health RA and the ERA.

The pathways and COC evaluations for the RA are based on the assessment of the nature and extent of contamination and fate and transport issues associated with the site as presented in Section 3. Contaminated media at the site include: shallow groundwater, subsurface soil, surface water and sediment. If a medium has no potential for contact with receptors, the exposure pathway is considered incomplete. An ecological receptor is defined as a plant or animal population, community, habitat, or sensitive environment. A public health receptor is a human individual or population. COCs for the RA are then selected based on the complete routes and pathways for site-related contaminants.

The general contaminant pathways are discussed in the Pathway Overview (Section 5.3.1). Actual exposure routes are then identified based on the presence of potential receptors that could contact affected media. Identification of complete exposure routes is based on the site-specific evaluations that appear for human health and ecological endpoints in Sections 5.3.2 and 5.3.3, respectively.

5.3.1 Pathway Overview

As presented in Section 3.3, media at the site that contain site-related COCs are soil, groundwater, surface water and creek sediment. General characteristics of the contamination in each of these media is discussed below.

Soil

It should be noted that, as described in Section 3.3.1, contaminated soils in the unsaturated (vadose) zone and shallow saturated zone have been removed as part of previous IRMs. Therefore, there are no existing contaminant migration pathways

associated specifically with soils. Residual subsurface soil contamination in the saturated zone is addressed by the groundwater pathway discussion that follows.

Groundwater

The nature and extent of groundwater contamination is described in Section 3.3.2. Characteristic of groundwater contamination at the site is the presence of chlorinated and aromatic VOCs, principally 1,1-DCA. The highest levels are near identified former source areas (i.e., the UST area and the solvent storage pad area), with rapid attenuation downgradient.

Contamination is almost entirely limited to the shallow (upper clay/silt) unit, which provides a pathway for horizontal migration through sand lenses. Migration to the deeper (sand) unit is minimized by the presence of upward gradients and low vertical permeability of the overlying clay and silt units.

At the site, the South Branch of Ley Creek and Sanders Creek serve as a discharge zone for shallow groundwater. However, based on the presence of the groundwater collection and treatment system IRM and the general absence of contamination beyond it, VOCs will not reach either creek via groundwater discharge.

Historically, the storm sewer system served as an artificial contaminant transport pathway to surface water through infiltration of VOC-impacted groundwater and subsequent discharge at the outfalls. The IRMs for the storm sewer system (described in Section 4) have eliminated the infiltration of groundwater to the storm sewer system that discharges to outfall OF-01A to Sanders Creek (as evidenced by absence of dry-weather flow). Dry-weather discharge to the South Branch of Ley Creek (OF-02) still occurs. This discharge shows lower concentrations of COCs than it did prior to the improvements, but the pathway remains complete.

Volatilization of VOCs from shallow groundwater to air is a complete pathway. Surficial soil gas measurements completed in 1992 and discussed in the 1993 Remedial Action Plan have confirmed that trace levels of VOCs are migrating from the subsurface to the surface within the area encompassed by the groundwater collection and treatment system. The presence of pavement eliminates this pathway within the on-site areas. However, volatilization could potentially occur in the area of the corridor between the paved areas and the South Branch of Ley Creek

Surface Water

The only existing point of entry of site-related contamination to surface water is via groundwater infiltration discharges at OF-02 to the South Branch of Ley Creek. The downstream surface water sample collected at SW-04 during the RI, did not show

concentrations higher than those upstream, indicating that the site is not having a net effect on surface water quality. Any exposure potential associated with the discharge to surface water is therefore localized. As discussed in Section 3.3.3, this observation is supported by the high tendency of site COCs to volatilize from surface water into air. Therefore, downstream surface water transport, while potentially complete, is not significant.

Surface water contaminants can theoretically be taken up by local biota. However, none of the site COCs has a high bioconcentration potential. A measure of the tendency for bioaccumulation is the bioconcentration factor (BCF), a limitless ratio between the tissue concentration and the exposure medium (e.g., water). BCFs for chemicals with a tendency for significant food chain accumulation are generally 1,000 (10³) or higher. Of the site COCs, the highest water-to-tissue BCFs identified (Howard, 1990) were for TCE, reportedly ranging from 17-39 (well under 10²). This shows a low tendency for bioaccumulation, described by the author as "not important."

Preliminary COCs for the site (see Section 5.3.4) were identified as having the following BCFs (Howard, 1990):

- Acetone (0.69);
- Carbon disulfide (7.9);
- 1,1-dichloroethane (0.67-0.86);
- 1,1-dichloroethene (No experimental data; no significant bioaccumulation expected);
- 1,2-dichlorethene (15-22);
- Methylene chloride (5);
- Trichloroethene (17-39);
- cis-1,2-dichloroethene (15);
- 1,1,1-trichloroethane (8.9); and
- Vinyl chloride (7)

Creek Sediment

The presence of site COCs in OF-02 indicates a potential for release of contaminants to sediments. As discussed in Section 3.3.4, there is no evidence that sediments are specifically affected by site discharges.

As discussed for surface water, COC transport from sediments into biota would not be a significant fate mechanism for site COCs due to their low bioaccumulation potential.

Summary

In summary, contaminated media associated with the site are shallow groundwater, surface water and sediment. The major transport pathways are limited discharge of shallow groundwater to surface water at OF-02, and subsequent volatilization, with possibly some deposition in sediments.

5.3.2 Human Health

Potential public health exposure mechanisms are addressed below for groundwater, surface water and creek sediment.

Groundwater

Typical groundwater exposure routes are:

- Consumption of domestic water (drinking water, food, beverage);
- Inhalation of COCs volatilized into indoor air (general air and while showering);
- Incidental dermal contact (during subsurface activities);
- Dermal contact during water use (e.g., bathing);
- Consumption of produce that has taken up contaminants from groundwater that was used for irrigation; and
- Inhalation of COCs volatilized into ambient air (during subsurface activities).

The first four exposure routes (water consumption, indoor air inhalation, dermal contact and produce consumption) are all based on use of the associated groundwater unit as a domestic water supply. Shallow groundwater at or downgradient of the site cannot be used as a water supply because of limited yield potential (permeability ranging from 10⁻⁴ cm/sec to 10⁻⁶ cm/sec) and extent. In the areas where VOC-impacted groundwater is present, the shallow groundwater is intercepted by the groundwater collection and treatment system precluding discharge to the South Branch of Ley Creek and Sanders Creek. Therefore, shallow groundwater use at the site as a domestic water supply is not feasible now or in the future.

Deeper groundwater in the sand interval could yield adequate water for domestic use. However, all detectable contamination is within site boundaries at relatively low levels. The deep groundwater results for the sand unit confirm that COCs are not migrating off site in this unit (Section 3.3.2). Since the site is used for industrial purposes, there is no potential for development of a domestic water supply on site. Furthermore, the Town of Dewitt is entirely served by public water. In the site vicinity, the water is purchased by the Town from either the Metropolitan Water Board or the Onondaga County Water Authority. The Metropolitan Water Board obtains its water from the Skaneateles Lake.

The Onondaga County Water Authority obtains its water from Otisco Lake or Lake Ontario. Due to the limited area available on the Onondaga County property, and the lack of agricultural land use in the surrounding area, it is very unlikely that an irrigation supply would ever be developed. There is no use of groundwater in the area for either municipal or private supplies, nor will there be any in the foreseeable future. All exposure routes associated with groundwater use are therefore incomplete under both current and future hypothetical conditions.

The presence of the site in a highly industrial area as well as in a floodplain preclude any future residential use. However, the site may undergo future commercial development. As with subsurface soil, associated construction activities could result in transient worker exposure to subsurface groundwater. Possible exposure routes are incidental dermal contact and inhalation of volatilized COCs.

Surface Water

Surface water exposure routes in the South Branch of Ley Creek can occur as follows:

- Incidental ingestion (during primary or secondary recreational use);
- Dermal contact (during primary or secondary recreational use);
- Inhalation of COCs volatilizing from the water surface; and
- Consumption of fish that have bioaccumulated contaminants from surface water.

The first three exposure mechanisms assume some public use of the area, which has minimal likelihood of occurring. Access to this area is, at best, difficult, due to the isolated nature of the creek corridor and its presence amidst industrial and commercial development. Fishermen would not be attracted due to the absence of game fish. Access to this segment of the creek is extremely limited. Assuming continued future industrial/commercial use of the site, it is unlikely that the South Branch of Ley Creek would serve as a recreational resource.

Onondaga County personnel, engaged in clearing the South Branch of Ley Creek of debris, could contact surface water. Such types of contact, if any, would be transient and infrequent.

Overall, the human exposure routes to the South Branch of Ley Creek within the area of concern are potentially complete. However, given the very low likelihood of public use, and the transient nature of any contact with impacted media, these exposure mechanisms are de minimis and do not warrant further characterization.

Fish consumption exposures are incomplete. The NYSDEC has confirmed that there are no fishery resources in the area (Appendix E). Fish in the site area are limited to minnows. Given the trace concentrations and volatile nature of the COCs detected in

surface water, there is no potential for measurable downstream transport to areas where game fish may exist. Based on the low potential of site COCs for bioaccumulation and the small size of the fish observed, it is not anticipated that the fish in the site area could serve as a contaminated food source to larger fish in downstream areas that might be consumed by humans.

All human health exposure routes associated with surface water are either de minimis or incomplete.

Sediment

Typical sediment exposure mechanisms are:

- Incidental ingestion (during primary or secondary recreational use);
- Dermal contact (during primary or secondary recreational use); and
- Consumption of fish that have bioaccumulated contaminants from sediments.

As with surface water, direct contact routes are incomplete because of the general absence of current or future use of the area. It is highly unlikely that game fish would have contact to the sediments in this area, due to the absence of suitable habitat. As such, there is no anticipated pathway to humans through fish consumption.

All human health exposure routes associated with creek sediment are incomplete.

Summary

Table 10 summarizes the significance of the human health exposure routes described above. There are no potential human health pathways to site COCs under current or anticipated future conditions. Future site development may present a potential for transient contact by workers with subsurface contamination (soil, groundwater) through incidental ingestion, dermal contact or inhalation. However, it is unlikely that any excavation would be allowed within the area of the site hydraulically influenced by the groundwater collection and treatment system because such excavation would have the potential of interfering with the IRM program at the site and would be a change of site use controlled by the NYSDEC under its Part 375 regulations.

5.3.3 Ecological

As described in Section 5.2, the site is located in an urbanized/industrial area surrounded by various industrial activities. Due to the existence of buildings and pavement, there is no on-site habitat for wildlife. The nearby watercourses (South Branch of Ley Creek and Sanders Creek) and adjacent vegetated areas offer limited habitat for wildlife.

As a general note, USEPA ERA guidance indicates that physical stresses unrelated to contaminants should not be the focus of the ERA. However, it is important to consider site contamination in the context of the physical setting. Industrialization and development of the site area and nearby stream locations severely limits the available habitat.

Potential ecological exposure routes to be considered are:

Terrestrial Animals

- Inhalation of volatilized contaminants from surface water;
- Incidental surface water ingestion;
- Surface water ingestion for drinking;
- Soil ingestion;
- Inhalation of volatilized contaminants from subsurface soil;
- Sediment ingestion;
- Dermal absorption of COCs from surface water;
- Dermal absorption of COCs from sediment; and
- Consumption of aquatic life that has bioaccumulated contaminants.

Terrestrial Plants

- Root absorption; and
- Leaf absorption (gaseous).

Aquatic Animals

- Direct contact with surface water;
- Direct contact with sediment; and
- Consumption of aquatic life that has bioaccumulated contaminants.

Aquatic Plants

- Root absorption; and
- Leaf absorption.

Due to the presence of pavement, there is no potential for contact between wildlife and contaminants at the site. On the forested Onondaga County property, between the paved area and the collection trench, subsurface contamination is present within the saturated zone. However, it is too deep to present a risk of contact, since the saturated zone is several feet deep in those areas. Direct contact routes associated with subsurface contamination are therefore incomplete.

As discussed in Section 5.3.1, there may be some low-level minimal volatilization from the subsurface to ambient air. This exposure mechanism is considered de minimis because of the minimal air impacts anticipated.

Volatilization from surface water to ambient air is an important removal mechanism for surface water COCs, but is of de minimis air quality concern due to the low VOC concentrations observed. Actual ambient air impacts to any ecological receptors along the South Branch of Ley Creek are not likely to result.

All of the other pathways indicated above are potentially complete. Surface water ingestion, use of surface water and sediment as an aquatic habitat, and associated bioaccumulation up the food chain (dietary exposure to piscivorous wildlife) are potentially complete exposure routes in the vicinity of the site. Habitats downstream of the site would not be impacted, as transport in either surface water or sediment beyond the immediate site is not likely based on the transport characteristics of the COCs.

In summary, pathways and exposure routes related to surface water and sediment represent the only potential ecological exposure mechanisms associated with site COCs. Table 11 summarizes the complete ecological exposure pathways and routes for the site.

5.3.4 Preliminary Chemicals of Concern (COCs)

Based on data generated during the RI, COCs present within the ecological pathways at the site are mostly chlorinated VOCs. These contaminants are generally highly volatile in character and were detected at trace levels in surface water and stream sediment. Specific constituents detected in surface water and sediment include:

- Acetone;
- Carbon disulfide;
- 1,1-dichloroethane;
- 1,1-dichloroethene;
- 1,2-dichlorethene;
- Methylene chloride;
- Trichloroethene:
- cis-1,2-dichloroethene:
- 1,1,1-trichloroethane; and
- Vinyl chloride.

To be conservative, all detected chemicals in the creeks or in outfalls leading to the creeks that are potentially site related will be included as preliminary COCs. These criteria are met for all the chemicals above with the exception of carbon disulfide and acetone. Carbon disulfide was not detected in site groundwater or soils. It is a naturally

occurring compound found in marine sediments or freshwater marshes and is produced by the action of microbes (USEPA, 1998). Acetone was also not detected in other site media, and is frequently a result of laboratory artifact. Methylene chloride is also a suspected lab contaminant, but has been retained at this point because it was reported in one groundwater sample.

It should be noted that upstream contamination with chlorinated VOCs exists, and that the site shows no net contribution to environmental concentrations in the South Branch of Ley Creek.

It should also be noted that by including the outfall sample results as well as the stream data, the list of potential site contaminants has been expanded to include 1,1,1-TCA and vinyl chloride. However, none of these parameters were detected in actual surface water or sediment samples from the South Branch of Ley Creek. This is most likely attributable to the low concentration at which the compounds are present and the rapid volatilization of these compounds.

The VOCs identified as preliminary COCs and carried through subsequent evaluation will be those detected above relevant screening values or which showed substantial elevation (e.g., a several-fold increase in concentration) in samples at or downstream of the site compared with upstream. The screening evaluation is presented below.

5.3.5 Screening Evaluation

Screening ecotoxicity values are defined as concentrations that represent conservative thresholds for adverse ecological effects. Potentially applicable screening levels for surface water and sediment are identified below. The screening levels and associated surface water and sediment concentrations are summarized in Table 12 and Table 13, respectively. The discharge to Sanders Creek is included for historical perspective, even though this release has been eliminated through an IRM.

New York State Surface Water Standards

New York State has promulgated surface water standards for Class C streams. However, there are no Class C standards for site-related COCs.

USEPA Ambient Water Quality Criterion (AWQC)

AWQC (USEPA, 1986) are surface water concentrations designed to be protective of aquatic life on either an acute or chronic basis. No specific AWQC for the protection of aquatic life from chronic effects are available for site-related COCs. However, in evaluating the database for each chemical, the USEPA has estimated the lowest concentrations at which toxicity occurs. Such values are available for two of the COCs

(1,1,1-TCA and TCE) and for a compound (1,2-DCA) closely related to another site-related COC (1,1-DCA). These values appear in Table 12.

Preliminary Remediation Goals (PRGs)

The United States Department of Energy (USDOE, 1996) has developed PRGs for toxicity screening in ecological RAs. PRGs established by Oak Ridge National Laboratory (ORNL) for VOC COCs are based on protection of aquatic life on a chronic basis and, therefore, are appropriate for screening. PRGs for site-related COCs are shown in Table 12 and Table 13.

USEPA Ecotox Thresholds

Ecotox Thresholds (ETs) (USEPA, 1996) are defined as "media-specific contaminant concentrations above which there is sufficient concern regarding adverse ecological effects to warrant further site investigation." They are specifically designed for screening of surface water and sediment. The ET software calculates ETs for sediments using equilibrium partitioning. A typical total organic carbon concentration of 2.5 percent was used in the program. Site-specific total organic carbon in creek sediments presented in Table 7, were 2.2 percent and 2.7 percent.

The ETs generated appear in Table 12 and Table 13.

New York State Sediment Guidance Screening Value

The NYSDEC Division of Fish and Wildlife has developed sediment screening values for individual chemicals based on a variety of endpoints. There are no screening values available for site-related COCs based on protection of aquatic life. For one COC (TCE), there is a screening value based on human health. This is not an appropriate ecological risk screening value and has not been considered.

Summary

Table 12 and Table 13 show the maximum site concentrations, including outfalls, compared against the lowest screening values identified. The only result that exceeded the lowest screening value was 1,1-DCA in the outfall to Sanders Creek water sample. This finding exceeded a surface water screening value as shown in Table 12. Actual concentrations in the creek at the time are not known, and were undoubtedly far lower. Regardless, this discharge of COCs has been eliminated by the IRM. There are no exceedances of screening values associated with the potentially complete pathway, discharge to the South Branch of Ley Creek at OF-02.

5.3.6 Preliminary Risk Conclusions

There are no currently complete human health exposure pathways for site-related COCs. However, the potential risk associated with worker contact with subsurface materials will be further addressed in the RA.

Based on the pathway analysis and screening evaluation, there are no concentrations of site-related COCs in surface water or sediment that could present an ecological concern. No further ecological evaluation is required.

6 CONCLUSIONS

This document presents the results of the RI performed at the Former GE Court Street Building 5/5A site. The RI included the drilling of soil borings, the installation of monitoring wells and piezometers and the sampling of soil, groundwater, surface water and sediment. The information obtained was used to define the nature and extent of contamination at the site, and to assess current site conditions within the context of the completed and ongoing IRMs for the site. The IRMs for the site include the removal of VOC-impacted soils in the former UST area, the former solvent storage pad area and the former metal shed area; the rehabilitation of the storm sewer system to mitigate the migration of VOC-impacted water to Sanders Creek and the South Branch of Ley Creek; and, the construction of a groundwater collection and treatment system to prevent the migration of VOCs toward Sanders Creek and the South Branch of Ley Creek. Additional testing was also performed to assess the potential presence of PCBs in the soil adjacent to a transformer pad on the north site of Building 5.

A findings summary, presented in the context of the stated objectives in the NYSDEC-approved RI/FS Work Plan, is presented below. The findings summary is followed by a statement of the major conclusions of the RI.

6.1 Findings Summary

The vertical extent of VOCs in the former UST area and solvent storage pad area has been defined. In 1992, VOC-impacted soil removal activities were completed. Post-removal sampling completed at that time confirmed that the mass of VOC-impacted soils were removed from the unsaturated soils and the upper saturated zone, to the extent possible, by excavation. The NYSDEC-approved RI/FS Work Plan included deep soil borings in the former UST area and the former solvent storage pad area to evaluate vertical migration of VOCs. RI sampling of saturated zone soils beneath the former UST area and the former solvent storage pad area indicate that there is no evidence of a non-aqueous phase liquid (NAPL), and that the residual VOCs are limited to a depth interval beneath the former UST excavation that is present well below the water table, but confined above the underlying sand unit. The presence of residual VOCs at these intervals is related to VOC-impacted groundwater.

ene-mtown1-j:\lockheed\86143001.000\reminv\final\ri.doc-95\mlennon:1 86143-001.000 6-1

The vertical and horizontal extent of groundwater impacted by VOCs has been defined. Shallow VOC-impacted groundwater has been identified and the extent has been delineated. Drawing 6 shows the horizontal extent of the VOC impacts to the shallow groundwater system. A groundwater collection and treatment system has been installed to collect and remove VOC-impacted groundwater. It is expected that the operation of the system will eliminate migration of VOC-impacted groundwater towards Sanders Creek and the South Branch of Ley Creek. Isolated, low level VOCs in the deeper sand unit have been identified at one location (MW-1D) west of Building 5. Downgradient sample locations in this system do not detect any significant concentrations of VOCs. Vertical migration of VOCs from the shallow system to the deeper sand is not a significant mechanism due to upward gradients observed between these units and the low vertical permeability of the geologic units overlying the sands.

PCBs in the soil adjacent to the transformer pad on the north side of Building 5 were not present at levels which require further action. This transformer pad was removed by the Building 5 property owner (DE & JD) during renovation activities completed in October 1997.

The sanitary sewer line operated by Onondaga County west of Building 5 does not act as a preferential groundwater flow path. The groundwater elevation data confirm that there is no preferential flow along the sewer line. The elevation data are consistent with the overall configuration of the surficial groundwater flow regime at the site. The surficial groundwater regime is topographically controlled and there is no evidence of any convergence of flow in the vicinity of the sewer line that would indicate a preferential pathway.

RI activities identified infiltration of VOC-impacted groundwater into site storm sewer systems which discharge to Sanders Creek and to the South Branch of Ley Creek. These discharges did not result in a net impact to surface water quality in the South Branch of Ley Creek, where surface water samples were taken. IRM actions were taken in August 1997 (in addition to similar IRM activities completed in 1992 and 1993) to eliminate the discharge to Sanders Creek, and to minimize the discharge to the South Branch of Ley Creek.

The migration of VOC-impacted groundwater at the site has not impacted surface water quality in the South Branch of Ley Creek, based on comparison of upstream and downstream samples, and the identified lateral extent of VOC-impacted shallow groundwater.

VOC analysis of sediment samples collected upstream and downstream of Sanders Creek and the South Branch of Ley Creek outfalls was performed. There was no identifiable impact to sediment quality at the Sanders Creek outfall. A potential concentration gradient was observed between the upgradient and downgradient samples in the South

Branch of Ley Creek. However, because of the trace levels present in both South Branch of Ley Creek samples, no conclusive impact to the sediments from the outfall has been identified. Since these samples were obtained from worst-case locations to identify sediment impact and no adverse impact was found, and because no significant ecological or human health risk is associated with the sediment concentrations identified (based on screening analysis using sediment criteria), no further evaluation of the sediments is warranted.

All necessary data were obtained to evaluate the groundwater collection and treatment system design for control of groundwater migration toward the South Branch of Ley Creek and Sanders Creek. The groundwater collection and treatment system has been constructed. Its operation is expected to effectively prevent the migration of VOC-impacted groundwater towards Sanders Creek and the South Branch of Ley Creek.

An FS will be prepared to evaluate potential final remedial alternatives for the site. In this regard, the groundwater collection and treatment system (described in Section 4.3) is intended to be the final remedy for groundwater at the site.

6.2 Conclusions

An overview of the conclusions from the RI is provided below:

- The soil removal operations that were conducted in 1992 at the former UST area and former solvent storage pad area remediated the majority of the VOC-impacted soils. Additional soil sampling was conducted as part of this RI to define the vertical extent of the residual VOCs in both areas. Beneath the excavation for the UST area, VOCs are detectable in saturated soil samples well below the water table. VOCs were detected at only trace levels beneath the former solvent storage pad. VOC-impacted groundwater has migrated downgradient of the former UST area in the shallow groundwater system. Based on this finding, a groundwater collection and treatment system IRM has been initiated. No further remedial action relative to residual VOCs in soils is warranted.
- Soils adjacent to the transformer pad on the north side of Building 5 did not contain PCBs at levels which require further action. All samples were below the 1 ppm cleanup objective referenced in the NYSDEC TAGM HWR-94-4046 for surface soils.
- The vertical and horizontal extent of VOC-impacted groundwater has been defined. The data collected confirm that the alignment and depth of the groundwater collection trench are appropriate and will prevent the migration of

VOC-impacted groundwater towards Sanders Creek and the South Branch of Ley Creek.

- The sanitary sewer line that traverses the Onondaga County property is not acting as a preferential pathway for groundwater flow. The soils encountered and the configuration of the groundwater table (i.e., the piezometer elevation data in the context of site-wide groundwater elevations) do not indicate the presence of higher permeability materials along the sanitary sewer line. Accordingly, the sanitary sewer line is not a preferential pathway for the off-site migration of VOC-impacted groundwater.
- Groundwater discharges to the South Branch of Ley Creek are not impacting surface water quality. Surface water samples taken both upgradient and downgradient of the VOC-impacted groundwater area exhibited low levels and comparable concentrations of VOCs. These results confirm the conclusions of the 1993 Remedial Action Plan Addendum that the surface water quality of the South Branch of Ley Creek is not being impacted by groundwater migrating from the site.
- Analysis of the storm sewer outfalls for the South Branch of Ley Creek and Sanders Creek indicate that there were minor contributions of VOCs from the infiltration of VOCs in the storm sewer system. These contributions are not expected to adversely impact the South Branch of Ley Creek (supported by the results of RI surface water sampling discussed above) or Sanders Creek. Subsequent to the RI sampling of these outfalls, an IRM was completed to minimize infiltration of VOC-impacted groundwater to the storm sewers. Based on the first round of post-construction samples, this IRM resulted in the elimination of groundwater infiltration to the storm sewer system that discharges to Sanders Creek, and a significant reduction of VOC-impacted groundwater infiltrating into the storm sewer system discharging to the South Branch of Lev Creek. It is likely that VOCs entering the South Branch of Ley Creek are readily volatilized, thus limiting downstream migration. Post-construction sampling will be performed at these outfalls again in the Spring of 1998, and on a semi-annual basis thereafter until the FS is completed for the site. In the event that significantly higher VOC concentrations are detected, additional storm sewer IRMs will be considered.
- VOC analysis of sediment samples collected upstream and downstream of Sanders Creek and the South Branch of Ley Creek outfalls was performed. There was no identifiable impact to sediment quality at the Sanders Creek outfall. A potential concentration gradient was observed between the upgradient and downgradient samples in the South Branch of Ley Creek. However, because of the trace levels present in both South Branch of Ley Creek samples,

no conclusive impact to the sediments from the outfall has been identified. Since these samples were obtained from worst-case locations to identify sediment impact and no adverse impact was found, and because no significant ecological or human health risk is associated with the sediment concentrations identified (based on screening analysis using sediment criteria), no further evaluation of the sediments is warranted.

- As part of the RI, preliminary ecological and human health risk assessments were performed. A component of the risk assessment included a pathway analysis that identifies the mechanisms by which human or ecological receptors may be exposed to VOCs. The major ecological transport pathways at the site are discharge of VOCs to surface water at the South Branch of Ley Creek stormwater outfall and subsequent volatilization. However, there are no VOC concentrations in surface water or sediment that could present an ecological concern, based on screening analysis. There are no currently complete human health exposure pathways. Future exposure scenarios that would result from a substantial change in site use, as this term is defined at 6 NYCRR Part 375-1.3(v), are controlled at the site by the NYSDEC under the provisions of its Part 375 regulations that govern new uses of sites.
- Sufficient data have been obtained to characterize the site in support of an FS.
 The FS evaluation of potential remedial alternatives will focus on the
 groundwater collection and treatment system IRM as being the final remedy for
 site groundwater.

REFERENCES

- American Society for Testing and Materials, ASTM D 1586, Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils, 1997 Annual Book of ASTM Standards, 1997.
- EMCON/Wehran-New York, Inc. Interim Remedial Measures Workplan, Former GE Court Street Building 5/5A, Groundwater Collection and Treatment System. Dewitt, New York. Prepared for Lockheed Martin Corporation, Syracuse, New York. August 1997, Revised November 1997.
- EMCON/Wehran-New York, Inc. Engineering Certification Report, Storm Sewer Interim Remedial Measures, Former GE Court Street Building 5/5A, Town of Dewitt, New York. Prepared for Lockheed Martin Corporation, Syracuse, New York, November 1997.
- EMCON/Wehran-New York, Inc. Remedial Investigation/Feasibility Study Work Plan, Court Street Site, NYSDEC Site No. 734070. Prepared for Lockheed Martin Corporation, Syracuse, New York. August 1996, Revised January 1997.
- EMCON/Wehran-New York, Inc. Remedial Action Plan Court Street Buildings 5 and 5A, Inactive Solvent Dispensing Area. Volume 1 Report. Prepared for GE Aerospace, Syracuse, New York. March 1993.
- EMCON/Wehran-New York, Inc. Remedial Action Plan Addendum, Court Street Buildings 5 and 5A, Inactive Solvent Dispensing Area. Prepared for Martin Marietta Corporation, Syracuse, New York. October 1993.
- Howard, P.H., 1990. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Volume II. Solvents. Lewis Publishers, Inc., Chelsea, MI.
- Ingersoll, C.G., Dillon, T. and Biddinger, G.R.,eds., 1997. Ecological Risk Assessment of Contaminated Sediments. SETAC Special Publications Series. SETAC Press.
- Lyman, W.J et al., 1990. Handbook of Chemical Estimation Properties, American Chemical Society, 1990.

ene-mtown1-j:\lockheed\86143001.000\reminv\final\ri.doc-95\mlennon:1 86143-001.000

- Salaniteo, J.P., 1993. The Role of Bioattenuation in the Management of Aromatic Hydrocarbon Plumes in Aquifers. Groundwater Monitoring Review. Fall 1993: 161-160.
- Sims, J.L., J.M. Suflita, and H.H. Russell, 1991. Reductive Dehalogenation of Organic Contaminants in Soils and Ground Water EPA/540/4-90/054
- United States Department of Energy (USDOE, 1996). Preliminary Remediation Goals for Ecological Endpoints. Prepared by the Environmental Restoration Risk Assessment Program, Lockheed Martin Energy Systems, Oak Ridge National Laboratory, Oak Ridge, TN.
- USEPA, 1998. Chemicals Summary: Carbon Disulfide. OPPT Fact Sheet. Office of Pollution Prevention and Toxics, Washington, D.C.
- USEPA, 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final. Office of Solid Waste and Emergency Response. EPA 540-R-97-006. OSWER 9285.7-25.
- USEPA, 1996. ECO Update. Ecotox Thresholds. Intermittent Bulletin, Volume 3, Number 2. Office of Solid Waste and Emergency Response. EPA 540/F-95/038
- USEPA, 1986. Quality Criteria for Water. Office of Water Regulations and Standards. Washington, D.C. EPA 440/5-86-001.

TABLES

Table 1
Former GE Court Street Building 5/5A Site
Remedial Investigation Report
Monitoring Well Construction Details

	Ground	PVC	Total	Screen
	Surface	Casing	Depth	Interval
	Elevation	Elevation	Well	BGS
Well	(ft. NGVD)	(ft. NGVD)	(ft. BGS)	(ft. BGS)
Deep Wells		`		
MW-1D	381.82	381.29	35.5	32.4-34.9
MW-2D	382.07	381.3	47.1	41.7-46.7
MW-3D	380.55	379.89	36.1	32.7-35.7
MW-5D	383.47	383.15	27.3	22.0-27.0
MW-6D	383.31	385.58	38.5	34.0-37.0
PZ-1	384.54	384.94	34.6	29.0-34.0
Intermediate Wells		: ''		
MW-1I	381.8	381.46	28.4	23.0-28.0
MW-2I	382.07	381.89	29.4	24.0-29.0
Shallow Wells				
MW-1S	381.82	381.62	14.8	4.4-14.4
MW-2S	382.08	381.83	14.9	4.5-14.5
MW-3S	380.74	380.4	16.5	6.1-16.1
MW-4S	379.75	379.55	14.8	4.4-14.4
MW-5S	383.41	383.19	13.9	3.5-13.5
MW-6S	383.41	385.81	14.5	4.0-14.0
MW-7S	382.01	384.45	14.8	4.0-14.0
MW-8S	379.34	378.96	14	3.0-13.0
MW-9	383.08	385.11	12	7.0-12.0
MW-10	384.17	386.11	12	7.0-12.0
MW-11	382.73	384.25	12	7.0-12.0
MW-11R	382.66	385.71	12	7.0-12.0
MW-12	383.4	384.99	12	7.0-12.0
MW-13	381.92	384.05	12	7.0-12.0
MW-14	379.33	381.22	10	5.0-10.0
MW-15	380.28	382.1	12	7.0-12.0
MW-16A	379.57	379.3	8.5	2.5-8.5
MW-16B	379.67	379.27	22	11.5-21.5
MW-17A	381.76	384.11	12	2.0-12.0
MW-17B	381.76	384.22	24	15.0-23.0
MW-18A	382.84	385.18	10	2.0-10.0
MW-18B	382.6	384.83	24	13.0-23.0
MW-19S	379.56	379.31	10.5	3.0-10.0

Notes: 1. NGVD - National Geodetic Vertical Datum of 1929.

2. BGS - Below ground surface.

Table 2 Former GE Court Street Building 5/5A Site Remedial Investigation Report

Monitoring Well, Staff Gauge, and Piezometer Transect Groundwater Elevation Data

	Loca	tion	Reference	GW Elev	GW Elev	GW Elev
Well	Easting	Northing	Elevation	3/11/97	4/23/97	6/16/97
Deep Wells	Lasting	Horting	Elevation	57.1.7.		
MW-1D	5181.99	4532.75	381.29	381.31	380.78	379.85
MW-2D	5047.62	4785.76	381.30	380.54	380.60	379.68
MW-3D	5079.13	4890.13	379.89	380.98	380.43	379.55
	5440.89	4035.70	383.15	382.28	381.22	380.30
MW-5D	5040.11	4640.26	385.58	381.91	380.68	379.76
MW-6D	5824.76	4427.88	384.94	382.67	381.08	380.15
PZ-1 Intermediate Wells	3824.70	4427.00	304.54	302.07	301.00	300.13
	5177.21	4530.56	381.46	381.04	380.82	379.88
MW-1I	5047.42	4789.21	381.89	380.76	380.77	379.59
MW-2I	3047.42	4709.21	361.67	300.70	300.77	3,,,3,
Shallow Wells	5172 225	4520.10	381.62	381.61	380.57	379.47
MW-1S	5172.235	4530.19	381.83	380.52	378.80	377.33
MW-2S	5045.08	4792.10		378.09	377.43	377.23
MW-3S	5087.36	4890.01	380.40 379.55	377.03	377.45	376.74
MW-4S	5015.44	4937.24			380.69	380.11
MW-5S	5445.71	4039.51	383.19	381.32		
MW-6S	5047.75	4625.57	385.81	382.47	380.17	377.11
MW-7S	4962.16	4801.27	384.45	380.86	378.59	376.26
MW-8S	4949.37	5064.80	378.96	377.41	376.79	376.01
MW-9	4921.46	4866.19	385.11	380.22	378.23	376.37
MW-10	4890.00	4816.34	386.11	380.52	378.24	376.18
MW-11	4980.68	4637.94	384.25	380.46	378.12	376.06
MW-11R	4986.56	4641.18	385.71	-	-	-
MW-12	5089.75	4476.38	384.99	380.63	377.73	375.82
MW-13	4863.08	4719.96	384.05	376.08	375.05	373.95
MW-14	4821.16	4730.32	381.22	374.77	374.72	374.21
MW-15	4766.15	4972.84	382.10	379.23	376.99	374.95
MW-16A	4999.16	4964.28	379.30	377.01	377.19	376.64
MW-16B	4994.34	4962.42	379.27	377.43	377.49	376.72
MW-17A	4851.66	4826.16	384.11	379.51	377.53	375.89
MW-17B	4847.80	4832.47	384.22	379.63	377.64	376.04
MW-18A	4964.94	4628.08	385.18	378.88	376.92	374.93
MW-18B	4968.13	4622.99	384.83	379.44	377.98	376.33
MW-19S	5168.42	5049.68	379.31		-	377.14
Staff Gauges						
SG-1 Nail	5577.03	5025.35	376.78	374.88	374.61	374.54
SG-2	5113.47	5166.29	374.52	372.93	372.66	372.62
SG-3	4919.33	5232.19	374.34	372.88	372.88	372.17
SG-4 Nail	4851.04	4673.35	376.73	374.78	374.54	374.38
SG-5 Nail	5084.51	4220.49	378.79	375.87	375.43	375.47
Sanitary Sewer Transects						
T1 West	5031.16	4503.18	383.99	377.75	376.24	374.97
T1 Center	5037.27	4508.48	385.06	377.41	377.42	376.16
T1 Edge	5039.86	4510.19	384.15	379.01	376.76	375.07
T1 East	5043.29	4513.76	384.04	379.63	377.06	375.14
T2 West	4935.54	4634.27	384.96	376.13	375.03	374.18
T2 Center	4942.77	4637.48	385.59	377.08	DRY	DRY
T2 Edge	4945.77	4638.64	384.56	376.44	375.04	374.31
T2 East	4950.35	4640.46	386.69	376.93	375.35	374.43
T3 West	4334.75	4781.23	383.31	375.18	374.82	374.15
T3 Center	4840.94	4784.30	384.54	377.97	376.35	DRY
T3 Edge	4842.93	4786.07	383.63	378.27	376.68	375.18
T3 East	4847.38	4788.35	385.15	378.72	376.94	375.48

Notes: 1. Elevations are in feet, based on National Geodetic Vertical Datum of 1929.

^{2.} MW-19S was installed on June 9, 1997.

^{3.} MW-11 was abandonned, and MW-11R was installed on December 18, 1997.

Table 3 Former GE Court Street Building 5/5A Site Remedial Investigation Report Vertical Hydraulic Gradients

	Gradient						
Monitoring Well	March 1992	August 1992	June 1997				
MW-1S/1I	0.016	0.04	0.025				
MW-1S/1D	0.04	0.03	0.016				
MW-1I/1D	0.11	0.005	0.004*				
MW-2S/2I	0.02	0.16	0.133				
MW-2S/2D	0.05	0.08	0.068				
MW-2I/2D	0.09	0.013	0.005				
MW-3S/3D	0.13	0.11	0.0996				
MW-5S/5D	0.04	0.02*	0.0119				
MW-6S/6D	**	**	0.0996				
MW-16S/16D	**	**	0.007				
MW-17S/17D	**	**	0.0125				
MW-18S/18D	**	**	0.1144				

Notes: 1. Upward flow, unless otherwise noted.

- 2. * Downward flow indicated.
- 3. ** Monitoring well not installed at this date.

Table 4 Former GE Court Street Building 5/5A Site Remedial Investigation Report Soil Sample Analysis Summary (all values are mg/kg)

Ola Lacation	SB-49	SB-49	SB-50	SB-51	SB-52	SB-53
Sample Location	18 - 20	22 - 24	4 - 6	0 - 0.5	0 - 0.5	0 - 0.5
Depth (ft) PID Headspace (units)	182	17.8	4.5			
VOCs						
Acetone	14 J	1.9 UJ	0.015			
Methylene Chloride	6.8 UJ	1.9 UJ	0.002 J			
,1-Dichloroethane	28 J	1.2 J	0.005 J			
2-Butanone	6.8 UJ	1.9 UJ	0.003 J			
1,2-Dichloroethane	1.1 J	1.9 UJ	0.003 J			
1,1,1-Trichloroethane	11 J	1.9 UJ	0.018			
Frichloroethene	280 J	17 J	0.019			
Toluene	27 J	1.1 J	0.005 J			
Tetrachloroethene	6.8 UJ	1.9 UJ	0.011 J			
Ethylbenzene	7.7 J	0.26 J	0.003 J			
Xylenes	30 J	1.2 J	0.007 J			
SVOCs						
2-Methylphenol	0.11 J		0.41 UJ			
4-Methylphenol	0.16 J		0.41 UJ			
Diethylphthalate	0.46 U		0.045 J			
Di-n-Butylphthalate	0.46 U		0.25 J			
Bis(2-ethylhexyl)Phthalate	0.46 U		0.41 UJ			
PCBs						0.041 II
Arochlor 1260				0.041 U	0.23	0.041 U

Notes: 1. Qualifiers are as follows:

U - Analyte not detected

J - Estimated value

-- Not analyzed

- 2. All detected target compounds are listed.
- 3. All samples were collected in February 1997.
- 4. mg/kg parts per million (ppm).

Table 5
Former GE Court Street Building 5/5A Site
Remedial Investigation Report
Groundwater Sample Analysis Summary - Organics
(all values are ug/l)

	DEEP WELLS							
Parameter	MW-01D	MW-02D	MW-03D	MW-05D	MW-06D			
VOCs	Mar-97	Mar-97	Mar-97	Mar-97	Mar-97			
Vinyl Chloride	1 U J	1 U J	1 U J	1 U J	1 U J			
Chloroethane	1 U J	1 U J	1 U J	1 U_J	1 U J			
1,1-Dichloroethene	5 J	1 U J	1 U J	1 U J	1 U J			
Methylene Chloride	1 U J	1 U J	1 U J	1 U J	1 U J			
1,1-Dichloroethane	22 J	1 U J	1 U J	1 U J	0.9 J			
c-1,2-Dichloroethene	1 U J	1 U J	1 U J	1 U J	1 U J			
1,2-Dichloroethane	1 U J	1 U J	1 U J	1 U J	1 U J			
1,1,1-Trichloroethane	6 J	1 U J	1 U J	1 U J	1 U J			
Trichloroethene	1 U J	1 U J	1 U J	1 U J	1 U J			
4-Methyl-2-Pentanone	5 U J	5 U J	5 U J	5 U J	5 U J			

Notes:

- 1. Qualifiers are as follows:
 - U Analyte not detected
 - J Estimated value
 - -- Not Analyzed
- 2. All detected target compounds are listed.
- 3. No SVOCs were detected.
- 4. ug/l parts per billion (ppb).

Table 5 Former GE Court Street Building 5/5A Site Remedial Investigation Report Groundwater Sample Analysis Summary - Organics (all values are ug/l)

		SHALLOW WELLS							
Parameter	MW-03S	MW-07S	MW-08S	MW-10	MW-11	MW-12	MW-13		
VOCs	Mar-97	Mar-97	Mar-97	Mar-97	Mar-97	Mar-97	Mar-97		
Vinyl Chloride	1 U J	360 J	1 U J	25 U	4	1 U	1 U J		
Chloroethane	1 U J	50 U J	1 U J	25 U	88	1 U	1 U J		
1,1-Dichloroethene	1 U J	50 U J	1 U J	25 U	4	1 U	1 U J		
Methylene Chloride	1 U J	50 U J	1 U J	25 U	1 U	1 U	1 U J		
1,1-Dichloroethane	8 J	730 J	1 U J	380	880	1 U	2 J		
c-1,2-Dichloroethene	7 J	140 J	1 U J	150	47 J	1 U	0.8 J		
1,2-Dichloroethane	1 U J	50 U J	1 U J	25 U	1	1 U	1 U J		
1,1,1-Trichloroethane	1 U J	48 J	1 U J	25 U	1 U	1 U	1 U J		
Trichloroethene	1 U J	50 U J	1 U J	25 U	10	1 U	1 U J		
4-Methyl-2-Pentanone	5 U J	250 U J	5 U J	120 U	5 U	5 U	5 U J		

Notes:

- 1. Qualifiers are as follows:
- U Analyte not detected
- J Estimated value
- -- Not Analyzed
- 2. All detected target compounds are listed.
- 3. No SVOCs were detected.
- 4. ug/l parts per billion (ppb).

Table 5.
Former GE Court Street Building 5/5A Site
Remedial Investigation Report
Groundwater Sample Analysis Summary - Organics
(all values are ug/l)

	SHALLOW WELLS (cont'd.)							
Parameter	MW-14	MW-15	MW-16A	MW-16B	MW-17A	MW-	-17B	
VOCs	Mar-97	Mar-97	Mar-97	Mar-97	Mar-97	Mar-97	Jun-97	
Vinyl Chloride	1 U J	1 U J	390 J	1 U J	1 U J	1 Ū J	1 U	
Chloroethane	1 U J	1 U J	50 U J	1 U J	1 U J	1 U J	1 U	
1,1-Dichloroethene	1 U J	1 U J	50 U J	1 U J	1 U J	1 U J	1 U	
Methylene Chloride	1 U J	1 U J	92 J	1 U J	1 U J	1 U J	1 U	
1,1-Dichloroethane	1 U J	1 U J	590 J	1 U J	3 J	1 U J	1 U	
c-1,2-Dichloroethene	1 U J	1 U J	310 J	1 U J	1 U J	1 U J	1 U	
1,2-Dichloroethane	1 U J	1 U J	50 U J	1 U J	1 U J	1 U J	1 U	
1,1,1-Trichloroethane	1 U J	1 U J	50 U J	1 U J	1 U J	1 U J	1 U	
Trichloroethene	1 U J	1 U J	50 U J	1 U J	1 U J	1 U J	1 U	
4-Methyl-2-Pentanone	5 U J	5 U J	45 J	5 U J	5 U J	5 U J	5 U	

Notes:

- 1. Qualifiers are as follows:
- U Analyte not detected
- J Estimated value
- -- Not Analyzed
- 2. All detected target compounds are listed.
- 3. No SVOCs were detected.
- 4. ug/l parts per billion (ppb).

Table 5 Former GE Court Street Building 5/5A Site Remedial Investigation Report Groundwater Sample Analysis Summary - Organics (all values are ug/l)

	SHALLO	W WELLS (cont'd.)
Parameter	MW-18A M		MW-19S
VOCs	Mar-97	Mar-97	Jun-97
Vinyl Chloride	10 U J	1 U J	1 U
Chloroethane	10 U J	1 U J	1 U
1,1-Dichloroethene	10 U J	1 U J	1 U
Methylene Chloride	10 U J	1 U J	1 U
1,1-Dichloroethane	130 J	1 J	1 U
c-1,2-Dichloroethene	10 U J	1 U J	1 U
1,2-Dichloroethane	10 U J	1 U J	1 U
1,1,1-Trichloroethane	10 U J	1 U J	1 U
Trichloroethene	10 U J	1 U J	1 U
4-Methyl-2-Pentanone	50 U J	5 U J	5 U

Notes:

- 1. Qualifiers are as follows:
 - U Analyte not detected
 - J Estimated value
 - -- Not Analyzed
- 2. All detected target compounds are listed.
- 3. No SVOCs were detected.
- 4. ug/l parts per billion (ppb).

Table 6 Former GE Court Street Building 5/5A Site Remedial Investigation Report Groundwater Sample Analysis Summary - Metals (all values are in ug/l)

Parameter	MW-07S (Total)	MW-07S (Diss.)	MW-10 (Total)	MW-10 (Diss.)	MW-11 (Total)	MW-11 (Diss.)	MW-12 (Total)	MW-12 (Diss.)
TAL Metals	<u> </u>							
Aluminum	5560	71.5 B	3660	80.6 B	673	30.1 B	10400	70.9 B
Antimony	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Arsenic	4.7 BJ	2.7 UJ	4.7 BJ	4.2 BJ	16.3 J	3.4 BJ	4.7 BJ	3.3 BJ
Barium	122 B	121 B	134 B	279	44.7 B	231	111 B	142 B
Beryllium	0.25 B	0.1 U	0.14 B	0.1 U	0.1 U	0.1 U	0.46 B	0.14 B
Cadmium	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Calcium	155000	157000	444000	442000	165000	164000	218000	194000
Chromium	7.9 B	0.6 U	4.8 B	0.6 U	1.1 B	0.6 U	16	0.77 B
Cobalt	2.8 B	0.77 B	1.3 B	0.7 U	0.7 U	0.7 U	4.7 B	0.7 U
Copper	11.7 B	1.7 U	5.9 B	2.3 B	1.7 U	1.7 U	12.7 B	4.6 B
lron	9090	767	4180	100	3550	218	12500	84 B
Lead	3	1.1 U	2.4 B	1.1 U	1.2 B	1.1 U	21.8	1.1 U
Magnesium	52500	52000	130000	132000	47300	46200	50400	42500
Manganese	332	292	60.5	39.3	67.9	50.3	214	2.9 B
Mercury	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	5.6 B	2 U	3.5 B	2 U	2 U	2 U	12 B	2 U
Potassium	2660 B	1100 B	5650	4800 B	2670 B	2180 B	5330	2040 B
Selenium	1 U	1.3 BJ	1.1 BJ	1.6 BJ	1.1 BJ	1.5 BJ	1 BJ	1.6 B
Silver	0.7 U	0.75 B	1.6 B	1.8 B	0.7 U	0.71 B	0.7 U	0.96 B
Sodium	18300 J	21200 J	112000 J	115000 J	16700 J	17000 J	11100 J	13400 J
Thallium	2.9 BJ	3.7 BJ	2.1 UJ	2.3 BJ	3.3 BJ	3.3 BJ	2.1 UJ	3.9 BJ
Vanadium	10.9 B	0.4 U	6.3 B	0.68 B	1.4 B	0.4 U	18.4 B	0.4 U
Zinc	22.6	28.5	14.6 B	57.8	7.5 B	71.6	42.6	48.2

Notes: 1. Qualifiers are as follows:

- U Analyte not detected
- B Detected below CRDL
- J Estimated value
- 2. All samples were collected in March 1997.
- 3. ug/l parts per billion (ppb).

Table 7

Former GE Court Street Building 5/5A Site Remedial Investigation Report

Surface Water, Storm Sewer Outfall and Sediment Sample Analysis Summary

Creek and Storm Sewer Outfall Samples

Parameter	SW-6	SW-6 OF-02		OF-01	
VOCs (ug/l)	South Branch of Ley Creek Upstream	South Branch of Ley Creek Outfall	South Branch of Ley Creek Downstream	Sanders Creek Outfall	
Vinyl Chloride	1 U J	2 U J	1 U J	87 J	
1,1-Dichloroethane	1 U J	29 J	1 U J	140 J	
c-1,2-Dichloroethene	5 J	2 J	4 J	42 J	
Chloroform	0.8 J	2 U J	1 U J	10 U J	
1,1,1-Trichloroethane	1 U J	5 J	1 U J	10 U J	
Trichloroethene	6 J	8 J	4 J	10 U J	

Sediment Samples

Parameter	SS-2 (Up)	SS-2 (Down)	SS-1 (Up)	SS-1 (Down)
VOCs (ug/kg)	South Branch of Ley C	South Branch of Ley Creek Outfall Area		Outfall Area
Chloroethane	11 J	21 J	13 U J	14 U J
Acetone	13 U J	4 J	2 J	14 U J
1,1-Dichloroethene	13 U J	2 J	13 U J	14 U J
Methylene Chloride	2 J	4 J	2 J	3 J
Carbon Disulfide	13 U J	3 J	13 U J	14 U J
1,1-Dichloroethane	10 J	22 J	13 U J	14 U J
1,2-Dichloroethene	13 U J	19 J	2 J	14 U J
Trichloroethene	13 U J	22 J	6 J	2 J
Total Organic Carbon (%)		2.2		2.73

Notes: 1. Qualifiers are as follows:

U - Analyte not detected

J - Estimated value

-- - Not Analyzed

- 2. All detected target compounds are listed.
- 3. All samples were collected in March 1997.
- 4. ug/l parts per billion (ppb) liquid.
- 5. ug/kg parts per billion (ppb) dry weight.

Table 8 Former GE Court Street Building 5/5A Site Remedial Investigation Report Plant Species

Spotted Knapweed	Centaurea maculosa
Teasel	Dipsacus sylvestris
Γimothy	Phleum pratense
Queen Anne's Lace	Daucus carota
Horsetail	Equisetum spp.
Goldenrod	Solidago spp.
Wild Cucumber	Echinocystis lobata
Γhistle, Canada	Cirsium arvense
Smartweed	Polygonum pensylvanicum
Purple Loosestrife	Lythrum salicaria
Dogbane	Apocyhum androsaemifolium
Milkweed	Asclepias syriaca
Honeysuckle	Lonicera spp.
Virginia Creeper	Parthenocissus quinquefolia
Wild Cucumber	Enchinocystis lobata
Bind Weed	Convolvulus sepium
Jewel Weed	Impatiens capensis
Cattail	Typha latifolia
Phragmites	Phragmites communis
Beggers Tick	Bidens spp.
Nightshade	Solanum dulcamara
Catalpa	Catalpa speciosa
Box Elder	Acer negundo
False Bamboo	Polygonum cuspidatum
Black Willow	Salix nigra
Eastern Cottonwood	Populus tremuloides
Sugar Maple	Acer saccharum
Grape	Vitis spp.
Northern False Foxglove	Aureolaria flava
Staghorn Sumac	Rhus typhina
Spanish Needles	Bidens spp.
Poison Ivy	Toxicodendron radicens
Silky Dogwood	Cornus amomum
Slippery Elm	Ulmus rubra

Table 9 Former GE Court Street Building 5/5A Site Remedial Investigation Report Wildlife Species

Mammals	
Woodchuck	Marmota monox
Raccoon	Procyon lotor
Muskrat	Ondatra zibethicus
Gray Squirrel	Sciurus carolinensis

Avian Species	
Mallard	Anas platyphynchos
Grackle	Quiscalus quiscula
Robin	Turdus migratorius
Crow	Corvus brachyrhynchos
Starling	Sturus vulgaris
Least Flycatcher	Empidonax minimus
Sparrow	<i>Spizella</i> spp.
Carolina Wren	Thyrothorus ludovicianus
Canada Warbler	Wilsonia canadensis
Green Heron	Butorides virescens
Cardinal	Richmondena cardinalis
Kingfisher	Megaceryle alcyon
Killdeer	Charadrius vociferus
American Goldfinch	Spinus tristis
Swallow, Rough Winged	Stelgidopteryx ruficollis

Reptiles	
Garter Snake	Thamnophis sirtalis

Table 10
Former GE Court Street Building 5/5A Site
Remedial Investigation Report
Summary of Human Health Exposure Pathways

Medium	Potential Exposure Routes	Comp	ete at Site
		Present	Potential Future
Groundwater	Consumption (water supply)	No	No
	Inhalation from indoor air (water supply)	No	No
	Dermal contact (incidental)	No	Yes ¹
	Dermal contact (water supply)	No	No
	Consumption of contaminated produce	No	No
	Inhalation of VOCs	No ·	Yes ¹
Surface Water	Incidental ingestion	No	Yes ²
	Dermal contact	No	Yes ²
	Inhalation of VOCs	No	Yes ²
	Consumption of fish (bioaccumulation)	No	No
Sediment	Incidental ingestion	No	Yes ²
	Dermal contact	No	Yes ²
	Consumption of fish (bioaccumulation)	No	No

Notes:

¹ Occupational exposure only.

² De minimis.

Table 11 Former GE Court Street Building 5/5A Site Remedial Investigation Report Summary of Complete Ecological Exposure Pathways

Medium	Receptors	Potential Exposure Routes
Groundwater	Terrestrial Animals	Inhalation of VOCs (de minimis)
Surface Water	Terrestrial Animals	Inhalation of VOCs Consumption (drinking water) Incidental ingestion Dermal absorption Consumption of aquatic life (bioaccumulation)
	Aquatic Animals	Direct contact (use as habitat) Consumption of aquatic life (bioaccumulation)
Sediment	Terrestrial Animals	Incidental ingestion Consumption of aquatic life (bioaccumulation)
	Aquatic Animals	Direct contact (use as habitat) Consumption of aquatic life (bioaccumulation)

Table 12 Former GE Court Street Building 5/5A Site Remedial Investigation Report Summary of Surface Water Screening Values for Contaminants of Concern

		Maximum Observed at Site (ug/l)		NYS Surface Water USEPA	USDOE PRG ⁷	USEPA Ecotox	Lowest Screening
	Outfall	Creek	Standard ¹	AWQC ³ (ug/l)	(ug/l)	Threshold ¹⁰ (ug/l)	Value (ug/l)
Contaminant of Concern							
1,1-Dichloroethane	140	ND	NA	20,000 ^{4,5}	47	47	47
1,2-cis-Dichloroethene	42	4	NA	NA^6	590 ⁸	NA	590
1,1,1-Trichloroethane	5	ND	NA	18,000 ⁴	11	62	11
Trichloroethene	8	4	NA ²	21,900 ⁴	470	350	350
Vinyl chloride	87	ND	NA	NA	782 ⁹	NA	782

Notes:

ND - Not detected.

NA - Not available.

ug/l - parts per billion (ppb).

¹ NYCRR Part 703; for Class C surface waters.

² There is a guidance value; but it is based on protection of human health, not of aquatic life, so it is not relevant for ecological screening.

³ Ambient water quality criterion for protection of freshwater life from chronic effects.

⁴ Lowest value at (value as low as) which toxicity occurs.

⁵ Value is for 1,2- isomer; however, toxicity is a function of degree of chlorination, so value for 1,1- isomer is estimated to be on the same order of magnitude.

⁶ No data on chronic toxicity; acute toxicity occurs at concentrations as low as 11,600 ug/l.

⁷ US Department of Energy preliminary remediation goal; all values except vinyl chloride are secondary chronic values.

⁸ Value for dichloroethenes.

⁹ Based on protection of piscivorores using the river otter lowest observed adverse effects level (LOAEL).

¹⁰ EPA 540/F-95/038.

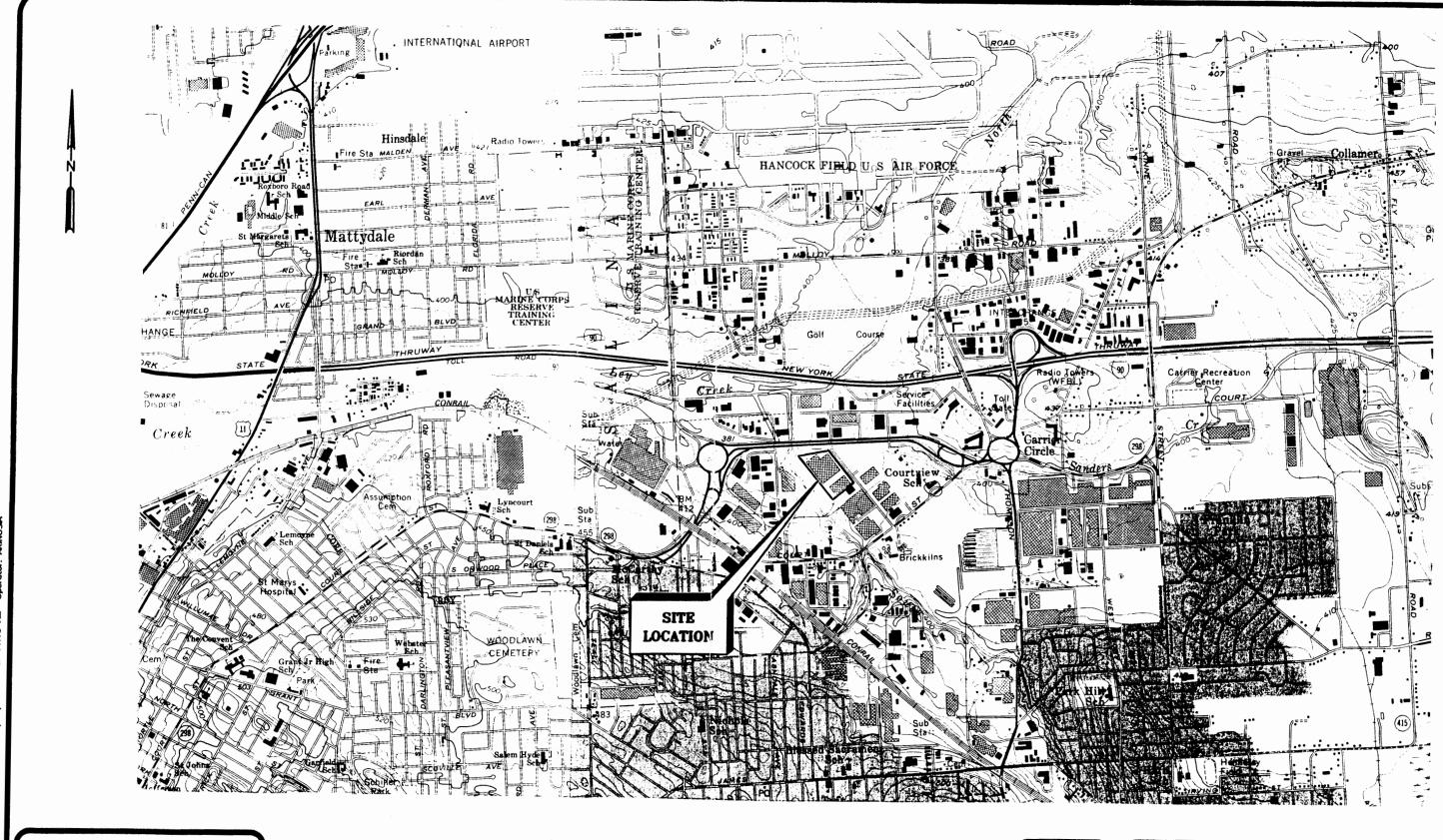
Table 13
Former GE Court Street Building 5/5A Site
Remedial Investigation Report
Summary of Sediment Screening Values for Contaminants of Concern

Contaminant of Concern	Maximum Observed at Site (ug/kg)	NYS Sediment Guidance Screening Value ¹ (ug/kg)	USDOE PRG² (ug/kg)	USEPA Ecotox Threshold³ (ug/kg)	Lowest Screening Value (ug/kg)
1,1-Dichloroethane	22	NA	27	NA	27
1,1-Dichloroethene	2	NA	3500	NA	3500
1,2-Dichloroethene	19	NA	400	NA	400
Methylene chloride	4	NA	18,000	NA	18,000
Trichloroethene	22	NA	52,000	4100	4100

Notes:

ND - Not detected.

NA - Not available.


ug/kg - parts per billion (ppb).

¹ Based on protection of freshwater benthic aquatic life from chronic effects.

² US Department of Energy preliminary remediation goal; values are lowest or secondary chronic values.

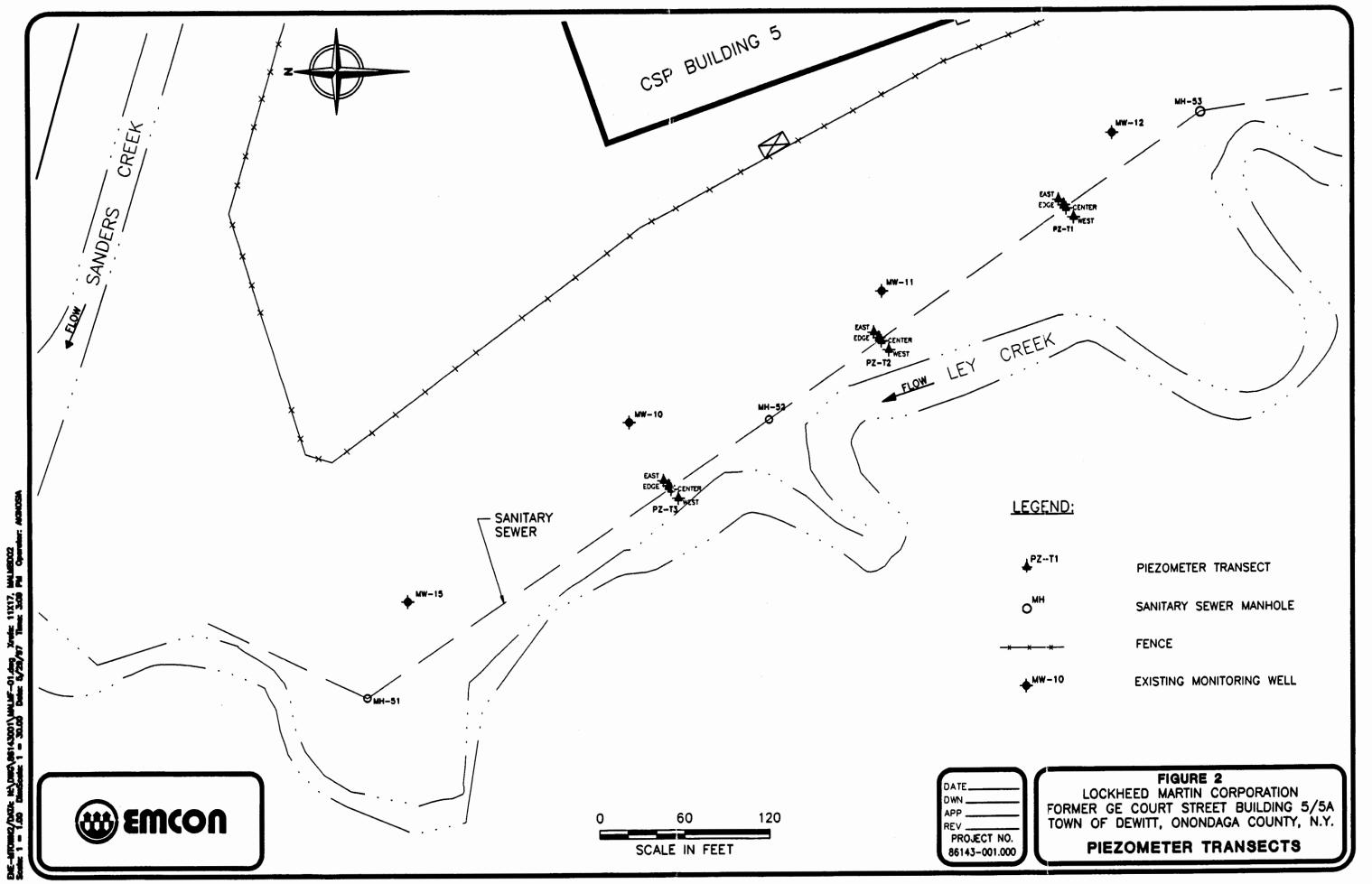
³ Based on equilibrium partitioning assuming an average organic carbon content of 2.5%.

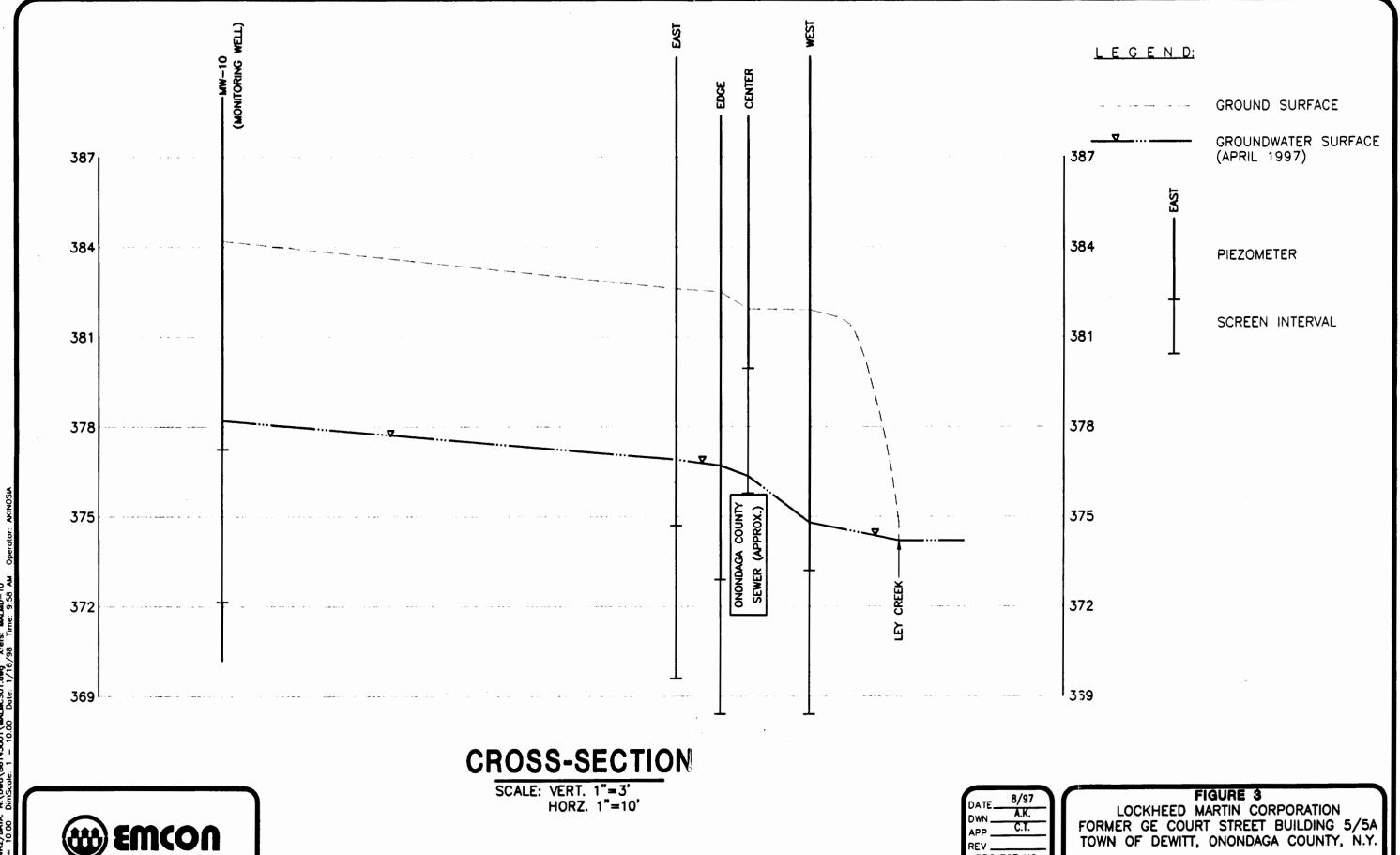
FIGURES

O 2000 4000
SCALE IN FEET

BASE MAP TAKEN FROM U.S.G.S. 7.5 MIN. QUAD. SYRACUSE EAST, N.Y. DATED 1957, PHOTOREVISED 1978 SYRACUSE WEST, N.Y. DATED 1973, PHOTOREVISED 1978 DATE 1/98
DWN A.K.
APP K.G.
REV PROJECT NO.

86143-001.000

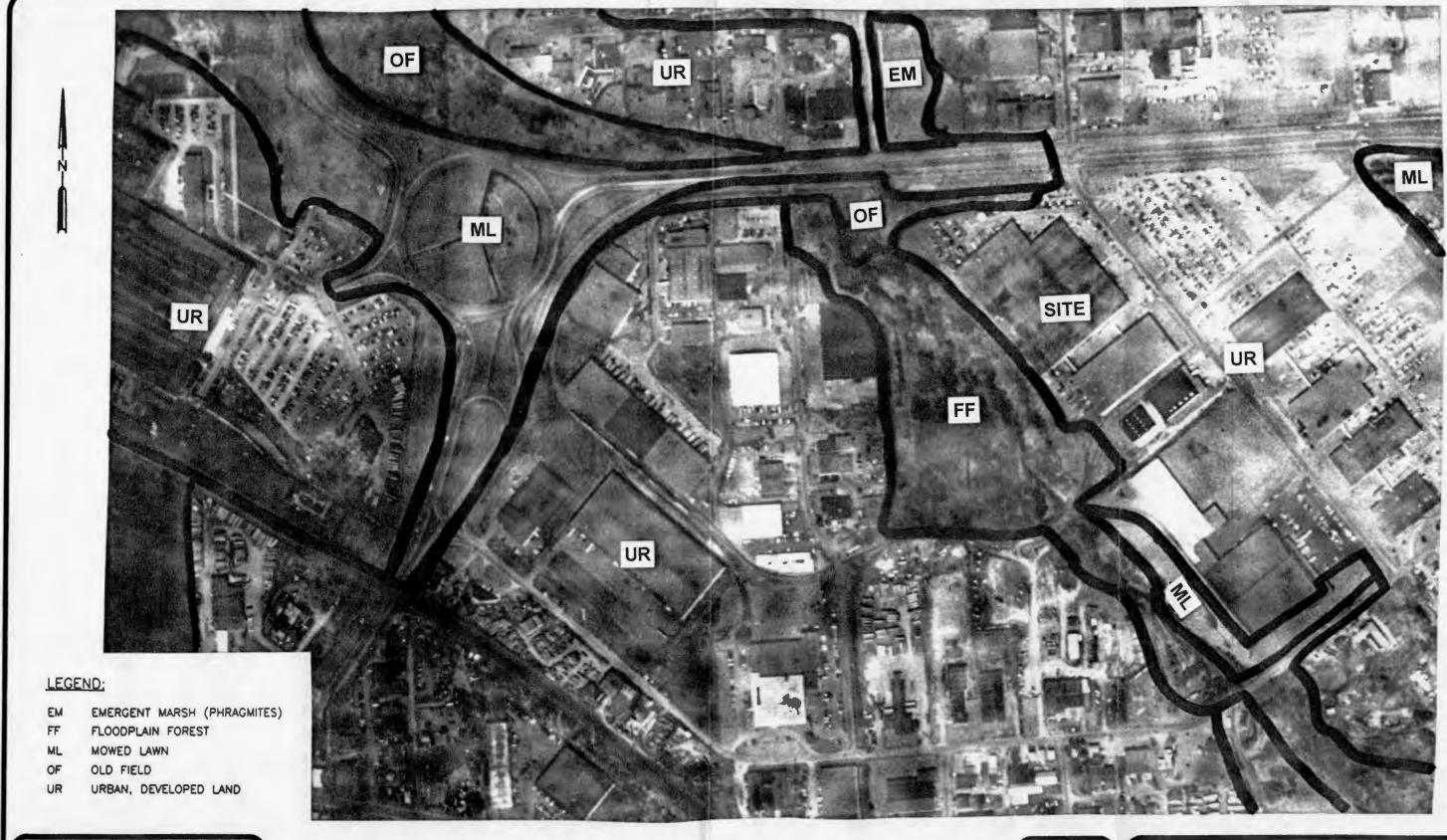

FIGURE 1


LOCKHEED MARTIN CORPORATION

FORMER GE COURT STREET BUILDING 5/5A

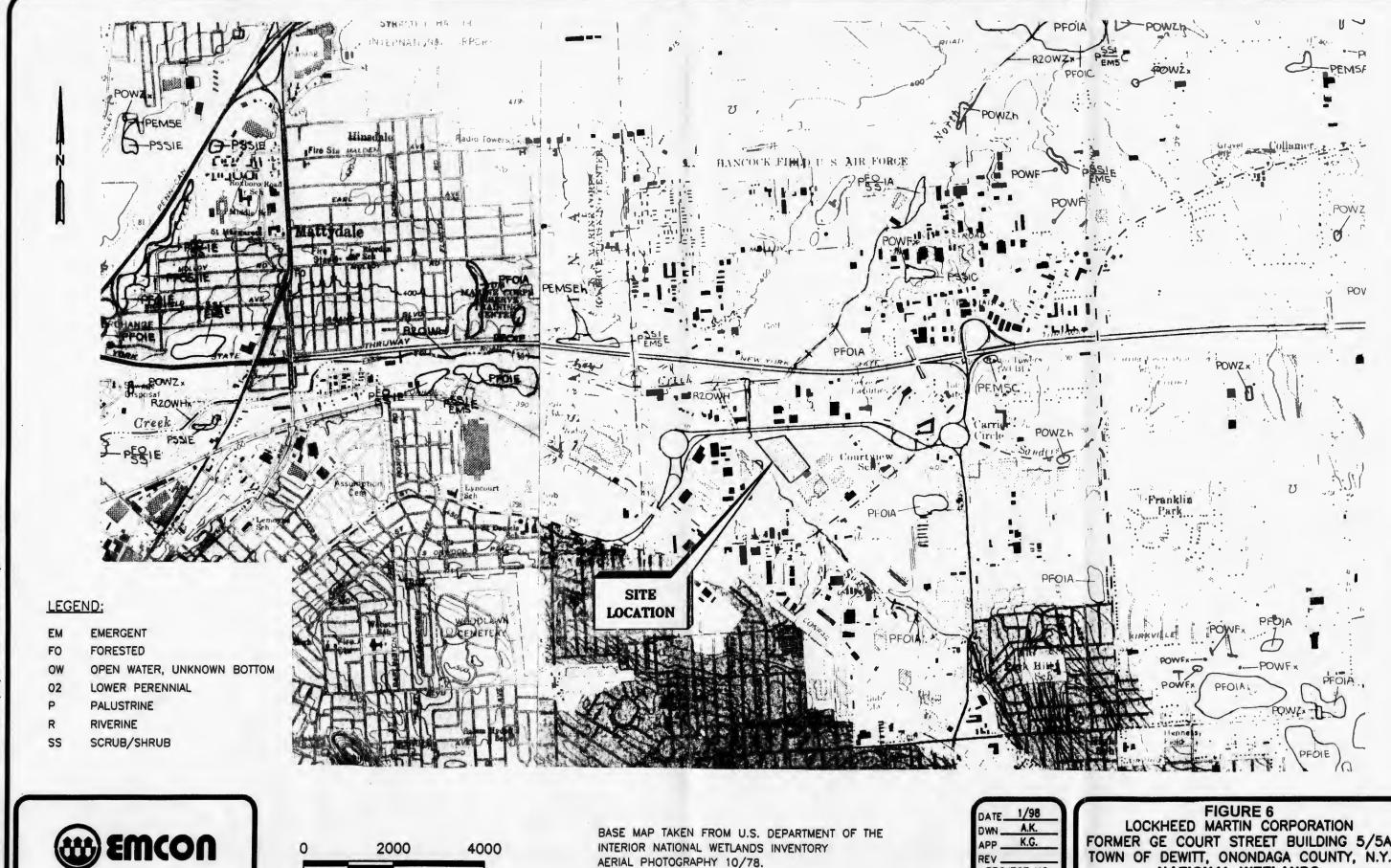
TOWN OF DEWITT, ONONDAGA COUNTY, N.Y.


SITE LOCATION MAP



PROJECT NO. 86143-001.000

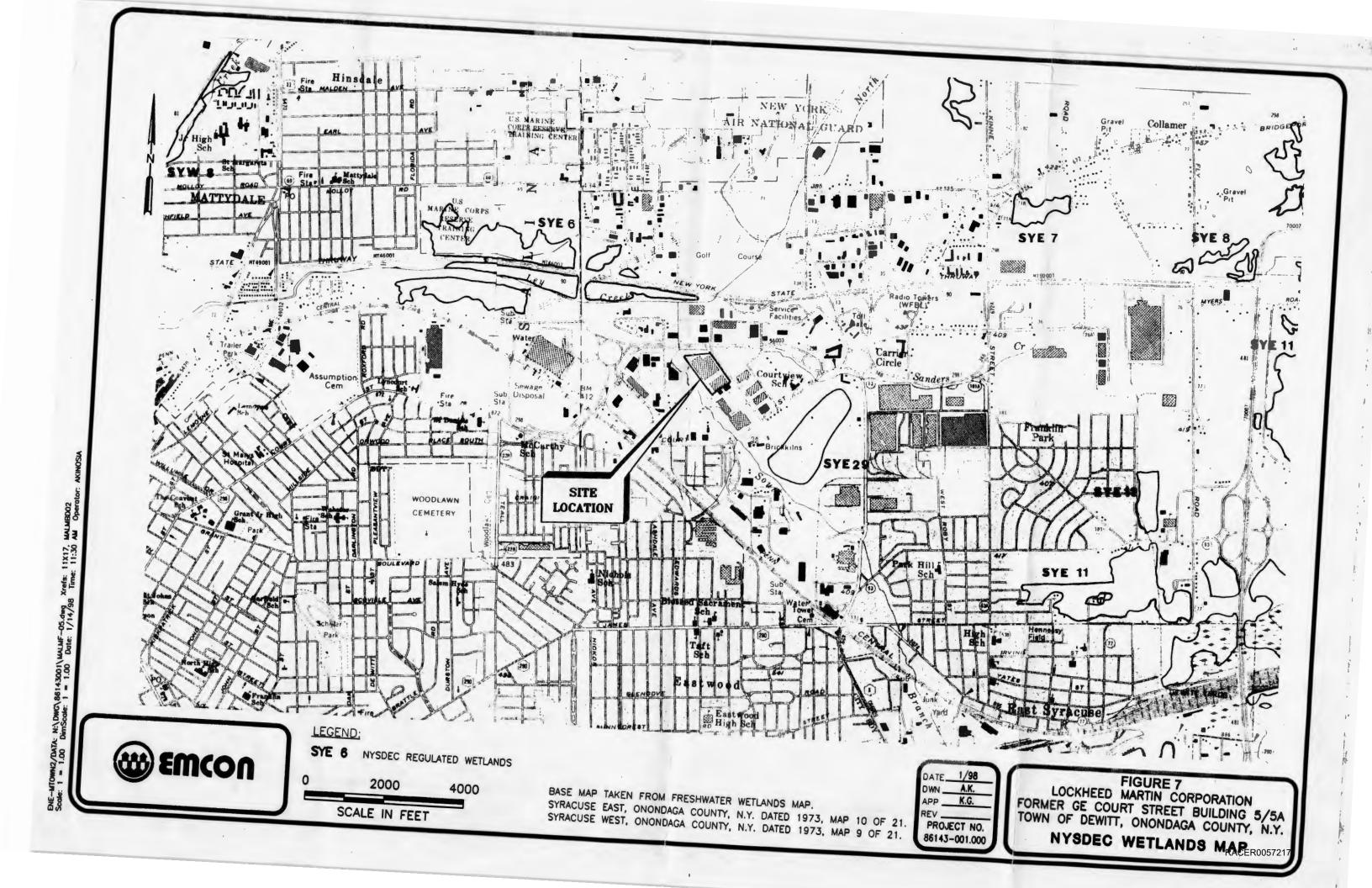
PIEZOMETER TRANSECT T3

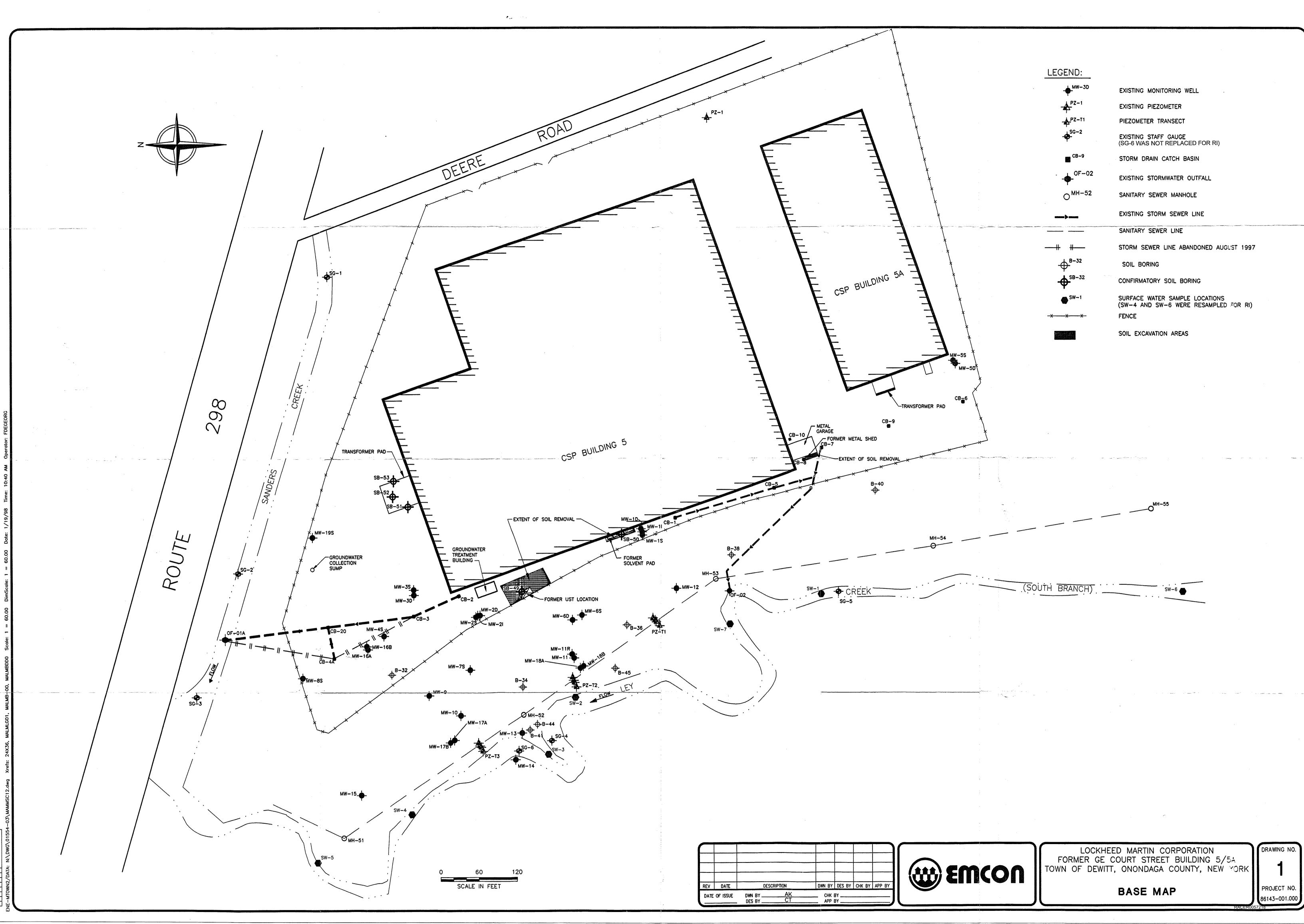


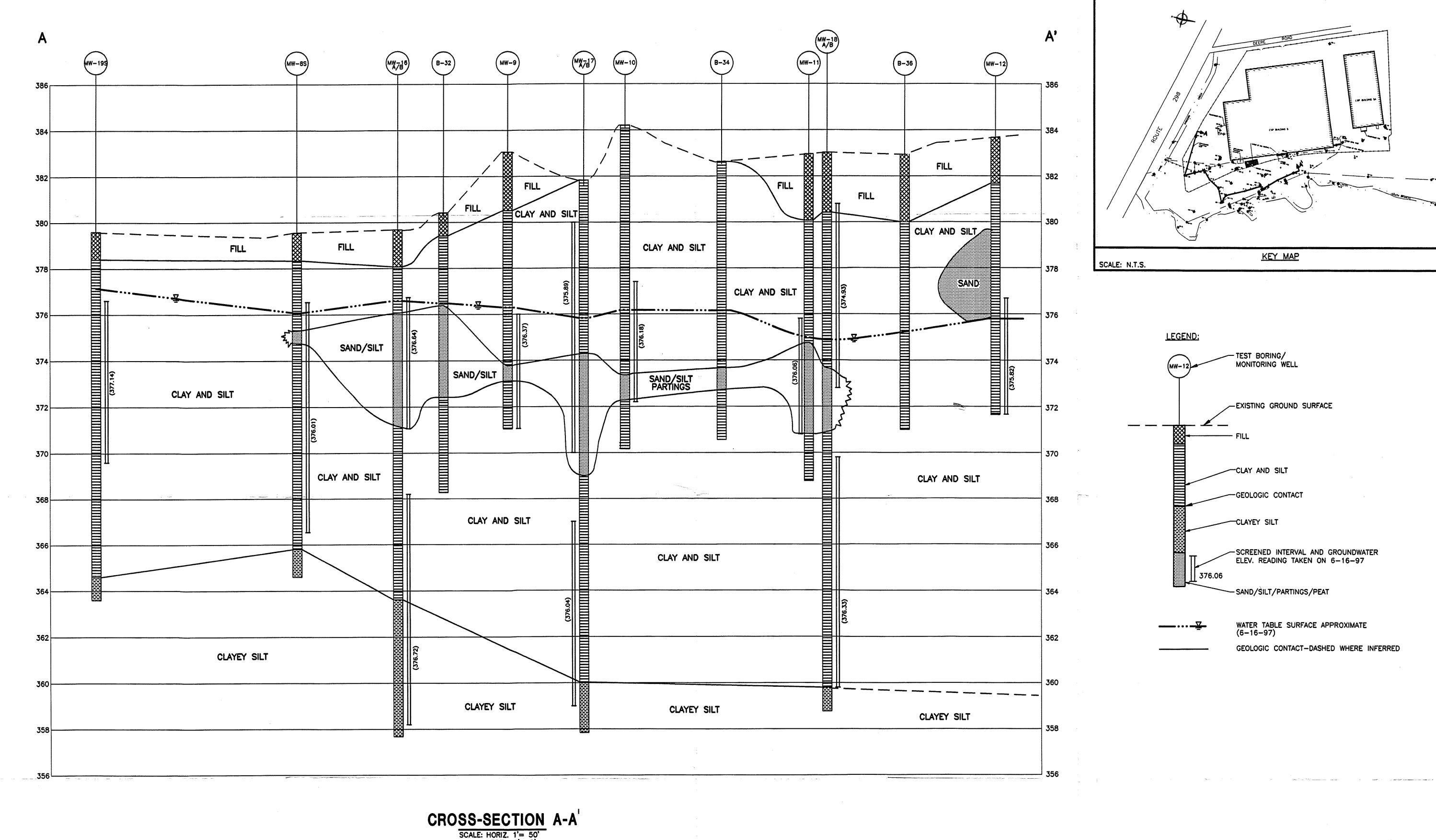
SCALE IN FEET

SOURCE: AERIAL PHOTO 1985

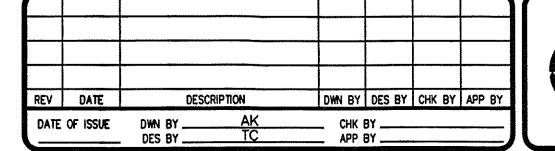
DATE	1/98
DWN_	
APP_	
REV _	
PRO	JECT NO.
8614	3-001.000


FIGURE 5
LOCKHEED MARTIN CORPORATION
FORMER GE COURT STREET BUILDING 5/5A
TOWN OF DEWITT, ONONDAGA COUNTY, N.Y.
LAND USE/VEGETATION
COVER MAPRACER0057215



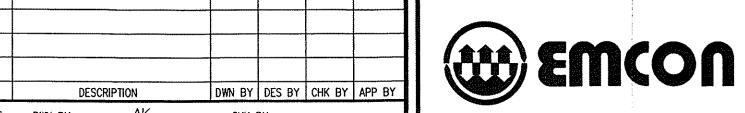

SCALE IN FEET

PROJECT NO. 86143-001.000


FORMER GE COURT STREET BUILDING 5/5A
TOWN OF DEWITT, ONONDAGA COUNTY, N.Y.
NATIONAL WETLANDS
INVENTORY MAP

SCALE: HORIZ. 1'= 50' VERT. 1'= 2'

LOCKHEED MARTIN CORPORATION
FORMER GE COURT STREET BUILDING 5/5A
TOWN OF DEWITT, ONONDAGA COUNTY, NEW YORK

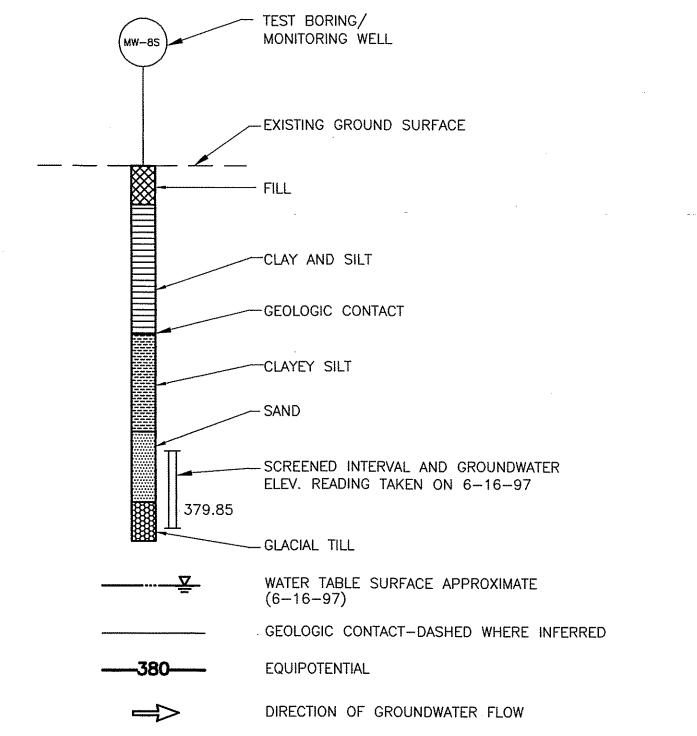

GEOLOGIC CROSS-SECTION A-A

DRAWNG NO.

PROJECT NO. 86143-001.000

CLAY AND SILT CLAY AND SILT CLAYEY SILT GLACIAL TILL SAND GLACIAL TILL

> **GEOLOGIC** CROSS-SECTION B-B' SCALE: HORIZ: 1"=100' VERT: 1"=5'


FORMER GE COURT STREET BUILDING 5/5A TOWN OF DEWITT, ONONDAGA COUNTY, NEW YORK

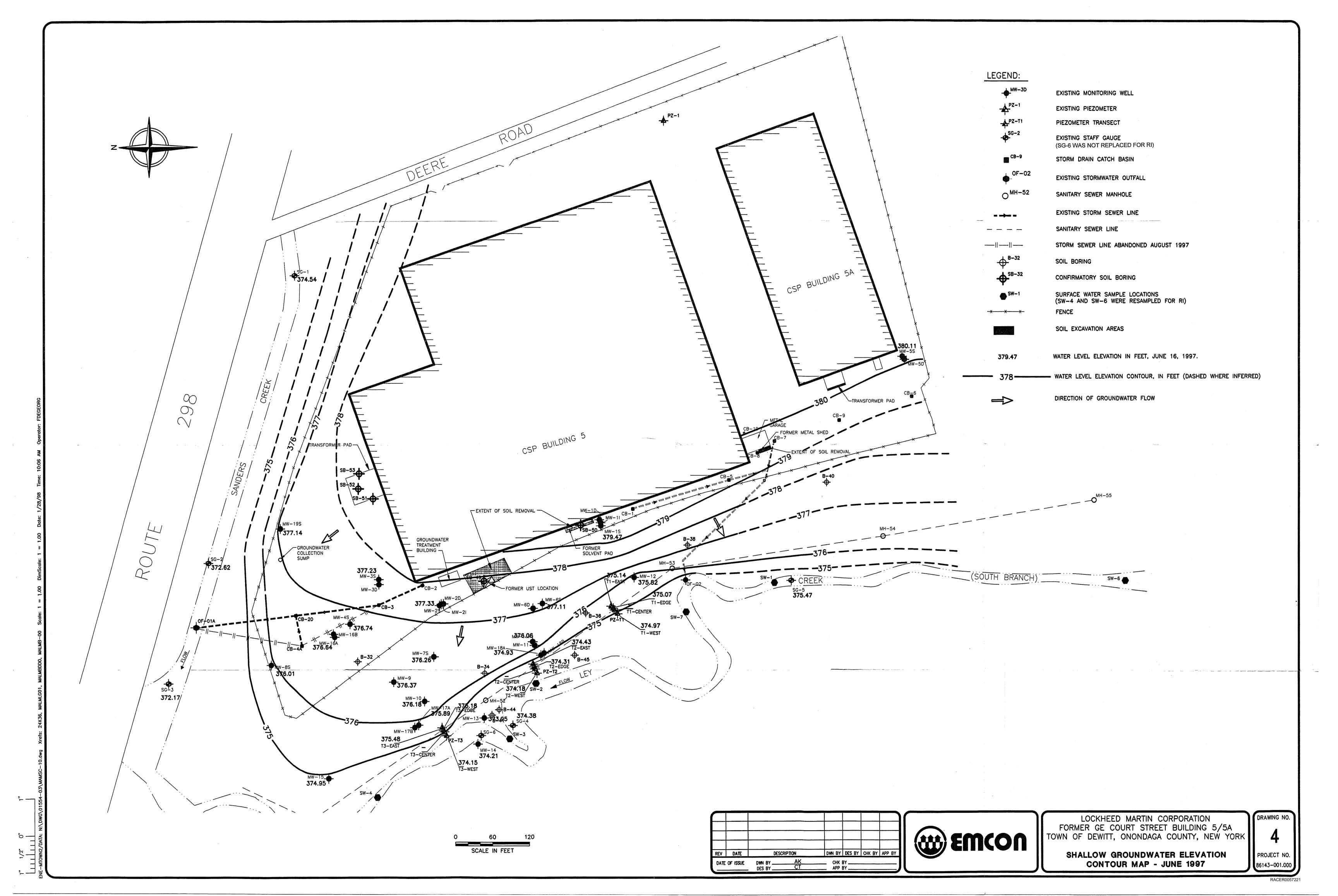
GEOLOGIC CROSS-SECTION AND PIEZOMETRIC PROFILE B-B'

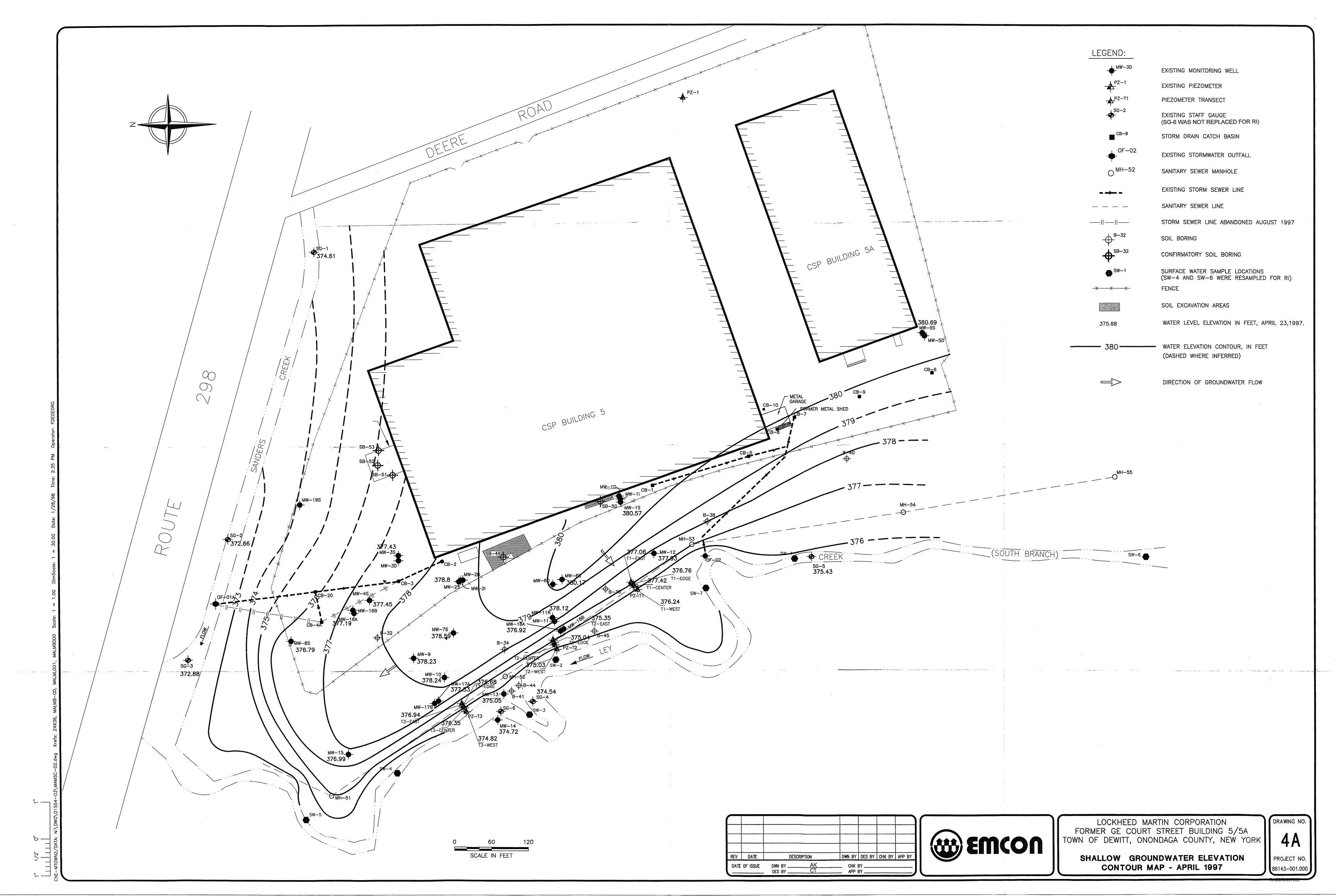
DRAWING NO. PROJECT NO.

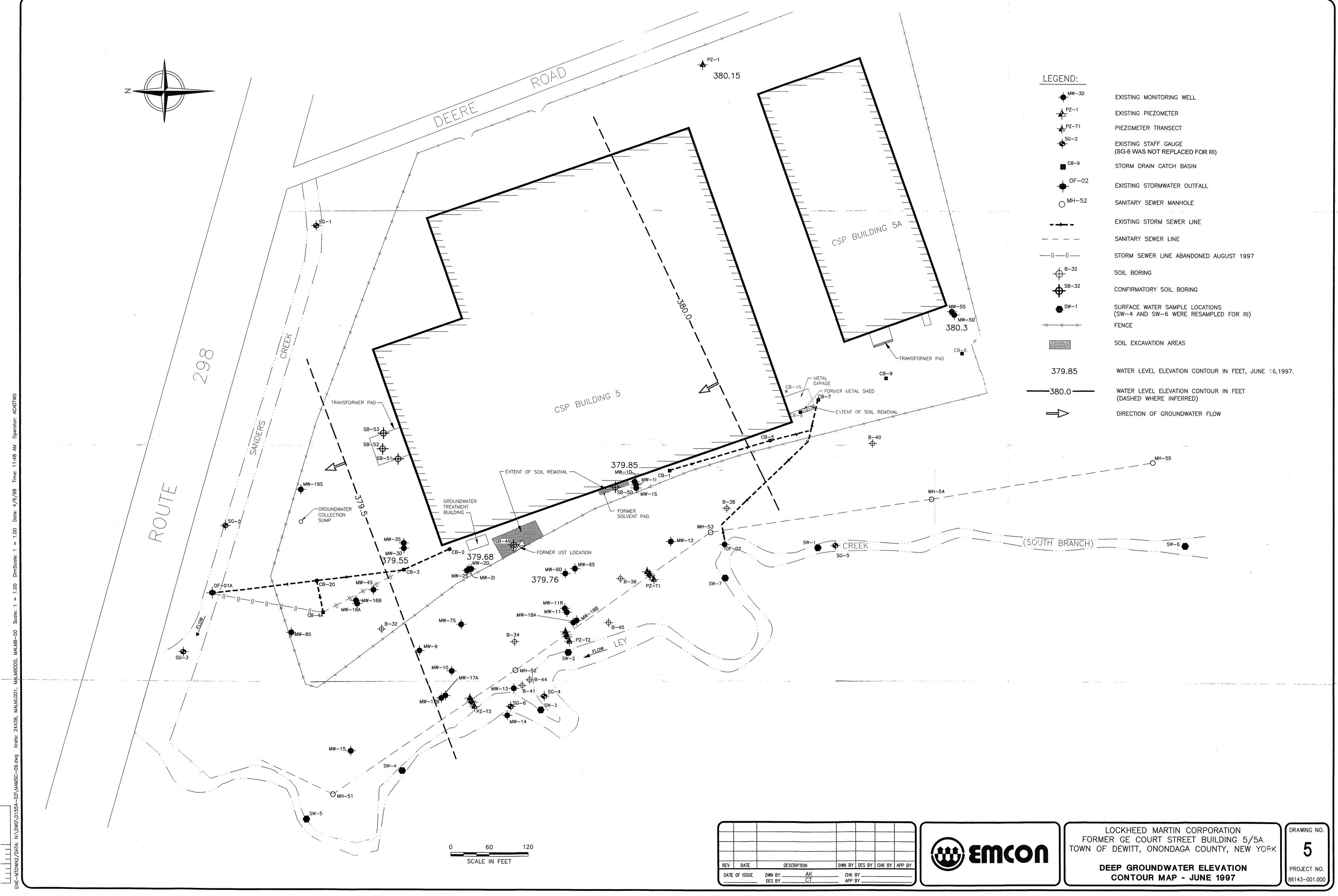
REV DATE DATE OF ISSUE DWN BY _____ DES BY <u>CT</u>

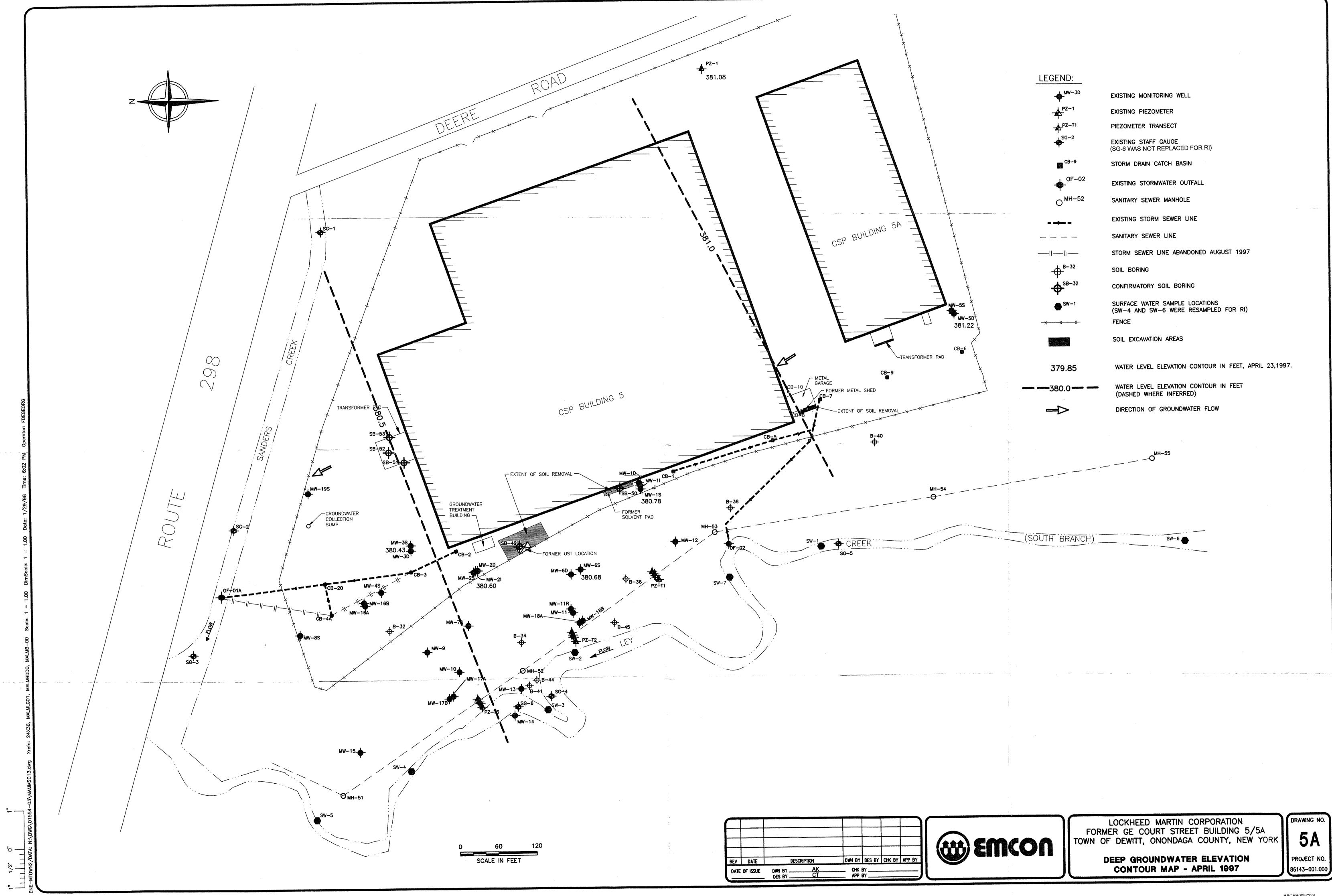
KEY MAP

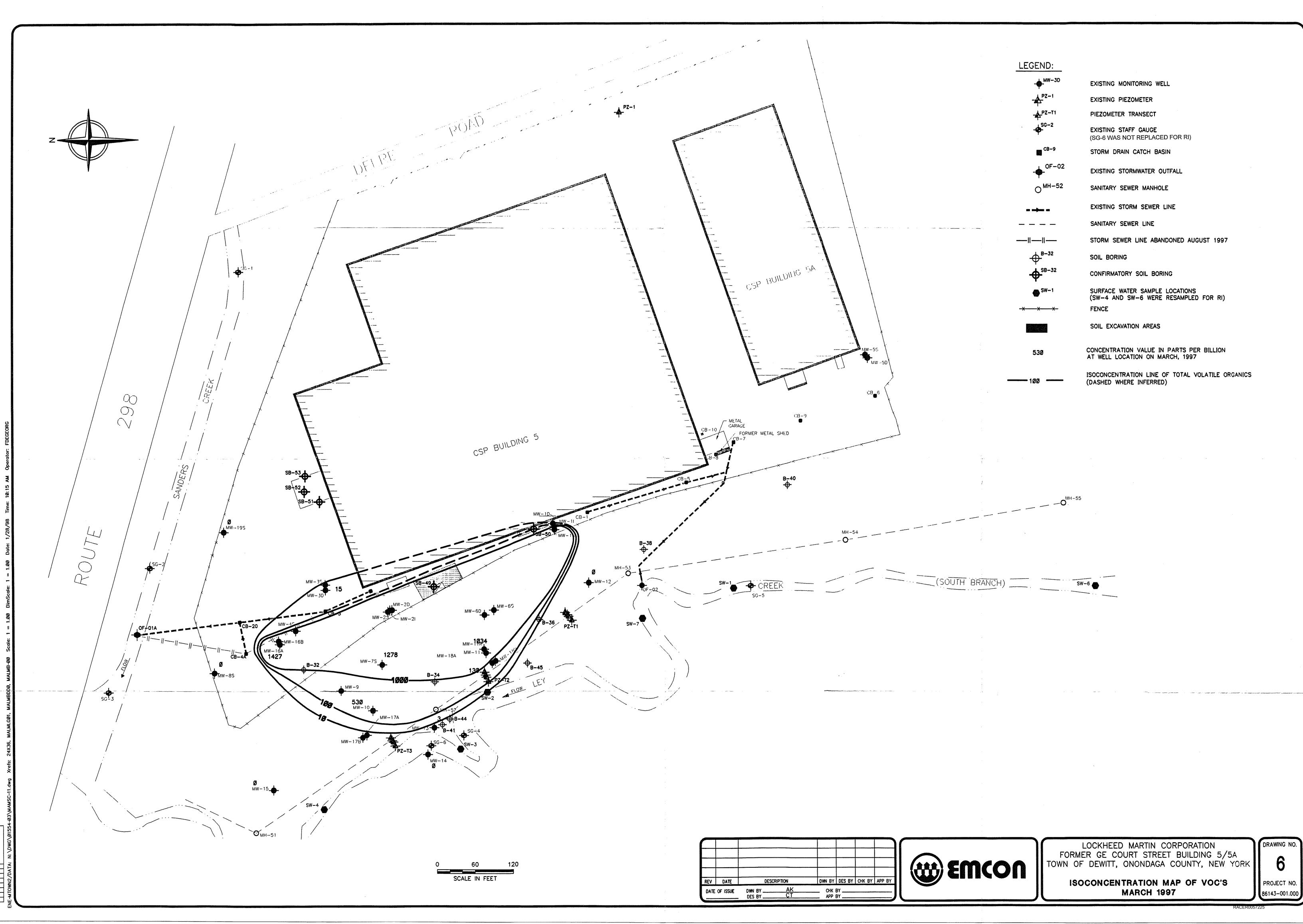
NOTES:


SCALE: N.T.S.

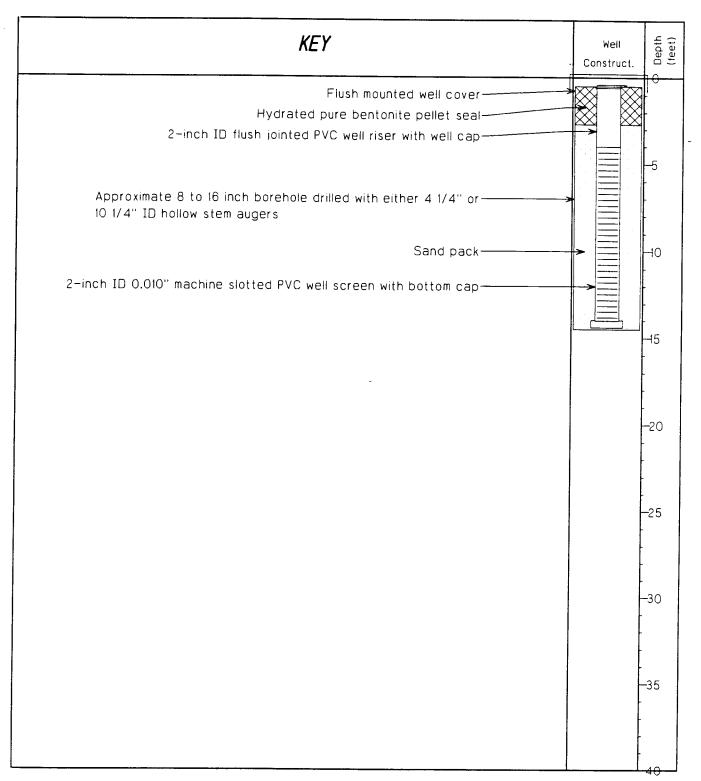

LEGEND:


- EXISTING GRADE ELEVATION BASED ON ELEVATIONS RECORDED ON BORING LOGS
- 2. THE FOLLOWING WELLS WERE PROJECTED TO CROSS SECTION AS FOLLOWS: * MW-3S/D PROJECTED 50 FEET WEST TO THE CROSS-SECTION ** MW-1S/D PROJECTED 50 FEET WEST TO THE CROSS-SECTION


LOCKHEED MARTIN CORPORATION


86143-001.000

APPENDIX A BORING LOGS

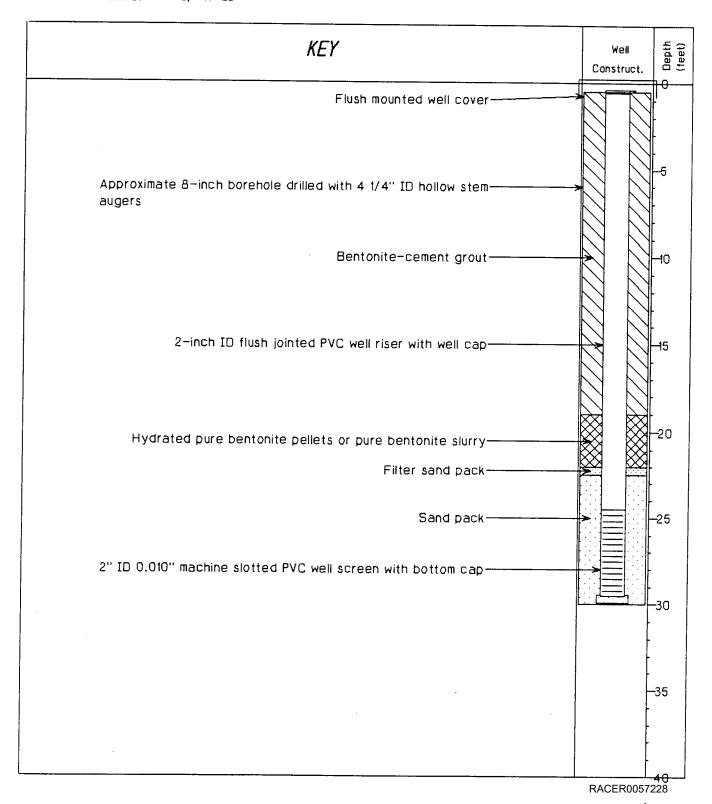


KEY TO WELL CONSTRUCTION DIAGRAMS

PROJECT: COURT STREET BUILDING # 5 VOC INVESTIGATION

PROJECT NO .: 01554.EB

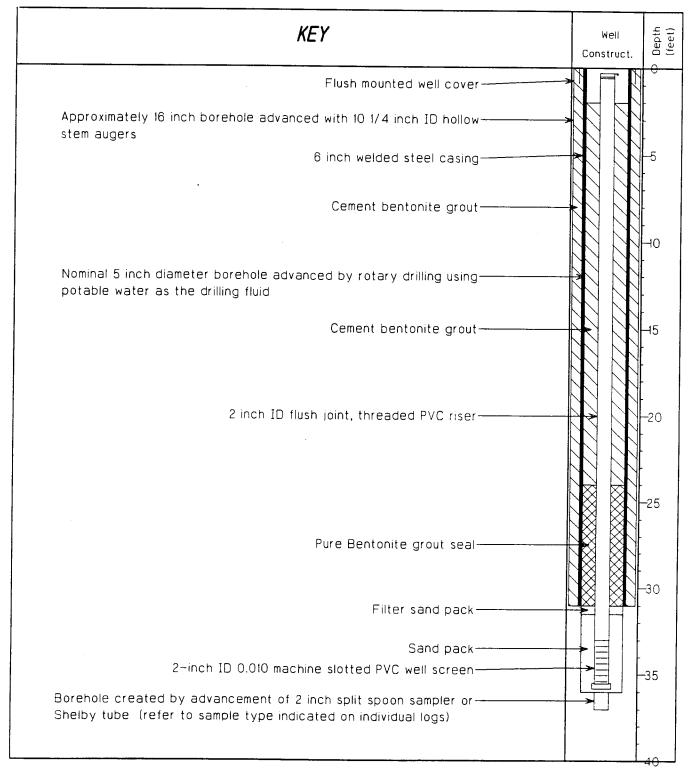
WELLS: MW-IS,MW-2S,MW-3S,MW-4S,MW-5S,MW-6S,MW-7S,MW-8S



KEY TO WELL CONSTRUCTION DIAGRAMS

PROJECT: COURT STREET BUILDING # 5 VOC INVESTIGATION

PROJECT NO.: 01554.EB **WELLS:** MW-1I, MW-2I



KEY TO WELL CONSTRUCTION DIAGRAMS

PROJECT: COURT STREET SUBSURFACE INVESTIGATION

PROJECT NO .: 01554.EB

WELLS: MW-1D, MW-2D, MW-3D, MW-5D, PZ-1

LEGEND FOR BORING LOGS

PROJECT: COURT STREET #5 SUBSURFACE INVESTIGATION

PROJECT NO.: 01554.EB

BORING NO .: ALL

			11	
GRAPHIC SYMBOL	SOIL/ROCK CODE	DESCRIPTION OF SYMBOLS USED IN LITHLOGIC LOG COLUMN	SYMBOL or PATTERN	DESCRIPTION OF SYMBOLS USED IN WELL CONSTRUCTION AND SAMPLE SYMBOLS
	Fill	FILL MATERIAL CLAY & SILT		Bentonite Cement Grout
	CL	CLAT & SILT		Pure Bentonite Integrity Seal
	ML	CLAYEY SILT		Filter Pack Sandpack
	SM	SAND		Well Screen
0000	CL-ML	GLACIAL TILL		Split-Spoon Sample
0000			M	Shelby Tube Sample
		I.S. = Initial screening in ppm using PID		
		H.S. = Head space in ppm using PID		
1				

BORING/WELL NO. MW-1S

SHEET 1 of 1

ROJECT: <i>COUI</i> LIENT: <i>GENE</i> ONTRACTOR: <i>L</i>	RAL ELEC	CTRIC	LDING 	# 5 VO	C INVES	TIGAT	ION			PROJECT NO: <i>C</i> RIG: <i>CME-45</i>			GS ELEV: N-S COOR E-W COOR	D: <i>453</i>	0.24			
	GROUN	IDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE					
DATE	GW DEP1	TH (SW ELEV		INTAKE		TYF	PE	HSA	SS				ARTED: 12/19/91				
		<u> </u>		-			DIA	M.	4 1/4"ID	2"			ł	NISHED: <i>12/19/91</i> R: <i>RODNEY</i>				
						Ī	WEIGHT			140 #			GEOLOGIST					
			·				FAI	ll !		30"			525255551		- , ,			
WELL ONSTRUCT	ОЕРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	7 LOG	UNIFIED			(Modif	DESCRIPTI fied Burmiste			I.S.	REMARKS			
\aleph								1	PAVEMENT A	ND FILL				İ				
$\stackrel{\sim}{}$	-	1	X	16	10			(CLAY AND SI Grey brown m	LT ottled Clave	y SILT trac	of Sand so	omo oravol	0	1.6			
	- 5	2			6			\ i	n the top of	the spoon					0.5			
	-			0.4				t	Brown SILT &		-		t	0				
	-	3	\bowtie	24	4			1	Dark grey to					0	3.9			
	- 10	4		16	7			1	Dark brownish Tragments and	d other orga	nic debris		and, shell	0	3.9			
	- -	5	\bowtie	24	3			-	Brownish grey	Clayey SIL	T, f Sand in	partings		0	0.8			
	-	6	\boxtimes	NR										0	3.7			
-	-15			į					end of boring	@ 14.5'								
ļ	-								_									
	-																	
	- 20																	
ŀ	-																	
	ا م																	
	- 25																	
	-																	
}	-30																	
F	-500																	
ļ	-																	
ļ	- -35																	
-	.																	
}																		
F	40																	
ļ	.																	
Ė																		
	-4 5																	
F																		
-																		
-	-50																	
1													i					
Γ				- 1		-	1						ĺ					
	-55																	

BORING/WELL NO. MW-1I

SHEET 1 of 1

														SHEETTOTT
PROJECT: COUL			LDING	# 5 VO	C INVES	STIGAT	ION		F	PROJECT NO:	01554.EB		3	381.900ft. D: 4530.534
CONTRACTOR: /			F						F	RIG: <i>CME-45</i>	,		ł	D: <i>5177.006</i>
	GROUN	NOWATER	DATA (feet)				CASINO (SAMILLE TOBE CONE				WL REF ELE		
DATE	GW DEP	TH (SW ELEV		INTAKE		TYF	Æ	HSA	RTED: 3/2/92				
		•		-			DIA	M.	4 1/4"ID	2"	4"		OPERATOR:	SHED: <i>3/3/92</i>
							WEIG	ΉΤ		140 #			GEOLOGIST	
		1	,		,		FAI	LL		30"	PRESS			
WELL CONSTRUCT	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED				DESCRIPTIC ified Burmiste			REMARKS		
									PAVEMENT A	ND FILL				
	-	1	X	18	11				CLAY AND SI	LI	CLAY, parting:	o o 6 6 C and		
N	- 5							,	orey and bro	MII 21FI Ø (JEAT, parting:	s or i sand	, organics	
	- -	2	X	14	3			1	Grey CLAY & wood fragmer	SILT to dai nts, shells	rk brown orga	nic SILT &	CLAY,	
	10 	3	X	12	2			(Grey SILT &	CLAY, partir	ngs of f Sand	, stiff, wet		
	4 24 NA								Grey CLAY &					
	-20 25 30 35 40 45 50	5 6 7 8 9		24 20 NR 20 14	WOH 4 NA 5 4			L, (CLAYEY SILT Grey Clayey S Grey to It gre Lt brown SILT Lt brown Silty BOD @ 30'	SILT, parting y to browning , little f Sar	sh Clayey SIL nd, little Clay	T, little f S	and	

BORING/WELL NO. MW-1D

SHEET Lof L

														5	SHEET 1 of	
PROJECT: <i>COU</i> CLIENT: <i>GENE</i>			LDING	# 5 VO	C INVES	TIGAT	ION		f	ROJECT NO: 0	1554.EB		GS ELEV: N-S COOF			
CONTRACTOR:	EMPIRE .	SOILS							F	RIG: <i>FAILING</i>	F-10		E-W COOF			
	GR OU r	NDWATER	DATA (feet)				CASTIO I SAMEL TODE CORE				WL REF ELI				
DATE	GW DEP	TH C	SW ELEV	 I	INTAKE		TY	PE	HSA	SS			1	ARTED: <i>12/30/91</i> NISHED: <i>1/3/92</i> R		
				-			DIA	IM.	10 1/4"ID	2"			DATE FINI OPERATOR:			
							WEIG	HT.		140 #			GEOLOGIS"		FR	
	_				,		FAI	LL		30"						
WELL CONSTRUCT		백뜺	щш	VERY es)	当					בזבוחו	DESCRIPTIO	ONI			DEMARKS	
	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	507	UNIFIED				ied Burmiste			1.0	REMARKS	
T T	<u> </u>	0,2	0,40	<u> </u>					PAVEMENT A	ND FILL				I.S.	H.S.	
	<u> </u>			••				1	CLAY AND SI	LI						
	۲,			12	13						071 T			0	1.4	
	£	2	X	8	4				Grey brown m partings , woo	ottled clayer od pieces fro	y SILT, occ m railroad ti	asionai f Sar ies, organics	na	0	1.6	
	ļ															
	<u> </u>								Dark brownish	arev CLAY	SSILT trac	ce (-) f Sand	1 verv			
	-	3	X	24	WOH				plastic, occas	ional f Sand	partings	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-, ,	0	1.1	
	4 24 WOH													0	1.9	
	15 5 24													0	0.1	
				24	WOR									0	0.6	
	+	7		24	7									0	0	
	20	8		24	6				CLAYEY SIL							
	-	9		24					Light grey bro Sand partings	own Clayey S	ILT, little to	f Sand, oc	casional f	0	0	
	25				4									0.6	0	
	-	10	Θ	24	5									0	0	
	-	11		24	8									0	0	
	- 30	12		22	10									0	0	
	-	13	\bowtie	12	WOH			3	SANDS Dark grey to	arey black fr	ac SAND litt	tla Silt trace	of Grayet		0	
		14	\boxtimes	NR	5			,	Jak gicy to	gicy black in	ic Jand, itt	ue siit, trace	: I Glavel		0	
	- 35	15	\boxtimes	18	46	<u></u>			D. A O. T.						0	
	E							\ F	SLACIAL TILL Red brown Sill	y f SAND, lit	tle fm Grave	el, trace Clay	, very			
	- 10					·		_	dense eob @ 36'							
	4 0															
	-															
	45															
	-															
	-															
	- 50	ļ														
	-															
ļ	- [
}	 55												:			

BORING/WELL NO. MW-2S

SHEET 1 of 1

													SHEELIG	ווו	
PROJECT: CO			'LDING	# 5 VO	C INVES	STIGAT	ION	ſ	PROJECT NO:	01554.EB		GS ELEV:	382.10ft.		
CLIENT: GEA												1	D: <i>4792.21</i>		
CONTRACTOR									RIG: <i>CME-45</i>			1	D: <i>5045.00</i>		
	GROU	NDWATER	DATA (feet)				CASING	SAMPLE	TUBE	CORE	WL REF ELE			
DATE	GW DE	PTH !	GW ELE	L	INTAKE		TYPE	1 7.34 1 .33 1 1 1					ARTED: 12/24/91		
							DIAM.	4 1/4"ID	2"			OPERATOR:	SHED: <i>12/24/91</i> RODNEY		
							WEIGH	Т	140 #			l.	r: <i>MCIVET</i> ST: <i>MCIVER</i>		
							FALL		30"			0232333	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
WELL CONSTRUC	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED		FIELD (Modi	DESCRIPTION	ON er)		REMARKS		
	\ \							PAVEMENT A	ND FILL						
	\$					A A A		CLAY AND SI	LT	~			-		
	5							Brown mottle	d Clayey SII	LT, trace f S	Sand grading	j to			
	F 3	1	\times	12	11			@ 6.0' Brown	to red browi	n fmc SAND,	little Silt, ve	ry moist	0		
	-														
	10	2	$\langle \cdot \rangle$	24	4			@ 9°, grades	to Grey to g	jrey brown C	LAY & SILT,	, trace f	75		
	-1 0	3	\bowtie	24	2			Sand mainly i	n partings				41		
		4	\times	24	2								3.5		
	- 15	5	\times	24	1								1.6		
	15														
	-							eob @ 16°							
	- 20														
	<u> </u>														
1	<u>-</u> 25														
	- 23		}												
	L														
	- 20														
	- 30														
	-														
	- -35														
	-33														
	-														
	L 40														
	F 40														
	- -45														
	- 40														
	F														
	- -50														
	-														
	-														
	<u>-</u> 55														
	1		1												

BORING/WELL NO. MW-2I

SHEET I of I

		•											SHEET I oi		
PROJECT: <i>COU</i>			LDING	# 5 VO	C INVES	STIGAT	ION	,	PROJECT NO:	01554.EB		GS ELEV: 3			
CLIENT: <i>GENE</i> CONTRACTOR:			F					ŗ	RIG: <i>CME-45</i>	<u>-</u>		N-S COORD			
		NDWATER		feet)				CASING	SAMPLE	TUBE	CORE	WL REF ELEV			
DATE	GW DEF	PTH (GW ELEV	ı	INTAKE		TYPE	HSA	SS	SHELBY		l .	STARTED: 2/28/92		
	211. 42.	<u> </u>	2.11	_	4117354		DIAM	4 I/4"ID	2"	4"		DATE FINISH OPERATOR:	ÆD: <i>2/28/92</i>		
							WEIGHT		140 #			GEOLOGIST:	MCIVER		
	1			>			FALL		30"	PRESS		<u> </u>			
WELL CONSTRUCT	DEPTH (feet)	DEPTH (feet) SAMPLE NUMBER SAMPLE & TYPE RECOVERY (inches)				907	UNIFIED			REMARKS					
7	↓				N-VALUE			PAVEMENT A	ND FILL						
	‡	,		12	11	Δ'Δ'Δ		CLAY AND SI			·				
7 1	<u>}</u> 5	'		,_	"			Grey to It bro Sand, organic	own SILT & matter (ro	CLAY, occasionots), very stif	onal parting f	gs of f			
	‡	2	X	22	12					•					
7 1	‡														
AB	10	3		18	NA							f			
	‡	3		10	INA			Grey to grey occasional pa							
	4 20							occasional po	J. (11195 01, 1	Suno					
7 1	1														
	<u>L</u> 20														
$ \otimes $	*	5		24	MOH										
	7,5	6	\bigotimes	24	WOH										
	<u></u> 25	7		22	2		-	CLAYEY SILT	: -						
	-	8		24	3			Brown Clayey	Brown Clayey SILT, f Sand in partings						
- (- 30	9		NR	NA										
	-							eob @ 30'							
	<u>-</u>														
	- 35														
	<u> </u>														
	<u>-</u> 40														
	<u> </u>														
	-														
	-4 5														
	_														
	[-50														
	_50														
	-														
	- 55														
	 														

BORING/WELL NO. MW-2D

SHEET 1 of 1

-	-													Si	HEET 1 of 1	
PROJECT: COU CLIENT: GENE			TLDING	6 # 5 VO	C INVES	STIGAT	ION		į	PROJECT NO: (01554.EB		GS ELEV: N-S COOF			
CONTRACTOR:	EMPIRE	SOILS								RIG: <i>FAIL INC</i>	5 F-10		E-W COOF	RD: <i>5047</i> .	.58	
	GROU	NDWATER	DATA	(feet)					CASING SAMPLE TUBE CORE WL REF EL							
DATE	GW DEP	<u>'TH</u>	GW ELEY	<u>v</u>	INTAKE		TY	PE	HSA	SS		ARTED: 12/23/91				
						1	DIA	۱M.	10 1/4"ID	2"			OPERATOR:	ISHED: <i>12/31/91</i>		
						-	WEI	GHT .		140 #			1	NLOGIST: MCIVER		
	γ	,		1 .	,		FA	LL.		30"						
WELL CONSTRUCT	OOVE PRE BRALUE TH TOURTSMOO										DESCRIPTION fied Burmiste			F	REMARKS	
	H ±	ΩN	ωw	분는	Z	907	UNIFIED				and the Steries			I.S.	H.S.	
	-								PAVEMENT A	NDFILL						
12 12	-	1	X	8	6			(CLAY AND SI Grey brown ii	LT lottled claye	y SILT, f Sa	and in parting	gs, trace		0	
	- 5	2	\times	12	12			_ (organics Brown to yell				-	0.5	0	
	_	3	\times		13				Sand, little or Brownish gre	ganics, very	stiff		95 01 1	>3	6	
	L L10	4	X	3	1			,	biowillsii gie	y IIIC SAND,	iittie Siit, ve	y wet		>3	2.9	
		5	X	24	WOR			(Grey brown S	SILT & CLAY,	, parting of f	Sand		>3	11	
		6		24	WOH										0 -	
	- 15	7		24												
	-	'		2-7											0	
					_				Brown Clayey to brown SIL	SILT, f San	nd in partings	grading to	light grey			
	- 20	8	Θ	24	3			,	O DIOMII SIL	I & CLAT					0	
	-	9	M	24	5			ļ	CLAYEY SILT						0	
								,	LAIE! SIL!	-						
	<u>–</u> 25	10	\triangle	24	4			E	Brown clayey	SILT, trace	f Sand				0	
	-	11	X	24	8				Brown Clayey	SILT trace	f Sand				0.9	
	- 30	12	\boxtimes	22					J. 574 5.Gyc)	0121, 11000	, Julia					
	- "	13	X	12	3											
	-	14	X	NR	3											
	- -35	15		18	5											
	- -	16	\bowtie	12	12				SANDS							
	-		\bowtie		_											
	 40	17	Θ	24	14				Dark grey to	grey black fi	mc SAND, litt	le Silt, trace	f Gravel			
	-	18	Θ	24	18											
	-	19	\bowtie	NR	12								i			
	- 45	20	\bowtie	12	10											
	-	21	\boxtimes	20	56	00.00			SLACIAL TILL							
-	- -50							\ R	Red brown Sa Clay , very de	ndv SILT. lit	tle to some i	m Gravel, tra	ace (-)			
	-50								nd boring @							
	-								-							
	- -55															
			<u></u>													

BORING/WELL NO. MW-3S

SHEET I of I

RECET COURT 5 FREET BUILDING # 5 VOC RIVESTIGATION PROJECTING CONTRACT C	~														S	HEET I of
CASING SAMPLE TUBE CORE VALUE CORE VA	CLIENT: GENE	RAL ELE	CTRIC	LDING	# 5 VO	C INVES	STIGAT	TION .		ş	PROJECT NO: (01554.EB		4		
DATE SHAPEN SHEEK NIME TYPE HSG SS SS SHAPEN D2/4/9 ONE FINANCE D2/	CONTRACTOR: A									ſ	RIG: <i>CME-45</i>			_1		7.28
MATERIAL		GROU	NDWATER	DATA (feet)	_				 		TUBE	CORE	1		(24/01
NELL 1	DATE	GW DEP	IH G	SW ELEV	L	INTAKE	.			 			 	1		
FALL 30" SECURITION SEC							1			4 1/4"ID				1		
							ŀ							GEOLOGIS	T: MCIVE	-R
1	UFU		1	1	>-	Ι	T^{\perp}	FA	LL T		30"			1	1	
1	CONSTRUCT	Ξ⊋	E.E.	H.H.	over les)	ILUE					FIELD	DESCRIPTI	ON			REMARKS
1		ZEPT (fee	SAME	SAMP S TY	E C C	4 V - Z	90	H N			(Modi	fied Burmiste	er)			
1		7	0,2	0,40				1	+	PAVEMENT A	ND FILL				1.3.	<u>□.⊅.</u>
5 2 20 8 8								4		Reddish brow bits of macac	n to black fr Jam	ric SAND and	d fm Gravel,	little silt,		
3 24 6 8 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	1		8	10	ΔΔΔΔΔ	1							0	0
stiff, organic debris 10		- 5	2	\triangle	20	8				Brown and ar	ev Clavev S	ILT .trace f	Sand. mottle	ed. verv	0	0
Comparison Com		_	3	\boxtimes	24	6				stiff, organic	debris		32.5, mott	, · · · · j	0	0
Comparison Com		L 10	4	X	24	6									1	0.6
Sand partings Brownish grey SILT & CLAY, little f Sand in partings end of boring @ 16.0* -25 -35 -40 -45 -50 -50		<u>-</u> 10 -	5		24	2				Grev CLAY &	SILT. little o	organic debr	is and occas	sional f		
## Brownish grey SILT & CLAY, little f Sand in partings ## Prownish grey SILT & CLAY, little f Sand in part		_								Sand parting:	\$					U
-25 -30 -35 -40 -45 -50		- 15								Brownish grey	SILT & CLA	AY, little f Sa	and in partin	gs		
-25 -30 -35 -40 -45 -50		-								end of boring	@ 16.0'		-			
-25 -30 -35 -40 -45 -50		-														
-30 -35 -40 -45 -50		<u> </u>														
-30 -35 -40 -45 -50		_														
-30 -35 -40 -45 -50		_														
-35 -40 -45 -45 -50 -		<u></u> 25														
-35 -40 -45 -45 -50 -		-														
-35 -40 -45 -45 -50 -	}	- 20														
-40 45 50 50																
-40 45 50 50	ļ	-														
-40 45 50 50		- 35														
-45 -50 -50		-														
-45 -50 -50		- -														
-45 -50 -50		- 40	:												Ī	,
E50 E50		-														
E50 E50		-														
E50 E50	-	- 45														
	ļ.	-														
	-	-														
- -55 -	F	- 50														
-55 -55	-	-														
-55	t	-														
	F	-55	ĺ													

BORING/WELL NO. MW-3D

										 					SHEET 1 01
PROJECT: <i>COUI</i> CLIENT: <i>GENE</i> :	RAL ELE	CTRIC	LDING	# 5 VO	C INVES	TIGAT	ION		F	PROJECT NO: (01554.EB		GS ELEV: N-S COOR		
CONTRACTOR: A						· · · · · ·			F	RIG: <i>FAILING</i>	F-10	·	E-W COOR		9.19
	GROU	NOWATER	DATA	(feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE DATE STAF		/27/01
DATE	GW DEP	PTH (GW ELE	L	<u>INTAKE</u>		TYF		HSA	<i>SS</i>			DATE FINIS		
						-	DIA		10 1/4"ID	2"			OPERATOR:		
		•				}	WEIG FAL			140 # 30"			GEOLOGIS1	r: MCIV	ER
WELL CONSTRUCT	DEРТН (feet)	SAMPLE NUMBER	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED		1	FIELD	DESCRIPTI				REMARKS
	0)	υz	O CO	~ _	Z				PAVEMENT A	ND FILL	.,			I.S.	H.S.
						20000		<u> </u>	CLAY AND SI					-	
	- 								See MW-3S f	or detailed o	description o	f geology be	etween 2		
	 5							,	and 15 feet S vary amounts	olis generally of fm Sand	y consist of mainly in pai	rtings	I with		
	_														
N M	- 10														
	<u>-</u> 10 -														
	-														
	15							,	Crow brown C	TIT C CIAV	altornations	المائية المائية	f Clauser		
	-10	1	\times	24	WOR				Grey brown S GILT, trace to	plittle f San	aiternating i d	with layers o	r clayey	0	0
	_														
	- 20														
	-	2	\boxtimes	12					CLAYEY SILT light brown c		race f Sano	l mainly in pa	rtings	0	0
	-												_		
\boxtimes \boxtimes N	<u> </u>							L	ight brown C	layey SILT,	trace f San	d in partings			
	-	3	\triangle	24	4									0	0
	-	4	\boxtimes	24	7									0	0
\otimes \otimes N	-30	5	\times	24	7										
	-	6	X	20	15				SANDS Dark grey to	grey black fi	mc SAND, lit	tle Silt, trace	f Gravel	0.6	0
	-	7		24	8			Q	grading to red	dbrown f SA	ND, little Silt	t, trace Gravi	el	0	0
	- 35					J			SLACIAL TILL					Ü	U
	- - -	8		20	- 14	, o		F	Red brown SI dense, unstruction and @ 37°	LT and fmc 9	Sand, little C	lay, little fm (Gravel,		
	–40 -														
	-														
}	- 45														
Ī	-40														
-	-														
t	- -50														
	- "														
-	-														
-	-55														
-	-						ļ								

BORING/WELL NO. MW-4S

														SHEET 1 (of 1
PROJECT: COL CLIENT: GENL	eral ele	CTRIC	BSURF /	4CE INV	/ESTIGA	TION			Ī	PROJECT NO: (01554.EB		I	<i>379.86ft.</i> AD: <i>4937.20</i>	
CONTRACTOR:	EMP[RE	SOILS								rig: <i>CME-45</i>			E-W COOF	rd: <i>5015.36</i>	
	GROU	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELI		
DAIE	GW DEP	TH !	GW ELEV	<u>L</u>	INTAKE		TY	PE	HSA	SS	_			RTED: 12/23/91	
							DIA	M.	4 1/4"ID	2"				SHED: <i>12/24/91</i> <i>RODNEY</i>	
							WEI	3HT		140 #			1	r: MCIVER	
	T	1				,	FA	LL		30"					
WELL CONSTRUCT	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			FIELD (Modit	DESCRIPTI fied Burmisti	ON er)		REMARKS	
		0,2	0,0	ш.	2		4		PAVEMENT A	ND FILL			- 4	I.S. H.S.	
	2						1	1	CLAY AND SI						
	F_	1		12	10				Brownish grey SAND, little S	and black S	SILT and f	Sand grading	g to f	0	
	- 5	2	\boxtimes	16	4			1 \	SAND, IITTIE S Light brown f			Silt		0	
		3	X	24	2				_					0	
	F.,	4	X	24	,				Brown and gr CLAY, little to	ey to browni	sh grey Cla	yey SILT to	Silty	0	
	-10	ļ		24					CLAT, IIIIE IC	liace i Sail	id, very mon	Σ Ι			
	-	5			1				6 (4) D:-	0717	0.01.41/			0	
	<u></u>	6		24	4				@ 14', Brownis cohesive, ver	n grey SILT y moist	& CLAY and	d f Sand, not	t	0	
	- 15								end of boring	@ 14.5					
	L -20														
	-20														
	<u>-</u> 25														
	-														
	-														
	-30														
	-							İ							
	- 35														
	-														
	40														İ
	F														
	F ,_												:		
	-4 5														
	-														
	F														
	<u>-</u> 50														
1	-														ĺ
	_ _55														
	-00														

BORING/WELL NO. MW-5S

								<u></u>						SHEET I of
PROJECT: COU			LDING	# 5 VO	C INVES	STIGAT	ION		P	ROJECT NO: (01554.EB		GS ELEV: 3	
CLIENT: <i>GENE</i> CONTRACTOR:			F						F	IG: <i>CME-45</i>): <i>4039,507</i>): <i>5445.710</i>
		NDWATER		(feet)				CAS	SING	SAMPLE	TUBE	CORE	WL REF ELE	
DATE	GW DEP	TH I	GW ELEV	/	INTAKE		TY		54	SS				TED: 3/3/92
				_			DIA	AM. 41/	'4"ID	2"			OPERATOR: A	HED: <i>3/4/92</i> R <i>4RNFY</i>
							WEI			140 #			GEOLOGIST:	
	T		1	-			FA	LL		30"	.,,,,,	<u> </u>	L	
WELL CONSTRUCT	DEРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED				DESCRIPTION Tied Burmiste			REMARKS
XX XX							1	PAVEM	ENT A	ND FILL				
\boxtimes		1	X	12	11				AND SI		TIT COLAY		4.5	0
	- 5	2		24	5			Brown	and gri	ey mottled S	ILI & CLAT	, partings of	r Sanu	0
	<u>-</u>	3		24	4			Betwee	en 6.5 a	and 7.0', Dar	k grey Grav	elly Clayey	SILT layer	
	-	4		16	4			j.		rey brown S vn CLAY & S				0
	-1 0	5		12	4			Sand		ey SILT, littl		_		0
	_	6		20	8			laminat	ed:	ey Sici, atti	e i sand, ilia	зину игранц	igs,	0
<u> </u>	L 15			20	•		-	eob @	14.0'					0
	- 20													
	-													
	- 0-													
	 25 -													
	-													
	- 30													
	- -													
	- -													
	- 35													
	-												Ì	
	- ₋₄₀													
ļ	-													
į	-													
	-4 5													
	- '													
							:							
ļ	-50 -													
ŀ	-													
	- -55	:		İ										
				İ										

BORING/WELL NO. MW-5D

	*	•					_							SHEET 1 of 1
PROJECT: <i>COU</i> CLIENT: <i>GENE</i>	RAL ELE	CTRIC		6 # 5 VO	C INVES	STIGAT	ION		F	ROJECT NO: ℓ	01554.EB		1	<i>383.470ft.</i> D: <i>4035.704</i>
CONTRACTOR:									F	IG: <i>CME-45</i>				D: <i>5440.891</i>
	GROU	NDWATER	DATA	(feet)				,	CASING	SAMPLE	TUBE	CORE	WL REF ELE	:v: :ted: <i>3/4/92</i>
DATE	GW DEP	HT	GW ELE	L.	INTAKE	.	TYI		HSA 10 1/4"TD	SS				SHED: <i>3/5/92</i>
						}	DIA WEIG		10 1/4"ID	2" 140 #			OPERATOR:	
:						-	FA			30"			GEOLOGIST	: MCIVER
WELL CONSTRUCT	DEРТН (feet)	SAMPLE NUMBER	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			FIELD	DESCRIPTI ied Burmiste	ON er)		REMARKS
									PAVEMENT A	DFILL		76		
	_		X						CLAY AND SI	I				
	<u>-</u> 5	1		14	7				Brown SILT & markings	CLAY, occa	sional partii	ngs of f San	d ,root	0
	- -10 - -	2		. 16	3				Grey to grey	brown SILT	& CLAY, pa	rting of f Sa	nd	0
	 15	3	\boxtimes	20	3			ļ						0
	-	4		24	3				CLAYEY SILT Grey SILT & (CLAY to Clay	ey SILT, f	Sand in part	ings	О
	- - 20	5	\boxtimes	12	8				Grey brown S	ILT, little f S	and			0
	_	6	\times	24	10				SANDS					0
	-	7		24	5				Dark grey to t	olack to brow	vn fmc SAN	D, little Silt, v	very wet	0
	- 25	8	\boxtimes	24	10									0
	-	9		22	28									0
	-30	10	\boxtimes	12	20				GLACIAL TILL Red brown SII very dense	T, some Clay	y, little fm G	ravel, little f	mc Sand,	0
	-35 35 40 45 50								eob @ 30'					
-	-55													

BORING/WELL NO. MW-6S

PROJECT: COU CLIENT: GENE CONTRACTOR:	RAL ELE	CTRIC		#5		,				PROJECT NO: (<i>383.41t.</i> D: <i>4625.348</i> D: <i>5047.770</i>
JUNI DAUTUK.		DWATER		feet)				CA	SING	SAMPLE	TUBE	CORE	WL REF ELE	:V:
DATE					TNITAUC		TYPE		ISA	SS				TED: 8/19/92
DATE	GW DEP	1H /	SW ELEV	_	INTAKE		DIAM		/4"ID	2"			DATE FINIS OPERATOR:	SHED: <i>8/19/92</i> BARNEY
							WEIGH	4T		140 #			GEOLOGIST	
							FALL	-		30"				
WELL CONSTRUCT	DEPTH (feet)	SAMPLE NUMBER	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	700	UNIFIED		*		DESCRIPTI			REMARKS
		1		12	8			CLAY	AND S	LT				0
\boxtimes	}	1									tings of f Sai ed SILT & CL		·) to trace	0
	L	2	\mapsto	6	19			f sand	d, stiff	g. = ;ottle				
	F)	3		12	11									0
	-	4	\bowtie	24	15			Lt bro sand,	wn CLA organio	(Y & SILT to cs, wet	Silty CLAY,	trace partin	gs of f	0
	10	5	X	24	4									0
	- 10	6	X	NR	4			No re	turn, tra	aces of fm S	SAND with org	ganics		0
		7	X	24	5			Organ	ic rich	Sandy CLAY	, some Silt c	hanging to (Brown	0
	- 15							CLAY eob @		, trace f sai	nd @ 12.5'			-
	F.					1		200	14.0					
	F													
	-20													
	-													
	- 25													
	L													
	-30													
	F													
	L													
	-35													
	F								•					
	<u> </u>												4	
	-4 0													
	F													
	-													
	-4 5													
	-													
	F													
	- 50													
	-													
	_55													

TEST BORING LOG Boring No. MW-6D

						EM	COL	1				:	Boring No. M	W-l	6D
Project R3	CFS	CO	URT	STRE	ET 1	5/5	A S	ITE	-				Sheet No. 1 of		
					poratio			• • • •					Job No.86143-001	· ^^	`
Boring Cor									· · ·				G.S. Elevation		
Groundwat				-				1	Cas.	Samp.	Core	Tube	W.L. Ref. Elev.		
Date Wa	ter D	epth	Water	r Elev.	intake	Tv	oe	Shel	HSA	SS	_		Date Started 2-10	2 - 9 -	
2/20/97/4.5						Dia		10"	41/47		_		Date Finished		
		~			i -	_	ight	Ì-	-	140#	_	_	Driller Mark Equ		
						Fal		-	-	30"	-	_	Inspector JHK		
W-# 0	50		Sa	mples		-		*						HNU) 4 4
Well Con-		Ī.,	_		Blows				_	Manaidi				17.56	_
struction	- ۵-	NO.	Туре	Rec.	6 inch	05	<u> </u>			lassificati			Remarks	Speon	HS
	\mathcal{A}	١	SS	18	5-5		Bleck	2510	TACLA	y tracetim	Sand . trace	Roots		0	0
	7				5-5	-	lero.	pr.9	y motti	pasict acc	ላሃ, ተናነ ሀቸ !	Sand .			-
	1	2	SS	6	6-5		000	۰۵۲۹۱ ۱۹۶۶	omolea	ediclayeysi HingfSan	LT, trace roo	45 w/fm		0	0
	5-5	3	SS	10	2-3		@4.0	>, or	g br gu	SILTACL	AY medium	^		0	0
	\$ -	 			4-5		Q /.	25 <i>U</i> (عم بي	n Clayeus	T 11446+1	and:			-
	10 L	4	SS	22	5-6		680	1019	prom	SICT&CL	f-csand, to	34.601		0	1.5
GROUT ISER	\$	5	SS	15	5-6		6d 5	2.014	Ted br.	clay ey si c	T. Somet-N	Sand sat		0	6
8 8 Y	-10	-		<u> </u>	2-2		24.75 29.95	Cora	or Claye	ysict, some	f-m Gul, lil	Hect Sand		 	i
	₽ ⊨	6	SS	6	2-2		6100	'Ģ.a	4 81CT	&CLAY, W	thoccassio	mail		0	5
5 6 0 0	%	7	ss	22	2-2		Pa.	Horid	10FF5	Sand@Il.	こもいうし	13.5		0.2	9
1 NO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₹ 1 5	8	SS	10	WH-W	-	م ا	20.7	Cray.	SILT & CLA F-M SAND	little silt	!			
1 - 0 5	<u> </u>	<u> </u>	33	18	WH-WI		10	128	Oroman	brsiltan	df-msano	! !		0,2	0.5
S T O T S	ĕΈ	9	22	14	WH-WI	н	٥	12.9	'Cray	CLAYESI	UT 1 - UT	!		O	0
10 2 0	1	10	SS	18	wH-w						and SILT.	-01			
	+20	<u> </u>			MH - N		1	Pa:	ting of	SILT.	T, occassion		:	0	0
الم الم	1	11	55	9	WH-W				CLAY	ESILT		·		0	0
18 3 8	· -	12	55	18	WH - 2		G	ray	CLAY	\$SILT, S	oft, sat.			O	0
40 4	125	<u> </u>			WH - W		େ	14.0	، ح، می دا	LAYASILT,	ver y 5. 4	-			-
Na N	- 25	13	55	21	WH - W	_				Clayey SICT	ILT & CLAY			0	0
100	-	14	SS	17	mH - m					CLAYASIC				0	0
		\	<u> </u>	19	WH-W	H	e	241C	nam Cl	amou SILT	ne(-) uf San	d .			
TO MAKE	-30	15	22	1	WH - W		©	28 G	naycla	yousset occ	-verythin bed	ነ ኤ"		0	0
PACK Benton.	t	16	SS	16	2 - 4			(31 C	-1 &	ع المساحين إلا				0	0
PACK	F	17	22	20	1-1			251	·2 Cx =~~(Caylory or CT.	court Jane	32.5		0	0
3 = 5	125				4-5	-	_	625			there ms	ano /	-		
0 5440 6	-35	18	55	16	2-8		بسمين	F-c	SAND,	FG)silt				0	O
0 = 0	-	19	2 2	16	50/4"	-	70	2.876 32.a	51 ang 51 l	TITIES	f bul tr sitt	37.0		0	0
	t	20	55	7	17		- 1	س ربله	thin b	ed Clayengy	Jezz21.	38.5		0	0
	40						111'	₽ > 5.	و نصر	SILL LAGGE	f-msand.	.			
	-						Π	@34	1 Gm MF	54~1,4~6	F601,7s.lt				
	-					\dashv		239	5 'Gian	FGEAVEL	Somec Pand	11 Heats		٠ الم	th
							$ \ \ $	@35.	25 (xau	MESANDY	トトろんは		** HNU equippe	, <i>o</i>	٠.
	-45							@3	60'64	CFSAND, 1	,ttle=601, ⁻	17	an 11.7 eV lamp	•	
	-						\				DF61,7451	<u>u</u>			
	-				<u> </u>			_		L TILL	المداعدال من	0,000			
								1144	refit-i	ray F-C8A n Gravel. \	no, little()C	الامادالماس			
	50						@	38/	albray	F-MSAND, IH	teclarings to	4+601			
	"	l i			1	I	1 6	=ND	OF BO	RING 38.	5′—_1				

BORING/WELL NO. MW-7S

ROJECT: <i>COU</i>	RT STRE	ET PUII	DING	# 5					PROJECT NO:	Ω1554 Ω3		GS ELEV:	382 Nff
LIENT: <i>GENE</i>	RAL ELE	CTRIC		<i>"</i> U			•					N-S COOF	RD: <i>4801.428</i>
ONTRACTOR: A									RIG: <i>CME-45</i>			E-W COOF	RD: <i>4962.253</i>
	GROU	NOWATER I	DATA ((feet)				CASING	SAMPLE	TUBE	CORE	1	ev: RTED: <i>8/19/92</i>
<u>DATE</u>	GW DEP	TH G	W ELE	L	INTAKE	-	TYPE		<i>SS</i> 2"			1	SHED: <i>8/19/92</i>
							DIAM WEIGH		2 140 #			1	: BARNEY
		•				ŀ	FALL	- 	30"	<u> </u>		GEOFOGIS.	T: MCIVER
WELL CONSTRUCT	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED		FIELD	DESCRIPTI	ON er)	-L	REMARKS
\boxtimes	}	1	X	12	10			CLAY AND S Brown SILT,	ILI some Clay r	partings of f	sand, roots		0
		2		16	19			Lt brown and	grey mottle			(-) to	0
	_5							trace f sand	, stiff				
	-	3	\mapsto	12	10					ID 4 C/L 4			- 0
	F	4	\Diamond	24	14			Lt brown to I	Jack III SAN	и р анд SIII, I		ıy, wet 	0.5
	<u> </u>	5	\bowtie	24	WOH			Grey CLAY &	SILT, trace	partings of	f sand,		0
	L	6	\boxtimes	24	WOH								0
昌	E	7	\times	24	WOH								0
	- 15							eob @ 14.8'					-
	-					1		555 € 11.5					
	-												
	-20			i									
	<u> </u>												
	E												
	- 25												
	Ļ												
	L												
	-30												
	ļ.												
	L												
	35											•	
	-												
	_												
	-4 0												
	F												
													·
	 45												
	F												
	- 50												
	F												
	_												
	- 55												

BORING/WELL NO. MW-8S

PROJECT: <i>COUI</i> CLIENT: <i>GENE</i>			LDING	# 5		•			f	PROJECT NO: (01554.03		1	<i>379.328ft.</i> D: <i>5064.978</i>
ONTRACTOR: /			F						1	RIG: <i>CME-45</i>			E-W COOR	D: <i>4949.436</i>
	GROUN	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE	:v: :ted: <i>8/17/92</i>
DATE	GW DEP	IH (SW ELEY		INTAKE	-	TYP		HSA	SS			1	SHED: <i>8/17/92</i>
•						-	DIA		4 1/4"ID	2"			OPERATOR:	BARNEY
							WEIG FAL			140 # 30"			GEOLOGIST	: MCIVER
WELL CONSTRUCT	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED		CLAY AND S. Brown and g	FIELD (Mod	DESCRIPTI ified Burmiste	er)	f sand	REMARKS H.S.
	-	2		12	10			=	roots			- -		0
	 5 - -	3		12 24	3 2				Brown and b Lt brown and Grey CLAY &	grey mottle	d SILT & CL	AY, trace f	sand	0.1
	F 40	5	X	24	WOH				Grey CLAY &					0
	H0 F	6	\square	24	woh									0
	-	7	X	24	3			\vdash	Grey CLAY & throughout	SILT, with 1	l" to 2" string	gers of brow	n f sand	0
	H5 -								eob @ 14.8'					
	-					ļ								
	20													
	_ -25													
	L													
	-3 0													
	-													
	_ _35													
	F													
	F 40													
	<u>–</u> 40 -													
	F													
	45													
	E													
	_50													
	F													
	- 55													

ROJECT: <i>COURT S1</i>														
		LDING	# 5					ſ	PROJECT NO: (01554.03		GS ELEV:		
LIENT: <i>GENERAL E</i> ONTRACTOR: <i>PARRA</i>		F						F	RIG: <i>CME-45</i>	•		E-W COOR		
GR	DUNDWATER	DATA (feet)			·		CASING	SAMPLE	TUBE	CORE	WL REF ELE		17/00
DATE GW I	<u>EPTH</u> (GW ELEV	<u>L</u>	INTAKE	-	TYP	Æ	HSA	SS			DATE STAR		
					-	DIA		4 1/4"ID	2"			OPERATOR:		
					-							GEOLOGIST	: MCIVE	-R
WELL CONSTRUCT HAS 10 10 10 10 10 10 10 10 10 10 10 10 10	SAMPLE SA	SAMPLE SAMPLE STAPE	12 8 24 24 24 24 26 16 20 16 16	30 H	907			Brown grey S Grey to grey CLAYEY SIL Light brown (SANDS Dark grey to	(Modi	race to little, trace f san SSILT, trace finc SAND, li	er) cs f sand, mois nd ace f sand in	t partings	: MCIVE	

PROJECT: <i>COUI</i> CLIENT: <i>GENEI</i> CONTRACTOR: <i>L</i>	RAL EL	<i>ECTRI</i> (\mathcal{C}	NG #5	VOC IN	VVEST	IGAT1	TON		PROJECT NO: (RIG: <i>FAIL IN</i>			GS ELEV: N-S COOR E-W COOR	o: <i>471</i>	'3. <i>8</i> 9
	GROU	NDWATER	DATA	feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE		
DATE	GW DEP	י עדי	GW ELE\		INTAKE		TYF	PE	HSA	SS			DATE STAP		
UATE.	<u>UN UEP</u>	ш. ,	VII ELE	L	MITHUE		DIA	M.	4 I/4"ID	2"			DATE FINIS		/12/91
							WEIG	HT.		140 #			OPERATOR: GEOLOGIST		ER
							FAL			30"			J GEOLOGIS!	.14014	⊏n
WELL CONSTRUCT	DEPTH (feet)	SAMPLE NUMBER	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED				DESCRIPTI fied Burmiste		1	LS.	REMARKS
	_						4		PAVEMENT A Fill is stained	ND FILL red oily sme	-				
	_	1	\times	9	10				CLAY AND SI	LI				2352	9660
	- 5	2		NR	10			F	Pale yellow to partings , sor	o light grey (Clayey SILT,	trace f San	nd in		
	- 3		\longleftrightarrow						_		LTROLLY	(C d :		1	
	_	3	$\langle \rangle$	12	13				Grey to brow	n mottied SI	LI & CLAY,	ı sana in pa	rungs	517	8390
	F	4	X	20 .	4									135	291
	-10 -	5	\times	20	WOR				2" layer of b	rown mc GRA	VEL and Sa	nd and Silt @	11.	53	360
	L	6	\square	17	WOH				Brownish gre					91	331
	[[1													
	- -15 -	7		24	WOH			5	light brownis Sand in partii	ngs			ace f	51	313
	 -	8	\mapsto	24	WOH				Dark grey CL	AY & SILT, I	ittle f Sand	in partings		138	311
	- 20	9	\triangle	24	WOH									66	332
	-	10	X	24	WOH				CLAYEY SIL					34	118
	25 	11	X	24	1			E	Brownish gre	y Clayey SIL	.T, f Sand in	partings		6	67
	30 -	12	\boxtimes	22	WOR				SANDS Dark grey to		fmc SAND, lif	tle Silt		4	25
	<u>-</u>							6	end boring @	32. 0'					
	- 35														
														1	
	-														
	 40														
	_														
1	 45														
	_														
	-														
	50 -														
	-			;											
	[
	–55 -														

CLIENT: <i>GENET</i> CONTRACTOR: <i>E</i>									RIG: FAIL INC	G F-10		N-S COOR E-W COOR	RD: <i>504</i>	
	GROUN	NOWATER	DATA (feet)				CASING	SAMPLE	TUBE	CORE	WL REF ELE		/11/01
DATE	GW DEP	<u>IH</u>	GW ELEV	<u></u>	INTAKE		TYP		SS			DATE STAF		
							DIA	M. 4 1/4"ID	2"			OPERATOR:		., ,,,,
						-	WEIG FAL		140 # 30"			GEOLOGIS1	r: <i>MCIV</i>	'ER
WELL CONSTRUCT	DEРТН (feet)	SAMPLE NUMBER	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED		FIELD	DESCRIPTION DESCRIPTION DESCRIPTION DE SCRIPTION		I.S.	REMARKS	
		37.2	1		 			PAVEMENT	AND FILL				1	
	- -	1	X	10	12	^_^_^_		CLAY AND S	and dark are		ayey SILT, 1	trace f	0.5	6
	 5 -	2	\triangleright	20	9			Sand, very	uense				2	19
	-	3	\boxtimes	24	10			Brown black	f SAND, som	e Silt trace	Clay very w		- 4	27
	- 10 	4 5	\triangleright	4 NR	1 WOH			DI ONIT DIGGE	1 JAND, 3011	ie dit, trace	Cidy, VCI y #		0	2
	_							Brown and	grey Silt, som	e fm Sand				• •
	- —15	6	\mapsto	24	WOH			Grey to bro partings	wnish grey S	ILT & CLAY,	little f Sand	in	0	14
	- 15	7		22	2			partings					0	0.5
	1 1 1	8	X	24	WOH								0	0.5
	20 - - -	9	X	24	WOR			CLAYEY SII Brownish gr	.I ey Clayey SI	LT, little f Sa	and		0	0.5
	- 25 -	10	X	24	1								0	0.8
	- -30	11	X	24	2				and f Sand,	little Clay			0	4
	- -							end boring	<u>9</u> 30.0					
	- 35 -			•										
	-													
	<u>–</u> 40 –													
	- -													
	- 45													
	-													
	_													
	<u> </u>													
	_													
	55 -													

SHEET I of I

	=											·····		_	HEEL TOT
PROJECT: <i>COUP</i> CLIENT: <i>GENE</i>			DING	#5 VOC	'INVEST	TIGATI	ON			PROJECT NO: (GS ELEV: N-S COOR	D: <i>477</i>	0.211
CONTRACTOR: E	MPIRE .	SOILS			3					RIG: <i>FAILING</i>	5 F-10		E-W COOR		4.161
	GROUN	NDWATER I	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE DATE STAR		/11/01
DATE	GW DEP	IH G	W ELEV		INTAKE		TYP	E	HSA	SS			DATE FINIS		
							DIA	M.	4 1/4"ID	2"			OPERATOR:		7 12 7 0 1
							WEIG	HT		140 #			GEOLOGIST		ER
		1	, ,		T		FAL	L		30"			<u> </u>		
WELL CONSTRUCT	DEРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	(0)	UNIFIED				DESCRIPTI				REMARKS
	DEF (fe	SAN	SAI	₩.Ē	Z	907	S			(, , , ,				LS.	H.S.
	- -								PAVEMENT A Red brown fr	nc SAND and	d Gravel				
	- -	1		10	9				CLAY & SILT Light brown a	i and dark gre	ey mottled Cl	ayey SILT, t	race f	0.5	7
	 5 -	2	\boxtimes	10	14				Sand, very d	ense, organi	cs	· · · · · · · · · · · · · · · · · · ·		1.4	8
	_	3	X	12	10			 	Brown black	f SAND som	e Silt trace	Clav verv w	 et	4.0	27
	- - —10	4	X	24	7			-	Brown to dar Sand					5.0	9
	-								eob @ 10'					1	
	-							ĺ							
	- 15														
	-														
	-														
	- - 20														
	-														
	_														
	- 25														
	-														
	-														
	- 30														
	-														
	-														
	- - 35														
	-														
	-														
	- - 40														•
	-														
	-														
	- - 45														
	- -														
	-														
	- 50														
	- -														
	-														
	- -55														
	-														

CLIENT: GENER CONTRACTOR: 1	EMPIRE S	SOILS								IG: <i>CME-45</i>		r	N-S COORI E-W COORI WL REF ELE	D: <i>5121.</i> 2	
	GROUN	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	DATE STAR		/16/91
DATE	GW DEP	IH (GW ELEV	<u>!</u>	INTAKE	-	TYF		HSA	SS			DATE FINIS		
						-	DIA		4 1/4"ID	2"			OPERATOR:		
		•				-	WEIG			140 #			GEOLOGIST	: MCIVE	ER .
	ı	1					FAI	L	1	30"			1		
WELL CONSTRUCT	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	700	UNIFIED				DESCRIPTI fied Burmiste			I.S.	REMARKS
1111		U.Z.	10,10					P	AVEMENT A	ND FILL					
	-	1	X	16	14	00000		L	CLAY & SILT ight brown a	nd dark gre	y mottled Cla	ayey SILT,	trace f	0	1.4
	. 5	2	\triangleright	18	10			7	iand ight brown a Sand in partir	nd grey Cla ngs, very stii	yey SILT, lit ff	tle very ligh	t grey f	0	3.6
	-	3		24	8			[\J	ight brown a	nd grey SIL	T & CLAY, I			0	4.8
	- -10	4	\boxtimes	16	10				8.5' Light g					0	3.8
	- 10	İ				1			lark grey to and boring @		ey SILT & C	LAY, little 1	Sand		
									ind boring c	10.0					
	- ,,-														
	- 15														
	-														
	_														
	- 20														
	-														
	- 25														
	- 23														
	_														
	- 30														
	-														
	-				İ										
	35														
	-														
	- 40														
	- 40							1							
	-						•								
	_														
	 45							-							
	-														
	- 50														
	-														
	_														
	–55 –														
	-														

· · · · · · · · ·													T		PHEET TO
PROJECT: <i>COUI</i> CLIENT: <i>GENEI</i>			LDING	#5 VOC	INVES	TIGATI	ON		I	PROJECT NO: (01554.EB		GS ELEV: N-S COOR		
CONTRACTOR: <i>L</i>									1	RIG: <i>CME-45</i>			E-W COOR		
		NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE		4 - 4-
DATE	GW DEP	TH (W ELEV	<u> </u>	INTAKE		TYF	Æ	HSA	SS			DATE STAR		
				-			DIA	M.	4 1/4"ID	2"			OPERATOR:		710731
						-	WEIG			140 #			GEOLOGIST		ER
VEL.		1	1 1	>-	T		FAL	.L		30"					
WELL CONSTRUCT	ΗÇ	HE HE	밀밀	RECOVERY (inches)	I UE		1ED			FIELD	DESCRIPTI	ON			REMARKS
	DЕРТН (feet)	SAMPLE	SAMPLE & TYPE	PEC (inch	N-VALUE	907	UNIFIED			(Modi	fied Burmiste	er)		LS.	<u>H.S.</u>
	-								PAVEMENT A	ND FILL			<u>-</u>		
	_	,		16	9	Δ.Δ.Δ.			CLAY & SILT	-		O71.7	,	2	20
	- 5	,		16	5				Light brown a Sand in thin l	ayers					7
		2							Greenish gre partings , soi	y SILT & CLA ne organic d	AY, little fm S ebris. mottle	Sand and f () d	Bravel in	9	
	L	3	\bowtie	18	3			/	Light brown a mottled				ioist,		13
////	- 10	4		24	7			<u> </u>	Brown and d	ark grey to b	prownish gre	y Clayey SII	T, little f		110
	<u> </u>								Sand end boring @	10.0'				-	
	- 								3						
	-1 5														
	-														
	- 20														
	_20	1													
	<u>-</u> 25														
	-														
	_														
	—30 -														
	_														
	- 35														
	-														
	- 40														
	- -														
	-														
	45 -														
	_														
	- - -														
ļ	- 50 -														
	- -														
	- 55														
			1												

PROJECT: <i>COUP</i> CLIENT: <i>GENEF</i> CONTRACTOR: <i>E</i>	RAL ELE	ECTRIC	:	NG #5					PROJECT NO:			N-S C00F	381.90ft. RD: 4719.943 RD: 5119.305
JOINTHACTOR. Z.		DWATER (feet)				CASING	SAMPLE	TUBE	CORE	WL REF ELI	
DATE	GW DEP		W ELEV		INTAKE		TYPE		SS	1002		1	RTED: 12/16/91
VAIL	ON DEF	nt c	MELEY	_	INTANE		DIAM	. 4 1/4"ID	2"			DATE FINI OPERATOR:	SHED: <i>12/16/91</i>
							WEIGH	iT	140 #			1	: T: <i>MCIVER</i>
			, .				FALL		30"				
WELL CONSTRUCT	ОЕРТН (feet)	SAMPLE NUMBER	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	901	UNIFIED			DESCRIPTI lified Burmiste			REMARKS
	-	•						PAVEMENT	AND FILL				
	- - - -5	1 2	X	15 24	9	A-A-A-A		CLAY & SIL Brown and some f San	I dark grey mo d in thin layer	ttled SILT &	CLAY to Cla	ayey SILT,	0.7 3.2
	3 24 3							Sand	grey to brown	nish grey SIL	T & CLAY, Ii	ittle f	0.1 3
	- - 10							end boring	@ 8.0'				
	-15 -15 -20 -20 -25 -30 -35 -40 -45 -50												

PROJECT: <i>COUI</i> CLIENT: <i>GENEI</i>			LDING	#5 VOC	INVES.	TIGATI	ON		F	PROJECT NO: (01554.EB		GS ELEV: N-S COOF		
CONTRACTOR: A									ſ	RIG: <i>CME-45</i>			E-W COOP	RD: <i>5149</i>	
	GROU	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE		/10/01
DATE	GW DEP	TH (GW ELEV	<u>L</u>	INTAKE	-	TYP		HSA	SS	_		DATE FINI		
						ŀ	DIA		4 1/4"ID	2"			OPERATOR:		
						-	WEIG FAL			140 # 30"			GEOLOGIST	r: MCIV	ER
WELL CONSTRUCT	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED	_	<u></u>	FIELD	DESCRIPTIO	ON er)		LS.	REMARKS
									PAVEMENT A	ND FILL					
		1	X	12	11				CLAY & SILT brown and gr	ev mottled (Clavev SILT.	trace f Sar	nd. verv	0.1	1.9
	- 5	2	X	24	4			L	dense, organ	ics				0.1	0.5
	-	3		24	4			l .	Brown Sandy f Sand with s					0	0
	-	4		24 •	3				Grey to black	Clayey SIL	.T, little f Sar	nd, wood bra	anches		
	- 10	,		ζ,					end boring @	10.0'	-			1	
	-														
	L 15														
	- 20														
					•										
	- 25														
	<u> 25 </u>				:										
	_														
	- 30	į													
	_							•							
	<u>-</u>														
	-35 -														
	- -														
	- 40														
	-														
	_														
	_ _45														
	-														
ļ	- - -														
	 50 -														
}	- -														
	- 55														
	-														

														2	SHEET 1 01	f 1
PROJECT: COUL			LDING	# 5 VO	C INVES	TIGAT	ION			PROJECT NO: (01554.EB		GS ELEV: \			
CONTRACTOR: A	EMPIRE S	50ILS							F	RIG: <i>CME-45</i>			E-W COOR		?. <i>16</i>	
	GROUN	DWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE DATE STAR		//0/01	
DATE	GW DEP	ĪH (GW ELEV	<u>_</u>	INTAKE	_	TYF	Æ	HSA	<u>SS</u>			DATE FINIS			
							DIA	М.	4 1/4"ID	2"			OPERATOR:			
							WEIG			140 #			GEOLOGIST	MCIV	'ER	
	· · ·		1		1		FAI	LL		30"			<u> </u>			\dashv
WELL CONSTRUCT	DEРТН (feet)	SAMPLE NUMBER	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED				DESCRIPTI				REMARKS	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ΰŽ	က် မ	₩.=	Ż			ļ	PAVEMENT A	NO CTI I		 		I.S.	H.S.	
	 															
		1	X	16	10			_	CLAY AND SI Grey brown n	nottled Claye	ey SILT, trad	ce f Sand, so	ome gravel	0	1.6	
	- 5	2	X		6			1 \	in the top of Brown SILT (Gravel verv	stiff mottled	1	0	0.5	
		3	\times	24	4			1	Dark grey to				-	0	3.9	
	[_10	4	\times	16	7				Dark brownisi fragments ar	n grey CLAY	' & SILT, par	ting of fm Sa	and, shell	0	3.9	
		5	\boxtimes	24	3				Brownish gre			partings		0	0.8	
		6	X	NR										0	3.7	-
	- 15								end of boring	g @ 14.5'						
	-															ĺ
								ļ								
	<u> </u>							ļ	MW-1S was in	stalled in thi	is boring					
	-															
	- 25															
	-															
	-															
	30 -				-											
	-															
	- 35															
	-															
	- 10												٠			
	-40 -															
	- -															
	- 45															
	-															
	- [
	50 -															
	-															
	- 55															
	<u> </u>															

														Si	HEET 1 of i
PROJECT: COUI CLIENT: GENE			LDING	#5 VOC	INVES	TIGAT.	ION			PROJECT NO: (GS ELEV: N-S COOF		
CONTRACTOR: A	EMPIRE	<i>SOILS</i>							1	RIG: <i>CME-45</i>			E-W COOP		111
	GROU	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE		10/01
DATE	GW DEP	TH (GW ELEV	L	INTAKE		TY	PE	HSA	SS			DATE STAP		
							DIA	۱M.	4 1/4"ID	2"			OPERATOR:		13/31
							WEI	3HT		140 #			GEOLOGIS1		TR
	1				·		FA	LL		30"				γ	
WELL CONSTRUCT	ОЕРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	9	UNIFIED			FIELD (Modi	DESCRIPTI fied Burmiste	ON er)		f	REMARKS
	범분	SA	SA	W.E	ż	90	3					···		LS.	H.S.
							3		PAVEMENT A	ND FILL					
	-	1	\times	16	13				CLAY & SILT Brown and gr		lavov SILT	to STI T S C	T AV with	2	29
	<u>-</u> 5	2		22	7			\vdash	occasional f	Sand in parti	ings		LAT WILL	0	7
			<u> </u>				1		Brown to dar		y SILT, trad	ce f Sand		-	,
	L								end boring @	0.0					
	-1 0														
	F														
	⊢ 15														
	F														
	-														
	-20														
	٥٢														
	<u>–</u> 25														
	-														
	L 30														
	-														
	-					Ì									
	- 35														
	_														
	_														
	-4 0														•
	_														
	- -														
	 45														
	-														
	-														
	 50 -														
	_														
	–55 -														
]	<u> </u>						· · · ·			

SHEET I of I

ONTRACTOR: /				(f = 2)					RIG: <i>CME-45</i>	1		í	D: <i>5100.663</i>
		NDWATER						CASING	SAMPLE	TUBE	CORE	WL REF ELE	:v: :ted: <i>2/26/92</i>
DATE	GW DEP	TH (GW ELEV	L	INTAKE		TYPE DIAM.	HSA 4 I/4"ID	SS 2"				SHED: 2/26/92
							WEIGHT	4 // 4 10	140 #			OPERATOR:	
						Ì	FALL		30"			GEOLOGIST	: MCIVER
WELL CONSTRUCT	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	INIFIED		FIELD (Modi	DESCRIPTI			REMARKS
	. -							PAVEMENT A Red brown S.	<u>ND FILL</u> AND, some a	ngular Grave	H		
	-	1	\times	12	12			CLAY AND SI	LT nottled SILT	& CLAY fS	and in partir	nas trace	110
	. 5	2	\times	24	6			organics				•	25
	_	3	X	24	3			Brown to gre brown f Sand	y brown to g I, very stiff,	wet at 4.8'	CLAT, partin	igs of rea	20
_	_ 10							eob @ 8.0'					
ļ	_												
	- 15												
	-												
	-												
	- 20 -	•											
	-												
	- 25												
ļ	- -												
}	-												
- -	–30 -												
}	- -												
ļ	- –35												
ļ	- -												
	-												
	-4 0												
-	-												
-	- -45												
	-												
	-												
	-50												
	_												
F	-55												
	-55												

SHEET I of I

CLIENT: <i>GENEF</i> CONTRACTOR: <i>P</i>			=						RIG: <i>CME-45</i>		r	N-S COORD	o: <i>5083</i>	
	GROUN	DWATER I	DATA (I	eet)				CASING	SAMPLE	TUBE	CORE	WL REF ELE DATE STAR		26/92
DATE	GW DEPT	IH G	W ELEV		INTAKE		TYPE		SS			DATE FINIS		
						-	DIAM		2"			OPERATOR:		
						-	WEIGH FALL		140 # 30"			GEOLOGIST	. MCIVE	- R
WELL CONSTRUCT	ОЕРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED	·	FIELD (Modi	DESCRIPTI	ON er)		I.S.	REMARKS
1///	-							PAVEMENT A	ND FILL	·				
	-			12	13	Δ.Δ.Δ.		CLAY AND S	ILI	- CILT C CI	AV 4 Condi			48
	- 5	1						Brown and It roots, very s	tiff			n partings,		22
	-	2		12	11			As above wit	h slightly mo	re reddish f	Sand, wet			
/////	_	3		12	12			eob @ 8 fee					1	18
	- 10													
	-													
	- - ,_												,	
	1 5													
	-													
	- 20													
į	-													
	_ '													
	- 25													
	-													
	20													
	30 -													
	-													
	- -35													
	-													
	- 													
	-40 -													
	_	!												
	_ 45													
	_													
	_													
	- 50													
	-55	ļ												

	17.45 19.473 /26/92 /26/92 EY
D: <i>509</i> EV: RTED: <i>2/</i> SHED: <i>2/</i> <i>BARNI</i>	9.473 /26/92 /26/92 EY
EV: RTED: <i>21</i> SHED: <i>21</i> BARNI	/26/92 /26/92 EY
SHED: 2, BARNI	/26/92 EY
BARNI	EY
.,,,,,,	
	051410140
1	REMARKS
I.S.	H.S.
	110
48	48
0	0
1	
}	
1	

	-	`												SHEETTOT
PROJECT: <i>COUP</i> CLIENT: <i>GENE</i>)			LDING	# 5 VO	C INVES	TIGAT	ION		F	PROJECT NO: (01554.EB		GS ELEV: N-S COOP	<i>381.89ft.</i> D: <i>4693.758</i>
CONTRACTOR: /	PARRAT	T-WOLF1	F						F	RIG: <i>CME-45</i>			1	D: <i>5106.046</i>
	GROUN	NDWATER	DATA_(feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE	ev: Rted: <i>2/26/92</i>
DATE	GW DEP	IH (GW ELEV	-	INTAKE		TYP	E	HSA	SS			3	SHED: <i>2/26/92</i>
						-	DIA		4 I/4"ID	2"				BARNEY
						-	WEIG			140 #			GEOLOGIST	r: MCIVER
_		1	1	` <u>`</u>		\perp	FAL	.L		30"				1
WELL CONSTRUCT	DEРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			FIELD (Modi	DESCRIPTI	ON er)		REMARKS
	H)	ਲੋਟ	30	문·트	ż		Ś		PAVEMENT A	NO ETI I				I.S. H.S.
	-													-
		1	\boxtimes	16	17			ł	CLAY AND SI Tan to It bro		LAY occasio	onal f Sand	partings	5
	_ 5	2	X	16	6									2
	-								eob @ 6.0'					
	- <u>-</u>													
	<u> </u>							:						
	_													
	+=													
	-15 -													
	- 20													
	- 20													
	_													
	<u>-</u> 25													
	-													
	_													
	- 30													
	_													
	-													
	- 35													
	_													
	40													
	-40 -													
	<u> </u>													
	L 45													
	F													
	- 50													
	_													
	_													
	- 55						ł							
	<u> </u>		1											

														حـــــــــــــــــــــــــــــــــــــ	HEE I I OT
PROJECT: <i>COU</i> CLIENT: <i>GENE</i>			LDING	#5 VOC	'INVES	TIGATI	ON		ı	PROJECT NO: (01554.EB		GS ELEV: N-S COOR		
CONTRACTOR:			F							RIG: <i>CME-45</i>			E-W COOR		
	GROU	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE		
DATE	GW DEP	TH (GW ELEV	,	INTAKE		TYF	E	HSA	SS			DATE STAR		
				_			DIA	M.	4 1/4"ID	2"			DATE FINIS OPERATOR:		
							WEIG	HТ		140 #			GEOLOGIST		
		ī	1				FAL	L		30"					
WELL CONSTRUCT	ОЕРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	106	UNIFIED				DESCRIPTION DESCRIPTION				REMARKS
		0,2	0712	а.		000000 000000			PAVEMENT A	ND FILL				I.S.	H.S.
	-							ļ	CLAY AND SI					-	
	F_	1	\Diamond	10	8				Tan to It bro dense	wn SILT & C	LAY, occasio	onal f Sand in	n partings	0	52
	-5 -	2	$\langle \rangle$	24	6				40,130					0	52
	_	3	\boxtimes	24	6				@ 7.5°, Dark t contains woo	rown to red	brown organ	nic SILT & C	LAY,		48
	- 10	4	\times	24	6				contains woo Dark brown t						38
	- 10	5	X	24	2			L 1	in partings				,		36
	F								As above gra eob @ 12'	iding to Sirry	CLAT & 11.5	Dys		1	
	- -15														
	_														
	-														
	<u> </u>														
	-						İ								
	 25														
	- -														
	_														
	<u> </u>														
	_														
	7-														
	<u> 35 </u>														
	-														
	- 40														
	-														
	- 														
	- 45														
	_														
	-														
	- 50														
	- -														
	_														
	- 55														
	-														

PROJECT: <i>COUI</i> CLIENT: <i>GENEI</i>			LDING	#5 VOC	INVES	TIGAT I	ON		PROJECT NO:	01554.EB		GS ELEV: J	381.800ft. D: 4340.653
CONTRACTOR: /			F						RIG: <i>CME-45</i>	,		1	D: <i>5248.088</i>
	GROUN	NDWATER	DATA (feet)				CASING	SAMPLE	TUBE	CORE	WL REF ELE	v: Ted: <i>2/27/92</i>
DATE	GW DEP	IH (SW ELEV	_	INTAKE		TYPE	HSA	SS			1	SHED: 2/27/92
						L	DIAM.		2"			OPERATOR:	
							WEIGH*	Г	140 #			GEOLOGIST	: MCIVER
			_				FALL		30''	<u> </u>			I
WELL CONSTRUCT	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	106	UNIFIED		FIELD (Mod	DESCRIPTI ified Burmiste	ON er)		REMARKS
7777	<u> </u>	σZ	o co	<u>~</u>				PAVEMENT A	AND FILL				Ind. The
	_							CLAY AND S			···		
	-	1	\bowtie	14	10			Tan to It bro	wn mottled S	SILT & CLAY	, occasional	f Sand in	50
	_5	2	\times	12	9			partings der	156, 5011, 100	1.5			40
	-	3	X	24	9			Dark brown	to grey brow	ın CLAY & SI	LT, trace f	Sand	42
		4	X	24	1			mainly in par	tings				38
	- 10	5		24	2								32
1111					_		1	eob @ 12'					
	1.5												
	-1 5												
	ļ												
	<u>-</u> 20												
	- 20												
	F												
	<u>-</u> 25												
	-												
	-												
	-30				1								
	-												
	-35												
	-												
	-												
	40												
	L			1									
	- 45												
	-45 -												
	-												
	- 50												
	-50												
	F												
	- 55				İ								
	-												

PROJECT: <i>COUP</i> CLIENT: <i>GENE</i> /			DING	#5 VOC	INVEST	IGATI	ON			PROJECT NO:	01554.EB		GS ELEV: N-S COOR		
CONTRACTOR: /			F						ı	RIG: <i>CME-45</i>	5		E-W COOR		619
	GROUN	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE		27/02
DATE	GW DEP	TH (W ELEV	ı	INTAKE		TYP	E	HSA	SS			DATE STAR		
				-			DIA	М.	4 1/4"ID	2"			OPERATOR:		
							WEIG	нт		140 #			GEOLOGIST		
							FAL	L		30"				· · · · ·	
WELL CONSTRUCT	DEРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	901	UNIFIED			FIELD (Mod	DESCRIPTI	ON er)			REMARKS
		3 ₹	15.00	是這	Ż		5	E	PAVEMENT A	ND FILL				I.S.	H.S.
	-								CLAY AND S	ILT.				1.	
	- 	1		12	16			E	Brown to gre partings very	y mottled Si	ILT & CLAY,	f Sand in pa	rtings, in	0.1	16
	. 5 -	2	$ \Delta $	22	4			L			CLAV			0.1	22
	-	3	X	24	9					ganic SILT & I brown SILT	and f Sand	to SILT. litt	e f Sand	0.1	22
	-	4	X	24	8						AY, occasio				21
	 10	5		24	1			E	Brown SILT	& CLAY to C	LAY & SILT,	f Sand in pa	ertings		
	-	5		24	'			F	eob @ 12'						
	_														
	 15														
	_														
	-														
	 20														
	-							1							
	-														
	- 25														
	-														
	_														
	- 30														
	- 50														
	_				1										
	- 35														
	—ეე -														
	_													-	
	- 40														
	-40 -														
	-														
	-														
	 45														
	_														
	-														
	 50														
	- -														
	_														
	_ _55														
	-														

LIENT: <i>GENER</i> ONTRACTOR: <i>F</i>			F							RIG: <i>CME-45</i>	-		N-S COOR E-W COOR	d: <i>5203.2</i>	
	GROUN	DWATER	DATA (eet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE		7/02
DATE	GW DEP	IH (SW ELEV	-	INTAKE		TYP		HSA	SS			DATE STAR		
						-	DIA		2 1/4"ID	2"			OPERATOR:		
						_	WEIG			140 # 30"			GEOLOGIST	: MCIVER	?
WELL			T	<u>>-</u>	<u> </u>		FAL			30]	L			
CONSTRUCT	Ε≎	EB EB EB	발표	RECOVERY (inches)	N-VALUE		UNIFIED			FIELD	DESCRIPTI	οŃ		RI	EMARKS
	ОЕРТН (feet)	SAMPLE	SAMPLE & TYPE	REC((inct	>-2	106	UNIF			(Modi	ified Burmisti	er)		LS.	H.S.
1111									PAVEMENT A	ND FILL					
	_	1		10	10	Δ.Δ.Δ./ 			CLAY AND S Lt Brown SIL	ILT					50
	_ _5	1	\bowtie					1	Lt Brown SIL As above wit						37
)	2		10	4							d fragmonta	vorv		
	-	3		24	4			,	Dark grey or moist	_					40
	-10	4		24	4				Dark grey Cl Sand	.AY & SILT,	occasional p	partings of r	eddish f		40
	L	5	\boxtimes	24	мон									1	35
	-								eob @ 12'						
	- -15														
	- -20														
	-20														
							!								
	ا م														
	<u></u> 25						ŧ								
	-														
	_30														
	-														
	-35														
	_														
	E						1								
	-4 0														
	L														
	_														
	-4 5														
	L														
	-														
	- 50														
	F 30														
	Ľ.														
	- -55														
								1							

ROJECT: <i>COUP</i> .IENT: <i>GENE</i>	RAL ELE	CTRIC							PROJECT NO: (GS ELEV:	D: <i>4259</i>	9.910
ONTRACTOR: /		<i>T-WOLFI</i> NDWATER		(221)		1			RIG: CME-45	т	0005	E-W COOR		2.802
	GRUUI						TYPE	CASING HSA	SAMPLE SS	TUBE	CORE	DATE STAP		27/92
DATE	<u>GW DEP</u>	<u>TH</u>	SW ELEV	<u>'</u>	INTAKE		DIAM.	2 1/4"ID	2"			DATE FINIS		
							WEIGHT	2 " 1 15	140 #			OPERATOR: GEOLOGIST		
							FALL		30"			DEULUUISI	.140171	_//
WELL CONSTRUCT	DEРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	901	UNIFIED		FIELD (Modi	DESCRIPTI	(ON er)		I.S.	REMARKS
1111		0,2	57.2					PAVEMENT A	ND FILL					
	_		∇	8	,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	Lt grey GRA				····	30	55
	- 5	1			3			CLAY AND S Brown mottle	ILT d SILT & CL	AY, very sti	ff		30	
	+	2		20	5		\	From 3.8' to	4.0', dark gr	ey to black	gravelly SAI	ND, little		20
7///		3		24	4			∖ [∟] Brown to gre						12
	-10						'	Grey to grey occasional f	brown to re Sand parting	eddish brown gs	CLAY & SIL	.T,		
	L							eob @ 8'		-		•		
	L													
	- 15													
	-													
	L													
	_20													
	-													
	F 0.5													
	<u>–</u> 25													
	-													
	- 30													
	- 30													
	F													
	- 35													
	L													
	L													
	-4 0													
	F													
	ļ .													
	-4 5													
	F 50													
	-50 -													
	L													
	_ -55													

	=													SHEET TOT
PROJECT: <i>COUF</i>			LDING	# 5 VO	C INVES	TIGAT.	TON .		i	PROJECT NO:	01554.EB		GS ELEV: .	
CLIENT: <i>GENEI</i> CONTRACTOR: <i>F</i>			F						ļ	rig: <i>CME-45</i>	,			o: <i>4108.510</i> o: <i>5361.399</i>
201111111111111111111111111111111111111		NDWATER		feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE	
							TYPE	-	HSA	SS	1002	SOIL		ted: <i>2/27/92</i>
DATE	GW DEP	IH (SW ELEV	_	INTAKE	-	DIAM		2 1/4"ID	2"				HED: 2/27/92
							WEIGH		2 " 12	140 #			OPERATOR: GEOLOGIST	
							FALL			30"			GEOLOGIST	. MUIVEN
WELL CONSTRUCT	OEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUË	901	UNIFIED			FIELD	DESCRIPTI ified Burmisti		·	REMARKS
1111	-							-	PAVEMENT A	ND FILL				
	_ _				40	ΔΔΔΔΔΔ			CLAY AND S	LI.				F2
		1	\mapsto	10	10			- 1	Lt brown SIL stiff	T & CLAY, o	ccasional f	Sand in parti	ngs, very	52
	 5 -	2	\triangleright	20	6									22
	3 24 6							_ !	@ 7.8', Dark (f Sand partir	grey to redo	tish grey CLA	Y & SILT, o	ccasional	6
	-10								eop @ 8,	·J-				
	 10													
	_													
	 15													
	_				:									
	 20													
	-													
	- 													
	_ 25													
	_													
	_													
	 30													
	-													
	_													
	- 35													
	<u>-</u>													
	_		-											
	 40													
	_													
	-4 5		Ì											
	-													
	- 50													
	<u>-</u>													
	-													
	- 55													

<u> </u>	_													SHEET TOT
PROJECT: <i>COUR</i> CLIENT: <i>GENE</i>			LDING	# 5 VO	C INVES	STIGAT	ION			PROJECT NO: (01554.EB		N-S COOR	<i>383.820ft.</i> D: <i>4037.480</i>
CONTRACTOR: /										RIG: <i>CME-45</i>		•	1	D: <i>5414.803</i>
	GROU	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE	:v: :ted: <i>2/27/92</i>
DATE	GW DEP	HIY	GW ELEY	L	INTAKE	.	TY		HSA	SS		-		SHED: <i>2/27/92</i>
							DIA		2 1/4"ID	2"			OPERATOR:	
							WEIG			140 #			GEOLOGIS1	: MCIVER
WELL			1	>	1		FAI	.L 		30"				
WELL CONSTRUCT	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			FIELD (Modi	DESCRIPTI fied Burmiste	ON er)		REMARKS
		02	0.00	~	Z				PAVEMENT A	ND FILL				I.S. H.S.
	-	1	\setminus	10	13	Δ.Δ.Δ.			CLAY AND S	ILT		 -		3
	- 5								Lt brown SIL	T & CLAY, or	ccasional f S	Sand in parti	ngs, stiff	
	-	2		24	7									3
	_	3		24	11				@ 7.6°, Dark of Sand partir		ish grey CLA	Y & SILT, o	ccasional	7
	<u>-</u> 10								eob @ 8'	193				
	_													
	_													
	- 15					İ								
	-					ļ								
	- -													
	20													
	_													
	<u> 25 </u>													
	_													
ļ	20													
	30 -													
	_													
	- —35													
	-													
	_													
	- 40													
	-													
	-													
	- 45													
	-													
Į	-													
ŀ	- 50													
	-													
ŀ	-													
	-55													
	-													

SHEET | of |

•														SHEETTOTT
PROJECT: COU CLIENT: GENE			LDING	# 5 VO	C INVES	STIGAT	ION		F	PROJECT NO: (01554.EB		GS ELEV: N-S COORI	o: <i>4165.505</i>
CONTRACTOR: /	PARRAT	T-WOLF1	F						F	RIG: <i>CME-45</i>			E-W COOR	o: <i>5287.241</i>
	GROU	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE	
DATE	GW DEP	TH (SW ELEV	1	INTAKE		TYP	Ε	HSA	SS			1	TED: 2/28/92
DAIL	ON DEL	TIT 7	211 1-6-1	<u>-</u>	TITI DIZE		DIA	ч.	2 1/4"ID	2"			OPERATOR:	HED: <i>2/28/92</i>
							WEIG	нт		140 #			GEOLOGIST	
						Ī	FAL	ι		30"				
WELL CONSTRUCT	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			FIELD (Modi	DESCRIPTI fied Burmiste	ON er)		REMARKS
	_								PAVEMENT A	ND FILL				
		.	\bigvee	10	40	Δ.Δ.Δ.		(CLAY AND SI	LI				22
	_ _5	1	\mapsto	12	12				Tan to It bro	wn SILT & C	LAY, occasio	onal f Sand i	n partings	22
	L ₂	2	$\langle \rangle$	24	6			(Grey to redd Sand parting	ish grey bro	wn CLAY & S	SILT, occasi	onal f	18
	_	3	X	24	5					3, SUIIE DIGU	. organic illu	ick layers		16
	L 10							•	eob @ 8'					
	-10													
	_													
	L 15													
	-13													
	L 20													
	<u></u> 20 -													
	٦.													
	<u></u> 25		ŀ											
	_													
	_ 30													
	-30 -													
	_													
	_ _35													
	-55													
	- -40							l						
	- 40													
	-													
	- 45													
	- 70													
	_													
	- 50													
													:	
	F													
	- 55													
	- 30												:	
L		<u></u>			1	1								

IENT: <i>GENE)</i> INTRACTOR: /	PARRAT1	-WOLFI		(1)				1		RIG: <i>CME-45</i>	1	T	1	D: <i>4394.385</i> D: <i>5228.608</i>	
	GROUN	IDWATER	DAIA (teet)					CASING	SAMPLE	TUBE	CORE	1	rted: <i>2/28/92</i>	
DATE	GW DEP	<u>TH</u> G	W ELEV	<u>'</u>	INTAKE		TYF		HSA 2 1/4"ID	SS 2"		-	DATE FINIS	SHED: <i>2/28/92</i>	
						}	DIA		2 1/4 10	140 #			OPERATOR:		
							WEIG FAL			30"			GEOLOGIST	: MCIVER	
WELL ONSTRUCT	DEРТН (feet)	SAMPLE NUMBER	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			FIËLD (Mod	DESCRIPTI	ON er)		REMARK	S
	-	σz	S S	<u>~</u>				P	AVEMENT A	ND FILL				10. 10.	
	-	1		14	12	AAAAA		C	LAY AND S	ILI to grev SII	_T & CLAY, o	ccasional f	Sand in	66	
	- -5	2		20	6			├ P	artings		some Gravel		odila iii	0	
		3		24	5			70		nd red brown	organic CLA		wood	15	
	_ 10								ob @ 8'	10113				1	
	_ '0														
	-														
	- 15														
	- .														
	_														
	- 20					:									
	-														
	-														
	<u>–</u> 25														
	-														
	- 30														
	- 30														
	- 35														
	-														
	_														
	 40														
	_														
	- -							i							
	-4 5														
	-														
	- FO														
	-50 -														
	- -														
	_ _ 55														
	-55														

ROJECT: <i>COU</i> LIENT: <i>GENE</i>	RAL ELE	CTRIC		1#310	U INVE	0 I IUA I	I IUN			PROJECT NO: (1	<i>381.690ft.</i> RD: <i>4392.367</i>
ONTRACTOR:										RIG: <i>CME-45</i>			1	RD: <i>5222.462</i>
	GROU	NDWATER	DATA	(feet)					CASING	SAMPLE	TUBE	CORE	WL REF EL	
DATE	GW DEF	TH (GW ELE'	<u>Y</u>	INTAKE	_	TY		HSA	SS			1	RTED: <i>3/3/92</i> SHED: <i>3/3/92</i>
							DI		2 1/4"ID	2"			1	BARNEY
							WEI			140 #				t: MCIVER
WELL	<u> </u>			\	T		FA	<u> </u>		30"	<u> </u>			<u> </u>
ONSTRUCT	Ξ÷	LE EB	HE	RECOVERY (inches)	N-VALUE		ED			FIFID	DESCRIPTION	ΩN		REMARKS
	DEРТН (feet)	SAMPLE	SAMPLE & TYPE	inch (inch	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	106	UNIFIED			(Modi	fied Burmiste	er)		
7777		0,2	0,00	1		AAAAA	1 -	+	PAVEMENT A	ND FILL				I.S. H.S.
	-						3 3		Brown SAND	& GRAVEL, Ii	ttle to trace	: Silt, pipe, v	ery wet	
	_	1		12	9		4	ļ	. 0 4					
	- 5								eob @ 4'					
	_													
	- 10													
	1 0													
	-													
	- 													
	 15													
	-													
	-	•			ļ									
	- 20						İ							
ŀ	-													
	-													
	- 25						ĺ							
[-													
	-													
	-30													
	-							İ						
-	-													
	-35													
	.													
}	.													
	-40 l												i	
	.													
<u> </u>	-45													
-	. '		1											
ļ														
Ĺ	-50													
	-JU [1												
[-		I	- 1	i			,						i	
	-55													

SHEET | of |

PROJECT: <i>COUI</i>		CT DIII	חזאוכ	# 5 1/0/	C TAIVES	TIGAT				PROJECT NO:	01554 FR		GS ELEV:	381 820ff
PROJECT <i>: COOP</i> CLIENT: <i>GENE</i>			טאונט	# J VU	JINVED	TIVAT	1014		'	HOULET NO.	UIUU7.LU			o: <i>4278.089</i>
CONTRACTOR: /			ב						ļ	RIG: <i>CME-45</i>	,		1	o: <i>5282.686</i>
	GROU	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE	
DATE	GW DEP	TH G	SW ELEV		INTAKE		TYPI	E	HSA	SS			1	Ted: <i>2/28/92</i> SHED: <i>2/28/92</i>
							DIAN	4	2 1/4"ID	2"			OPERATOR:	
							WEIG			140 #			GEOLOGIST	: MCIVER
	<u> </u>	T	1		1		FAL	Ŀ		30"		·	l'	
WELL CONSTRUCT	DEPTH (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			FIELD (Mod	DESCRIPTI ified Burmist	(ON er)		REMARKS
1111		052	05 60	<u></u>			3		PAVEMENT A	ND FILL				1.3. Chai
	-						2		CLAY AND S	ILI	· .			
7///	F _	1		16	11				Brown and greeb @ 4'	rey mottled	SILT & CLAY	r, trace f Sa	ind	17
	- 5								CUD @ 4					
	<u> </u>													
	- 10													
	<u> </u>													
	L													
	- 15													
	-													
	-													
	- 20													
							}							
	<u>-</u> 25	·												
	_23													
	-													
	- 30													
	-													
	L													
	- 35													
	F													
	F													-
	-4 0													
	<u> </u>													
	- -45													
	F													
	-													
	- 50													
	-													
	-													
	_55													
	ļ	1												

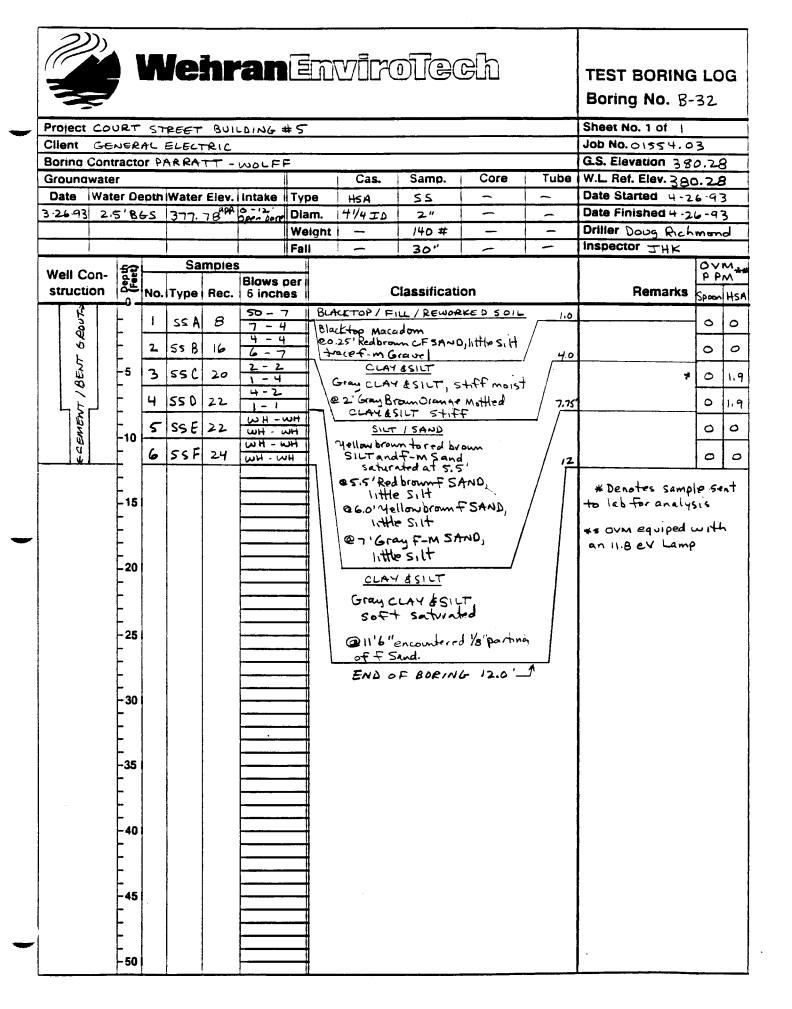
-	=	•												SHEET TOT
PROJECT: <i>COUP</i> CLIENT: <i>GENE</i>			LDING	# 5 VO	C INVES	TIGAT	ION			PROJECT NO: (01554.EB		1	<i>381.930ft.</i> D: <i>4263.459</i>
CONTRACTOR: /	PARRAT	T-WOLF!	C							RIG: <i>CME-45</i>			1	D: <i>5280.071</i>
	GROU	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE	EV: ITED: <i>2/28/92</i>
DAJE	GW DEF	TH G	W ELEV	<u>'</u>	INTAKE		TYP	E	HSA	<i>SS</i>			1	SHED: <i>2/28/92</i>
							DIA		2 1/4"ID	2"			OPERATOR:	
							WEIG			140 #			GEOLOGIST	: MCIVER
		1		>-	1		FAL	L		30"				T
WELL CONSTRUCT	ОЕРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			FIELD (Modi	DESCRIPTI	ON er)		REMARKS
11111		υΞ	ഗയ	200	z		5		PAVEMENT A	ND FILL				I.S. H.S.
								-	CLAY AND S	II T				
7///	- -	1		18	11				Brown and gi & CLAY @ 3.5	rev mottled S	SILT, some (CLAY grading	g to SILT	0
	-5 -				1				eob @ 4'	-		e e e e e e e e e e e e e e e e e e e		
	_													
	- 10													
	-10													
•	-													
	<u> </u>													:
	<u> </u>													
	F													
	<u> </u>	:												
	-	-												
	_													
	- 25													
	F													
	-													
	- 30													
	_ 35													
	- 33													
	-													
	- 40													
	_													
	_													
	- 45													
	<u> </u>													
	_													
	_50													
	F													
	_55													

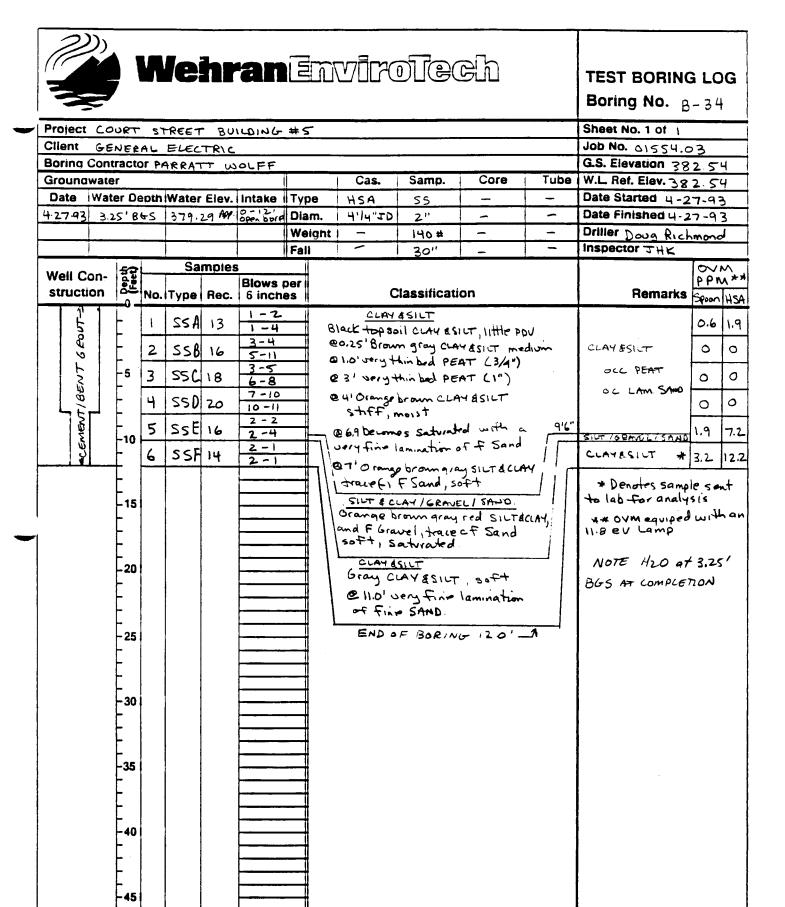
													1	SHEET TOT
PROJECT: COUP			LDING	# 5 VO	C INVES	TIGAT.	ION			PROJECT NO: (01554.EB		GS ELEV:	
CLIENT: <i>GENER</i> CONTRACTOR: /			F			,				RIG: <i>CME-45</i>	_)		1	o: <i>4242.872</i> o: <i>5290.292</i>
		NDWATER	<u> </u>	feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE	V:
DATE	GW DEP	PTH 6	W ELEV	,	INTAKE		TYF	E	HSA	SS			1	TED: 2/28/92
	<u> </u>	,	211 hajaba 1	_			DIA	M	2 1/4"ID	2"			OPERATOR:	HED: <i>2/28/92</i> <i>RARNFY</i>
						-	WEIG			140 #			GEOLOGIST	
		1	1	>	T	1	FAI	L		30"	1			
WELL CONSTRUCT	ОЕРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	700	UNIFIED			FIELD (Modi	DESCRIPTI	ON er)		REMARKS
		0.2	107.0			AAAAAA			PAVEMENT A	ND FILL	····			ardi. Chui.
	-	1		12	16	ΔΔΔΔΔ			CLAY AND S	ILT				0
	- 5	"		12	10				Brown grey r Sand mainly i	nottled SILT n partings	, some Clay	to SILT & C	LAY, litte f	U
	- -								eob @ 4'					
	-													
	_ 10													
	-													
	-													
	15 -													
	-													
	- 20													
	-20													
	-													
	- 25													
	- -		:											
	- -													
	- 30				:									
	-													
	- - -													
	–35 -													
	-													
	- 40													
	-													
	-													
	 45													
	-													
	- - -													
ļ	- 50													
	- -													
	- 55													
	-							İ						

PROJECT: <i>COUP</i>	RT STR	EET BL	ILDI	NG # 5	VOC .	INVES	TIGAT	ION		PROJECT NO:	01554.EB		GS ELEV:	381.890ft.
CLIENT: <i>GENER</i>										RIG: <i>CME-45</i>	_		l l	RD: <i>4242 . 097</i> RD: <i>5298 . 460</i>
LUNTRACTUR: F		NDWATER		feet)	-				CASING	SAMPLE	TUBE	CORE	WL REF EL	
DATE					TNITAUE		TYPE	- -	HSA	SS	1002	June		RTED: 3/3/92
DATE	GW DEP	<u> 111 </u>	SW ELEV	<u>-</u>	INTAKE		DIAM		2 1/4"ID	2"			1	SHED: <i>3/3/92</i> : <i>BARNEY</i>
							WEIGH	11		140 #			1	τ: <i>MCIVER</i>
		1			Υ		FALL	L		30"				
WELL CONSTRUCT	ОЕРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			FIELD (Mod	DESCRIPT:	(ON er)		REMARKS HEAD SPACE
	-							E	AVEMENT A Brown SAND	ND FILL & GRAVEL, I	ittle to trac	e Silt, very i	wet	
7///	- 5	1		NR		44444		Ε	ob @ 4'					25
	10													
	-													
	_ ⊢15													
	20													
	[—25													
	<u> </u>													
	= =													
	_30													
	_													
	- -													
	—35 -													
	- 40													
	-													
	1 [
	-45 -													
	- 50													
	-													
	EE													
1	 55													

													1		TILLITOTI
PROJECT: <i>COUI</i> CLIENT: <i>GENE</i>			LDING	# 5 VO	C INVES	TIGAT.	ION		I	PROJECT NO:	01554.EB		GS ELEV: N-S COOR		
CONTRACTOR: /	PARRAT	T-WOLF1	F						I	RIG: <i>CME-45</i>	ō		E-W COOR	d: <i>5328</i>	.216
·	GROU	NDWATER	DATA (feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE		
DATE	GW DEP	TH (SW ELE		INTAKE		TYF	È	HSA	SS			DATE STAR		
VAIL	QN DEI	TIT .	2/1 <u></u>	-	MILLENIE		DIA	M.	2 1/4"ID	2"			DATE FINIS OPERATOR:		
							WEIG	HT		140 #			GEOLOGIST		
							FAL	L		30"					
WELL CONSTRUCT	ОЕРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			FIELD (Mod	DESCRIPTI ified Burmiste	ON er)		I.S.	REMARKS H.S.
	_		1						PAVEMENT A	ND FILL					
	-			40	10	AAAA			CLAY AND S	LI				1	0
	- 5	1	$\langle \cdot \rangle$	12	16				Brown and gr stiff	rey mottled:	SILT & CLAY	', partings of	f f Sand,		0
		2		20	6										0
	-	3	X	22	4			1	Grey SILT &	CLAY, occa	asional f San	d in partings	; 		0
	- 10								eob @ 8'						
	-10														
	-														
	15														
	15 														
	_														
	20														
	<u> 20 </u>														
	_														
	7.5														
	<u> 25 </u>														
	- -				[
	- 20														
	30 														
	-														
	- عد							}							
	- 35 -														
	-														
	<u></u> 40 -														
	-														
	- 1 E														
	45 -														
	-														
:	- -														
	- 50														
	- ,														
	55 -														

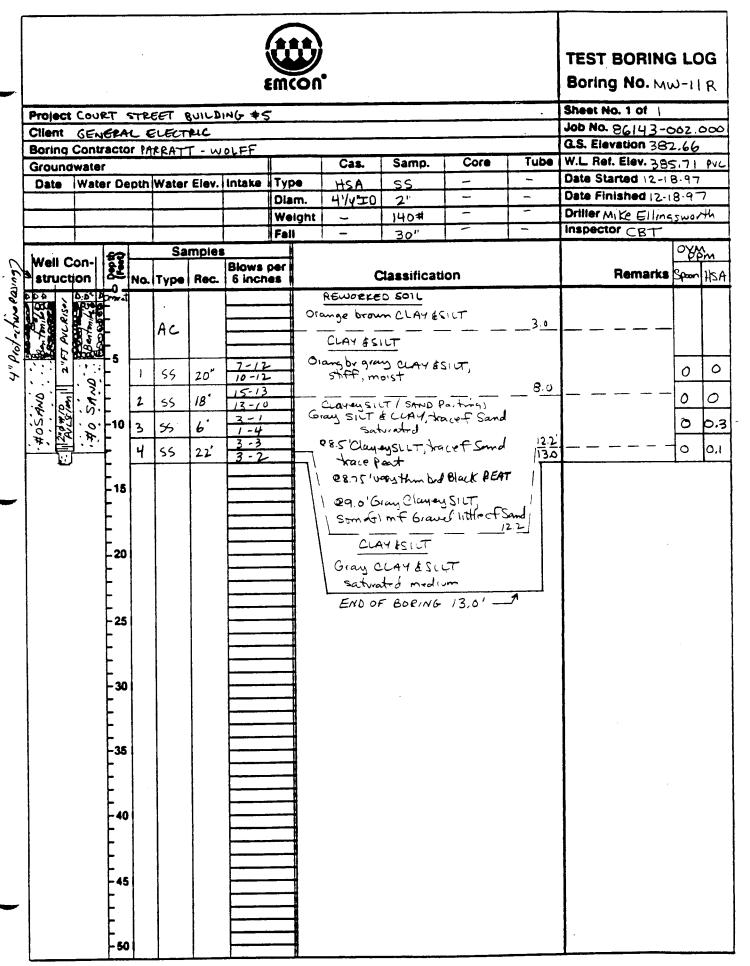
ROJECT: <i>COUI</i> LIENT: <i>GENEI</i>			LDING	# 5 VO	C INVES	STIGAT	ION		PROJECT NO: (01554.EB		GS ELEV: 3 N-S COORD	183.410ft. 1: 4039.507
ONTRACTOR: /	PARRATI	-WOLF	F						RIG: <i>CME-45</i>			ł.): <i>5445.710</i>
	GROUN	IOWATER	DATA (feet)				CASING	SAMPLE	TUBE	CORE	WL REF ELEV	
DATE	GW DEP	IH (GW ELEV	<u>'</u>	INTAKE	.	TYPE	HSA	SS			1	ED: <i>3/3/92</i> ED: <i>3/4/92</i>
						-	DIAM.		2"			OPERATOR: A	
						-	WEIGH:	[140 #			GEOLOGIST:	MCIVER
WELL		· · · · · · · · · · · · · · · · · · ·		<u>></u>	ı		FALL		30"		1		
CONSTRUCT	ОЕРТН (feet)	SAMPLE NUMBER	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			DESCRIPTI fied Burmiste			REMARKS
X XX	-			**				PAVEMENT A	ND FILL				
	-	1		12	11			CLAY AND SI	LI				0
	- 5	•						Brown and gr	ey mottled S	SILI & CLAY	, partings of	rrSand (
	-	2		24	5			Between 6.5 changing to	and 7.0°, Dar	rk grey Grav	elly Clayey	SILT layer	0
	-	3		24	4							- 1	0
	- 10	4		16	4			Grey and bro Sand			_		0
	-	5		12	4			Lt brown Clay	vey SILT, litt	tle f Sand, m	ainly in parti	ngs,	0
	-	6	M	20	8								0
	-15							eob @ 14.0°					
	-							MN 50					
	- 20							MW-5S was ir	istalled in thi	is boring			
	–20 -												
	-												
	- 25												
	-							,					
	-												
	-30												
ļ	-												
ļ				į									
	- 35												
1	-												
_	- 40												
-													
	-												
<u> </u>	- 45												
-	.			ļ									
<u> </u> -	.												
	-50												
		ĺ											
-												į	
-	-55												


													· · · · · · · · · · · · · · · · · · ·	SHEET TOT
PROJECT: <i>COUI</i> CLIENT: <i>GENE</i>			LDING	# 5 VOU	C INVES	TIGAT	TION		F	PROJECT NO: (01554.EB		l l	<i>381.830ft.</i> nd: <i>4356.213</i>
CONTRACTOR: /	PARRAT	T-WOLF	F						F	RIG: <i>CME-45</i>			E-W COOR	D: <i>5170.793</i>
	GROU	NDWATER	DATA (feet)				CA	SING	SAMPLE	TUBE	CORE	WL REF ELE	
DATE	GW DEP	TH (SW ELEV	ı	INTAKE		TYP	E /	HSA	SS			1	RTED: <i>3/5/92</i> SHED: <i>3/5/92</i>
	*****			_			DIAN	4 4	/4"ID	2"				BARNEY
							WEIG	-IT		140 #				r: MCIVER
							FALI	L		30"				
WELL CONSTRUCT	DEРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	907	UNIFIED			FIELD (Modi	DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DE LA COMPANIO	ON er)		REMARKS
	-						4	PAVE	MENT A	ND FILL				
		,		12	12	ΔΔ.Δ.		CLAY	AND SI	LI				17
	- 5	'		12	'2			Grey partir	Drown 1T ngs	iottled SILT	& CLAY, occ	casional f Sa	and in	"
	-							eob (9 4'					
	_													
	- 10													
	_													
	-15													
	L													
	_ 20													
	-													
	_													
	<u> 25 </u>					ļ								
	L													
	-													
	 30													
	_													
	- Э.Б													
	35 -													
	- -													
	- 40													-
	-													
	-													
	- 45													
	-													
	-			ļ										
	- 50													
	- -													
	-													
	_55													
	-													

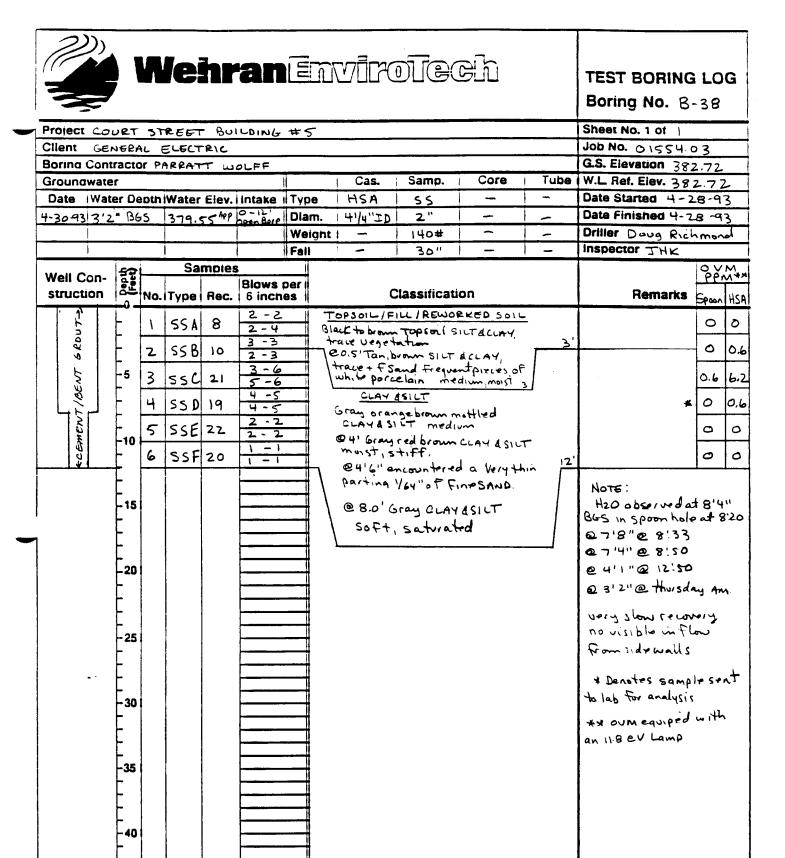

PROJECT: <i>COUI</i> CLIENT: <i>GENE</i> CONTRACTOR: <i>I</i>	RAL ELE	CTRIC		# 5 VO	C INVES	TIGAT	ION			PROJECT NO: (RIG: <i>CME-45</i>			N-S COOR	<i>381.920ft.</i> D: <i>4537.172</i> D: <i>5173.659</i>
	GROU	NDWATER	DATA_(feet)					CASING	SAMPLE	TUBE	CORE	WL REF ELE	
DATE	GW DEP	TH (SW ELEV	1	INTAKE		TYP	E	HSA	SS				RTED: <i>3/5/92</i> SHED: <i>3/5/92</i>
errite.	411 MP1.	\		_			DIA	М	4 1/4"ID	2"				BARNEY
						Γ	WEIG	HT_		140 #				: MCIVER
							FAL	.L		30"				
WELL CONSTRUCT	DEРТН (feet)	SAMPLE	SAMPLE & TYPE	RECOVERY (inches)	N-VALUE	700	UNIFIED			FIELD (Modi	DESCRIPTI ified Burmiste	ON er)		REMARKS
7777		0,2	0,40						PAVEMENT A	ND FILL				dist. their
	-	1	X	16	tt .			L	CLAY AND S	LT nottled SILT	& CLAY, occ	casional f S	and in	- 16
	_5							1 ~	partings eob @ 4'					-
	F													
	<u>-10</u>													
					!		!							
	-15													
	-													
	<u>-</u> 20													
	 													
	-													
	<u> 25 </u>													
	-													
	- -30													
	<u> </u>													
	-													
	_35													
	_													
	-40													
	L 40													
	L													,
	- 45													
	_50							İ						
	-30													
	F													
	- 55													
	-													

Client Boring Ground Date	G€ Cont wate Wat	NEE.	AL or P	TEEE ELEC ARRA	TRIC	DILDING	- #	; 5 	Cas.	Samp.	Core —	Tube	Date Started 4-26-93
4-29-93	_	33'6		377	<u>.37"</u>	open have	Dia	m.	41/4, ID	2."		_	Date Finished 4-26-93
4-30-93	2.	33' 6	165	רר 3	1.37n	open one			-	140#			Driller Doug Richmond
	!			<u> </u>			Fall	<u> </u>	! -	30"	_		Inspector J H K
Well C	on-	हुन		Sa	mples	Plaws -							PPM ##
struct	ion	8E	No.	Туре	Rec.	Blows a 6 inch	er es			lassificati			Remarks Spoon HSA
1		-	1	SSA	6	50 - 9	-		CETOP / FI		KED ZOIL		8.7 49.0
J		<u> </u>				5-6	#	_60	·Ltop Maca •25'Black	dom C-FSAND.I	41624	3	
1 3		[2	SSB	5	10 - 10		1 1	ithe F Graw	હી ં		+ 45	
N.T.		-5 -	3	55 l	24	1-1		1 117	ithe f (man	ا م ر	DISOMESIF	1/13	* O O
CEMENT/BENT GROUT		E	4	sso	12	₩- W	-	٦//					7 SAND 0 0
MEN		-	5	SSE	24	mH-m]] <u> </u>	ecomes sax	rated@ 31	some+fm 6"	4.5	00
405		-10 -	6	SSF	24	WH-W		''\\ e	<u>sn</u> siay c F § i trace f-m(siit,	II_1	0 2.6
		-] <u> </u> _		SI WED & SILT		5//	
		-15 -20 -25 -30 -35 -40 -45 -50							@ 11'10".	ily trace es gray o clopes oc	cassional of Fine f Gray d silf	<u> </u>	NOTE: SOILS SHOWED SATURATION AT 3.5 HOWEVER AFTER DRILLING TO COMPLETION WATER LEVEL STABILIZED AT 2.33 BELOW BROUND SURFACE # Donotes cample sent to lab For analysis ## OVM equiped with an 11.8 eV Lamp

_	Project Co	URT NEE racto	AL or Pr	ELEC ARRA- Water	Elev.	Intake	# <	Cas. HSA H'/4 TO t : -	Samp. S S 2" 140 # 30"	Core	Tube	TEST BORING Boring No. B. Sheet No. 1 of 1 Job No. 0 1 554 of G.S. Elevation 38 W.L. Ref. Elev. 38 Date Started 4-20 Date Finished 4-20 Driller Doug Rich Inspector THK	31 0-9 3-06 5-07 3-93	
L 61	Well Con-	S Pepth Feet	No.	Sa Type	mples Rec.	Blows r	per II	C	lassificati	on		Remarks	2 pm	
4"fokthue casi	# D SAND German PRE- 2" # 410 Sh	<u>.</u>	- 2 3 4 5 6	\$\$A \$\$B \$\$C \$\$B \$\$E \$\$F	12 23 12 18	2-3 6-6 6-8 9-11 2-5 6-6 8-9 9-9 1-1		CLAY Orange Very Sof	Brown CLA Brown SILT Brown SILT Brown SILT SILT Jenn Gray CLA TO range br aray & Oran moist y CLAY & S Type brown g AND F-M SAND Saturated	ray CLAY AS ray CLAY AS ray CLAY AS ray CLAY AS ray CLAY AS SILT Jed	est of stand on stand	SOIL SATURATED 28.0' SAND NOTE' SOILS SHI SATURATION AT HOWEVER WATER ROSE TO 4.3' B. COMPLETION AND STABILIZED AT * Denotes Sample to lab for analys ** OVM equiped an 11.8 eV Lam	O O O O O O O O O O O O O O O O O O O	4



	Project C	er De	RAL or Pr	FLEC PRRAT Water 379.	Elev.	OLFF Intake	ن ت Type	Cas. HSA 1. 414"ID	Samp. SS 2' 140# 30*	Core	Tube	TEST BORING Boring No. 8 Sheet No. 1 of 1 Job No. 01554.0 G.S. Elevation 38 W.L. Ref. Elev. 38 Date Started 4-2 Date Finished 4-2 Driller Doug Rick Inspector THK	-33 V-1 3 4.29 6.13 7.93	o
412	Well Con- struction	E S	No.	Sa	mples				lassificati			Remarks	46	
عو	Booking of P	8 -	2	558	8	2 - 4 6 - 8 9 - 6 7 - 8		Black to da trace(+) us @ 0.5' Gray of Red by c	getation SILT & CLA	psoil SILTI medium, n	F		0	0.6
	0 sano Sano	5	3 4 5	SSC SSD SSE	16	10-10	7	CLAY Orange bro CLAY &S	ESILT nm, bray !	mothled t.st.ff			0 0	0
	2" # # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0	-10 -	6 7	SSF	20	3-3 2-3		@8'6" Gray #16" Gray #10' Gray #10' Gray	saturated c F Sand		T 11	SILT I SAND IPEAT	0 0	0.6 5.9
	• ·	-15 -20 -25 -30 -35 -40						Gray Clay Occassion Brown PE Medium CLAY Gray C	ind pocket, fat @ 11.21 n, satur ESILT LAYESILT + 1 Satura	omef Sand or long of 5'd 11.75' aded 12	· / [NOTE SOILS SHOWED S AT B'6" HOWEVER DRILLING TO CO WHER LEVEL CA TO 4'6" BGS BORING WAS ADVIN THON SPOON SAM WAS TAKEN FRO ON 4-29 TO CO BOTTOM OF SILT UNIT, BUT SC BOTTOM WAS S AT BASE OF SIL * Denotes sample to lab for analys ** OVM Equipe an II. B eV Lamp	R AFLE MALE	TERNO OF THE NOW AT


50

Am	Client G & Boring Control Groundwater Date Water 4-28-93 4-28-93 4-55 5-3-93 6-44	PORTACTOR DE 19"	FRACE PORT PORT PORT PORT PORT PORT PORT PORT	Water 381.0	Elev. 70	301LD1 RIC - WOL Intake 09pen 20pen 7-12' 7-12	Typ Dia We	Coe H	Cas.	Samp. SS 2" 140# 30"	Core	Tube	TEST BORING Boring No. B. Sheet No. 1 of 1 Job No. 01554. G.S. Elevation 38 W.L. Ref. Elev. 389 Date Started 4-2 Date Finished 4-2 Driller Doug Rick Inspector THK	03 2.77 4.25	7 3 3 3 3 3	٩٧٠
12.0	struction	-0 -	No.	Type	Rec.	Blows 6 inch		-		Classificati			Remarks	5 /∞ ^		
4" protection asing	# 0 SAND : BENYANDER : # 0 SAND : BENYANDER : BENYANDE	-5 -	2 3 4 5 6 7	\$\$ A \$\$ B \$\$ C \$\$ S C	14 8 18 20	4-3 2-3 5-5 5-7 4-3 4-6 8-3 5-6 2-2 2-2 2-2 2-2 WH-W WH-W	H	01000 0 1000 0 1100 0 1200 0 1	ELAVA Brown de Common de	REWORKI IND, and CLIND, and CLAY & CLAY & SICT CLAY & STIFT IND CLAY & SICT CLAY, STIFT IS TO CLAY & SICT, IT THE & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Tracef & SICT, Saturation	FD SOIL ayey SLIT, II of Porceli of Porceli ithef-csan silt f saturat silt, trace vf Sand, trace r AND @ 8.5, 8. trace + F. coodymatte ey SILT, som I, little F. SILT, trace ay CLAY & SI	rd @7.0' f Sand e Feat 749.7' 14 Sand / PEAT Ne Sand. F Sand	NOTE: SOILS SHOW BEAT 7.0' HOWEVE AFTER DEILLING COMPLETION TH WATER LEVEL THE OPEN BOI CAME UP TO 1," * Denotes sam to Lab For analy ** OUM equipme an 11.8 eV Lam	21.7 4.6 0.6 3.6 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0	66.6 25.7 5.9 36.2 0 0	
		-50]				1								1

					-							-	
	<i></i>			_			_		_				
		','	ei	hr	an			016	<u>B</u> LN		TEST BORING	a LC	G
	-										Boring No. B	-34	5
	Project COURT	STR	EET	Boil	-DING=	5					Sheet No. 1 of		
	Client GENERA										Job No. 01554.0	3	
	Boring Contracto				JOLFF						G.S. Elevation 38	296	1
	Groundwater		<u> </u>				Cas.	Samp.	Core	Tube	W.L. Ref. Elev. 3 8	2.91	1
	Date Water De	pth W	ater (Elev.	intake	Туре	HSA	5.5	_	_	Date Started 4-2		
	4-26 93 1.00' B65	5 3	81.94	1	006V DOVE	Diam.	14/4'ID	2"		_	Date Finished 4-2		
	4-29 93 1.50 869	5 3	81.4		O-IL.	Weight	<u> </u>	140#	_	_	Driller Doug Rick	mor	6
	4-30-93 1.50 Bbs		3814		0-12'	Fall	_	30"	_		Inspector JHK		
			San				<u></u>					07	
	Well Con- struction	No T		P. 0	Blows p		(Classificati	on		Remarks		~ **
		140.11	Ahei	nec.	1 - 2	33		EMOKKED :			11011121113	>0000	HSA
	hays 1	1 !	SSA	11	2 - 2	=			y 51LT, trace LK, vegetat	ecf Sand,	FILL SOILS	0	0
	in in in	2	SSB	12	5-6	\dashv	سراه ودميا	rown SICT	aclayitr of	-Gravel/		0	0
	CEMENT/8ENTONITE BROUT	3 :	3 S C	18	7-10		\$ 5. PLENDL	SILTECLAY, +	Tece 4) f Sc	and		0	0
	186	4 5	550	5	4-4			A SILT			CLAY ¥	0	1.9
					8-B		trave root	own red gives	my notfled Cl	AYESIU	CLA	-	
	3 -10	5 5	SSE	18	3-3				ed CLAY &SI			0	0.6
	J J	6 9	SSF	17	2-3		@ 8'Gray	trave oran	ige b cuartass	IT 12		0	0.6
	-				ļ	\	@ 10' G1	ay CLAY &	sict, shff	·			
	15					 		_	ESLUT medio	,			
	-					-∦ \	504			- 1	HOTE:		
-						᠋ '	ENDO	F BORING	12.0'	<u></u>	NO SAND OR SIL		
					ļ						LAYERS WERE ORS		
	-20										DURING DEILLING		1
			ľ								ALSO NO SAND OF		
											UPON REMOVAL.	1113	
			j			- 					WATER OBSERU	6 0	
	-25										FLOWING INTO BO		LE
					ļ						FROM 11/2 to 3' F		
	-30										HZOIN HOLE @		
	-										AT COMPLETION MY		
											SURFACE WATER.	-	
	F										TOTAL WILLIAM		j
	-35												.
											* Denotes sample		
	-					 					to lab for analy		
	40									!	++ ovm equiped	witt	`
	[40]										an 11.8 eV Lamp		
										i			
	-45												
			1										
	: F		- 1										- 1

	Client Borina Grouna	GE Conti water Water 3.5	ORT NEF racto	SAL Or PA	TREE ELEC ARRAT	T BU	Intake	# <	e m.	Cas. H5A +'/4'ID	Samp. \$5 2"	Core	Tube	TEST BORING Boring No. 8 Sheet No. 1 of 1 Job No. 01554,6 G.S. Elevation 383 W.L. Ref. Elev. 384 Date Started 4-27 Date Finished 4-27 Driller Doug Richt	-37 W-1 3.44 4.98 1-93	2 3 P
					<i>y</i> , c.	το.		Fall			30"	_	_	Inspector THK	None	<u>'</u>
	Well C	on	ett ett		Sa	mples	3								990	√4.#
27.70	structi	on	<u>ئة</u>	No.	Sa Type	Rec.	Blows (C	Classificati	ion		Remarks		
200	A 44 5	100	- pad	ı	SSA	9			12.1		REWORKE			FILL	0	0
72	88 2 25	¥10	_	<u>, </u>			3-3		1114	the cf Sai	nd, trace f	foreign trous	e coots			
10/	8600	3/2	-	2	55 B	12	3-5		167.0	oram to	brown-fill	SILT &CLA Fragment	.v. / и l		٥	٥
4"4	7		-5 -	3	55 C	20	8-6		1	CLAY 4	SILT			ZONE OF *	Θ	0
	2450	SAND		4	SSD	24	4-4		1 13	om, mulber	157	BILT & CLAY	: 0	STED PUR (1985)	0	0
	10 SAN	_	-	5	55 E	18	3-2	$-\parallel$	7 e	B3'10" UPI	ry thin bei	d of Gray '	prom, [_		0	0
	#0 2"4" Puc Se	#	-10 -	6	SSF	20	1-1			@4' Red br	OWN CLAY	SILT, Sti	FF .			
	1						1-1		\exists	Frequent	partings	64" of Gray F	SANO, 12		0	0
			-15 -20 -25 -30 -35 -40							@6'Redb with la F SAND @8'Red @10'Gra	brown CLAY brown CLA y CLAY & Satirald	ASILT, menting, AYASILT, Sa SILT, U. Sa 12.0'	s of	NOTE HZO at 3. AT COMPLETION OF WATER OBSERUB ENTERING BORSET AT FILL/CLAYA CONTACT AT 2.0 A Denotes sample to lab for analysi und OVM equipmen an II.8 eV Lami	E BOILE CLE CLE CLE CLE CLE CLE CLE	21115

-45

50

Project Court ST	TREET BU)1601NG #				eh 		TEST BORING Boring No. 8 Sheet No. 1 of 1 Job No. 01554.0	-39	_
Boring Contractor P.								G.S. Elevation 38		
	AKEA ()	00077		Cas.	Samp.	Core	Tube			
Groundwater	1					C016	1406	W.L. Ref. Elev. 38		
Date Water Depth				HSA	SS		<u> </u>	Date Started 4-2		
4-29-93 116"	381.96	Open DI	iam.	1111/IED	2"		_	Date Finished 4-2		
		W	eignt	1 -	140#	_		Driller Doug Rich	mono	,
		Fa	a ji	-	30"	_	_	Inspector THK		
50	Sample	3	1			·			lov/	AA
Well Con-		Blows per	- 1						9 6	M-4
struction No.	Type Rec.	6 inches		C	lassificati	on		Remarks	Spoon	HSA
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			T006 511 /	5.44 .05				1	
1 4 1	SSA 18	7-10	# .:	OFSOIL /	FILL / KEU	OORKED S	016		0	اه
6 POT	- 71	7-10	# 131	ack brown	orange To	psoil CLAY	ESIUT 2			\vdash
	SSB 10	10-11		ACCECT! OF	Se to Tron		,		0	0
		3-3	# //	unt oran	j orande 6	brown SILTE	CLAY,			
3 -5 3	55C 8	3 - 3	1 \	moist, me	idom to st	is ur	3/6		0	٥
-5 3 - 10 5	550 10	3 - 3	oxdot , $oxdot$		YESILT					
1 Lysc- 1 4	22D 18	3 - 3	-			ige brown	.u.4 /	SILT	1.8	1.9
5	SSE 14	3-3	4 \	CLAV & CL	t stee	moist, root	moures	SAND	0.6	
1 1 10 -3	33E .	3 - 3					~ / n.c ~	45111	0.8	0
1 191 + 16	SSF 18	3-3	╫╶┧╵	@4.0' Light	د ۱۳ می ا	LTECTAR	, / ii i		10	0
	 	-3-2	#1				6/ 12			4
-15 -20 -20 -30 -35 -40 -45				Clayers Saturate Frequent B.0'6 To little Trace+ Cur Grayers Cur	t fine sa 7'6" and ray Claye F Sand in 2 9'3" to ray Claye Fine San 4Y & SILT Paddish LAY & SILT	m specks of Sand of Sand of Particle 7'9" ySILT, trace q'6" ySILT, ySILT	gs 1/8"	NOTE: SOILS SHOWED SA AT 6'AFTER COM OF BORING AT I WATER LEVEL WA BY 12:50 WATER L WA	PLOTI	5 '4" 5 '4"

WehranEnvirolech

1	7			1 3 5 5	CARI		'لالت			200		Boring No. 8		
Project 0.0												Sheet No. 1 of	_	
Project Co		_		-		- **	>					Job No. 0 1554.0	2 2	
Boring Cont			ELEC							·		G.S. Elevation App		344.4
Groungwate		, F,	TKKA	1) (NOCE	il	-	Cas.	Samp.	Core	Tube	W.L. Ref. Elev. Av		
Date Wat		nth	Water	Flore	ilntata	Tue			· · · · · · · · · · · · · · · · · · ·	-	-	Date Started 4-2	38	7.0
4-30-93 2.					D-15			474"ID	<u> </u>			Date Finished 4-2	3-4	3
4-30-7 3 2.	15 0	6.2	381.		pper pore		m. ight		140#					
						Fal			36"			Inspector JHK	vw o	na
<u>'</u>	İ		! Sa	mple					30			717	0.1	M
Well Con-	ap t	_			Blows	per i							PP	***
struction	٥	No.	Туре	Rec.	Blows 6 inch	es		С	lassificati	on		Remarks	Spoon	HSA
1	T~-	,	CCA		2 - 4	ĺ	Topso	CLAY &	SILT	• •	,			
1 8	F	<u> </u>	SSA	1 /	6-8		6	au black CI	LAYESILT +	race veget	ation,		l°.	21.7
1 1 1	-	2	SSB	17	7 - 9		90	ft, wet Ld 0.5' Orang	of to seaso	nal rain) au dell'Te	3+rff, moist	ĺ	0	0
ima	- -5	_			3 - 4		_ @ 2	ro, Orandepro	m draw cr	AYASILT. U	ery stiff=	45'		
/BENTONITE G POUT?	La	3	SSC	24	7-7		\	· · · · · · · · · · · · · · · · · · ·					<u> </u>	0
	-	4	550	24	9-9	2 1	_	LAY ESILT					0	4.6
757	-				5-4		Pa	mge brown a rtings LY64	ray CLAY E	up and sitte	4'685'6"	f	<u> </u>	1,0
4.cement	F ₁₀	5	55 E	18	3 -4			5'9" Lens	1/8" SILT a				0	0
200	-	6	SSF	20	4-3		}	saturated	B 519"				0	0
1 1/1	+				2-3			@7'grades Layay SIL			15-			1
	-15 -20 -25 -30 -40 -45							@7'10"0 @9'0rangl with Lam @10'0range with occ Fine SAM medium	range brown brown w/qri nations of	SAMD and Sing Clay and Clay and Clay and the CLAY & SILT and the C	tsict Sict, FSand	NOTE: SOILS S SATURATIONAT S AND H2O observe entring the open hole at 517" B At completions SILT and rand S Water rose to 2 by next day * Denotes samp to lab for analy ** OUM equiped an II.BEV Lamp	or bo	B65

W	<i>l</i> ehran					TEST BORING Boring No. 8	_	G
Project CourT 51	TREET BUILDING #	5	· · · · · · · · · · · · · · · · · · ·			Sheet No. 1 of		
Client GENERAL	ELECTRIC					Job No. 01554. C	2	\neg
Boring Contractor P						G.S. Elevation 381	-91	$\overline{}$
Groundwater		Cas.	Samp.	Core	Tube	W.L Ref. Elev. 381	91	
Date Water Depth	Water Elev. Intake i Ty	pe HSA	5.5	_	_	Date Started 4-29	-93	
	NOT STATIC OPEN BOYP DIE		2"	_	-	Date Finished 4-24	1-92	
		eight i —	140#	~	_	Driller Daug Rich		
	Fal	11 -	3011	-		Inspector THK		
Wall Can 52	Samples	İ					94	أسيار
well Con-	Samples Blows per Frage Rec. 6 inches	C	Classification	on		Remarks	Spoon	_
3	CCA 1. 3-3	CLA	YESILT					
6 FOUR	3 -6	Black Topso	I SILTACO	-Ay, little or	ganics		0	0
	SSB 14 7-8	20.5'Brown	ngray sica	PACLAY			0	0
3 5 3	2-4	Q1.5'Gray Stiff	orange br.	CLAYASILT	•		\vdash	-
EMENT/BENIONITE	SSC 19 4-6	@ 5.0 grade	sand stiff	SLLT,			0	0
	SSD 8 5-4	@5.51 CLA	JANA STATI	tiff mail	8,75	1	l° l	0
1 2 - 5	SSE 24 2-2				• —	*	42	0.6
10 6	SSF 8 1-1	slightly me	are working	YESILT, MA	/			
49p	321 0 1-1	- \@8.5'Gr	ay CLAY d	SILT	/ 12	*	5.6	1.9
	556 20 1-1			SICT SILTER	1,4		0	0
-15 -20 -25 -30 -35 -40 -45		Q9.0 Gray C Soft Q9.5'O Some Si Q9.83'G Tracef CLA Gray C Soft	ay silt \$ if brown, saturated range brown It, drawers	d m F G E AVI F Sand ey SILT Ft satviate T	£ ()	Note: water and side was generally and applied to lab for analy an 11-8 ev Lamp.	ore house house had sent sic	S

	2	り).								_		_						
			1	M		hr	an	ΝĒ	7		വ്യ	G [5]			·c=	BOBINO		
	=4		'						יווי					ł .		BORING		G
														Вс	orin	g No . 8-	-13	-
- [Project	CO	URT	S	TEE	TB	JILDIN	4 ح)د	+ 5					She	et N	o. 1 of		
	Client	GE	NER	AL	ELEC	TRIC										01554.0		
	Boring	Conti	racto	or P/	ARRAT	TW	OLFF							G.S	. Ele	vation 387	2.00	
	Grouna	wate	r							Cas.	Samp.	Core	Tube			i. Elev. 384		
L	Date	Wate	er De	pth	Water	Elev.	intake	Тур	е	HSA	55					arted 6-1		
L								Dia	m.	HIMID	2"		_			nished 6-1		
L								+	ight i		140#					BUTCH ST	<u>ane</u> ,	<u> </u>
<u> </u>		1						Fail			30"		_			or JHK	1115	
	Well C	on-l	इन्	 	<u>Sa</u>	mpies	151							SPO]	CPP	
2,75	structi	on	25	No.	Туре	Rec.	Blows 6 inch	per es		C	lassificat	ion		OUN	HAU	Remarks	MVD	HW
3	غ , و۵	۵۵.	come		1		3 - 4	İ	٦		S01L		0.5				1	
. \$ Q	0 m &	80	Ę.		ss A	18	7-7		Br	ackTopso	il siva	CLAY, 10410	oots/	0	0		٥	1.2
7 0		1	-	2	SSB	14	5-6			CLAY				٥	0		0	1.5
79,	<u> </u>	1.00	-5		SSC	20	4-5		ි පි ලු	roun gran	SILT & C	LAY STAP	Noist	0	0		0	2
4"P10	· 0 =	SAND	-		55 D	6	5-8		•	2.51 per	teros to	decications	raits	0	0		0	2
	5 4ND	*	-		SSE	22	11-8					led CLAYES!	LT _	0	٥		0	2
:	# 2		-10		SSF	16	3-5		- C	racks wit	h light gra	y SILT FILM		<u> </u>	0		0	2
ŀ	i: 4		_	-	556	18	3-1		عال	saturated SILT!	OF 7.0'		, 	0	٥		0	2
			-,_		 		1-1 WH-W	+1	١ ٥			Y. I ittle Pent		H	-		-	\vdash
}	<u>.</u>		-15 -	8	SS H	20	WH +		<u>-</u> , '	toot math	er 1/8" to	1/2" saturat		0	0		0	2
-			E						'	285'Ga	y SILT &	LAY, trace F	sand					
			F.,						1	Requent	Gastop	ods satur	uted					1
			-20							ENCA	n and S	lilt, satur	tral .	İ				ı
			F								•			1				
			-		}			-	''			up, tracefo	ravel	ł				
			- -25								iH, occ 6	• •		l				
									١,	210.5 Gr	my F-MG1 Sand, tro	envel,		l				
			-					#	'					1				1
											1 & SILT			1				l
			-30	ļ							LAYESI							- 1
									L	>0 + F	, satura	1 C M		l				1
			-		1		<u> </u>			END O	F BORIA	VG 16.0' -						1
			- -35											ļ				
			-33											ı				1
			-					-						l				ĺ
														1				- 1
			-40											1				
			-											l				Ì
					}													
			-															
			-45			1												
			ļ.															1
			-				-											}
			- 50			1												

	2	り)																
			1	W		he	ar	ΝĒ			പ്യ	<u>a</u>]a						
	=						6441		بالت		ع ماري	عالات		1		BORING		
														Bo	orin	g No . 8-	43	
•	Project	C0	URT	s	TREE	T B	JILDIN	b #	5							io. 1 of		$\overline{}$
	Client				ELEC											01554.0		
				or P	ARRA"	TT (MOLFF	-,						G.S	. Ele	vation 379	33	
	Ground				,			∥		Cas.	Samp.	Core	Tube	W.L	_ Re	f. Elev. 381.	331	٥٧٧
	Date	Wate	er De	epth	Water	Elev.	intake	+		HSA	55			_		arted 6-11		
	ļ	<u> </u>						Dla		1 41/4 ±0	2"			-		nished 6-18		
		<u> </u>						#	ight	!	140#					BUTCH STE	IEN!	<u> </u>
		<u> </u>			Sa	mples		Fal	<u> </u>		<u>3</u> 0"			 	pect	or 2HK	140	4
_	Well C	on-	100	_	Ja	Inbies	Blows	per						Sp	T		<u> </u>	A /
-6	struct	on	<u>ء</u>	No.	Туре	Rec.	Blows 6 inch	es			lassificati	on			HNU	Remarks	OVM	4nu
Casin	1 × 0 3	Berton	-	1	SS A	8	3 - 3		٦,	JOPSE Black SILTA		r Couts) / <u>0.5</u>	0	0		0	1.5
	<u> </u>	38 l	-	2	55 B	20	2-1		\	SILT/	·	- Couls	ary \	0	0		0	3
75	SAND SAND	1.2 %	- -5		SS C		2-1		٥	- ray and 7	on Sut	-, 11HleFS	أمسط	-			0	H
" Protetus	· N . 33	SAND	_	-		8	2-1		- e	20 Gray 6	lack clay	ensiti	6.0	I	1		-	5
1:17	# 0	\$ 0 #	-	4	SS D	24	1 - 1		١	iontr F Sa.	nd, little r	bots dry	1		0		0	2
•	1 75		10	5	55 E	18	1-1		14	-3-0 Black	ad with i	yeysilt;	1	10	0		0	1
			Ļ,	6	ss F	24	WH-W	н	ì	light gran	FSAND	1095.7 it 3.0,3.5,1	3911	0	0		0	
				7	८८८	24	wH w	H	10	25.0'Blac	K Clayens	SILT,	1 14	0	0		٥	١
			-15						1 1 1		and, trace		1]					
			_					_	1 19	@5.75'Bl 1,ttle5,	ack F -MS 14	AND,						
			-						'		(& SILT		_ _					1
			-20							Gray CLA								
		:	-									16.0 to 6.	5'					
			-								saturated		ĺ					
			- 25							Q8.0'S								
			-							and Sit	ting of i tea.5&	J.F SAND						
										@ 10.0 6								ļ
			-30 i								Ft, Sa							
			-									14.6'_1	6					
			-					╝				• • •		İ				İ
			-35 -															1
			-					$-\parallel$										ł
														ļ				i
			-40					\Box						ŀ				- 1
			-											ŀ				
														Ī				
			-45					$-\parallel$										ļ
	i		-															
		ļ	-															- 1
,																		ļ

Wehran Envirolech

TEST BORING LOG

G.S. Elevation 382.20 Groundwater Cas. Samp. Core Tube W.L Ref. Elev. Date Water Depth Water Elev. Intake Type HSA SS - Date Started 6-17-93 Weight - 140# - Differ Butch Stevens Fall - 30" - Inspector JHK Well Construction No. Type Rec. 6 inches Classification	1		'				4411		:1-1			<u> </u>		1		g No. ^B		JG
John No. 01554.04 John No. 01554.04 John No. 01554.04 John No. 01554.04 John No. 01554.04 John No. 01554.04 John No. 01554.04 John No. 01554.04 John No. 10554.04 John No	Project	c.~	у рт •	יפדי	EET I	Bourn	N/- ==	_				-		She	et N	lo. 1 of +		
GS. Elevation 382.20	Client			_								·	 -	_				
Cas. Samp. Core Tube W.L. Ref. Elev.							31 E E											٦ 4
Date Water Depth Water Elev. Intake Type HSA SS -	_			, ,,	ומאאו	, 000	JEFF	il		L Cas.	Samo.	Core	Tube	W.L	Re	f Flev	<u>3 4. ,</u>	10
Dlam 2" - Date Finished G-17-93				nth	Water	Flev	Intake	Tvr	30		· ·		,,,,,,		_		- 02	
Weight 1404 1405 1505		17.03.0			, water	LIGT.	IIILBRE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		חסח		· · · · · · · · · · · · · · · · · · ·		Dat	e Fir	nished (73	,
Fell - 30" - Inspector THK													+					
Samples Samples Show S		_						-			-		}	Ins	pect	Or THE	NEN S	-
1 SSA 16 8 - 8			چع		Sa	mples	<u>:</u>	1	1	•	<u>:</u>	<u>'</u>		≤ Po	ON		_	A
1 SSA 16 8 - 8		on-	d e				Blows			_	.					<u>_</u> .	CPF	m)
1 SSA 16 8 - 8		on	3	No.	Туре	Rec.	6 inch	es	<u> </u>		Classificati	on		OVM	HNV	Remarks	OVM	HN
2 55 8 18 17-7 Brown gray SILT & CLAY & CLA			-	١	SS A				١.		_	t	/°.5	٦				١.,
28.75' Gray SILT & CLAY 29.25 Gray SILT & CLAY 11th m f Grave trace C + 5 and 29.75' Gray Clayer SILT 200' Gray Clayer SILT trace C + 5 and 2100' Gray Clayer SILT Trace C + 5 and 2115' Gray Parting Classes SILT 25 CLAY & SILT 2115' Gray Parting Classes SILT END OF BORING 14.0' - 1	12	1	-	•	33 11	16	<u> </u>	-	/ <u>BI</u>			100 12 PDV)	13	ł	<u> </u>	1.0
28.75' Gray SILT & CLAY 29.25 Gray SILT & CLAY 11th m f Grave trace C + 5 and 29.75' Gray Clayer SILT 200' Gray Clayer SILT trace C + 5 and 2100' Gray Clayer SILT Trace C + 5 and 2115' Gray Parting Classes SILT 25 CLAY & SILT 2115' Gray Parting Classes SILT END OF BORING 14.0' - 1	8		t l	2	55 B	18			R	CLAY	<u>asiut</u> Cutecco			٥	0		0	1.2
28.75' Gray SILT & CLAY 29.25 Gray SILT & CLAY 11th m f Grave trace C + 5 and 29.75' Gray Clayer SILT 200' Gray Clayer SILT trace C + 5 and 2100' Gray Clayer SILT Trace C + 5 and 2115' Gray Parting Classes SILT 25 CLAY & SILT 2115' Gray Parting Classes SILT END OF BORING 14.0' - 1	7. 6		-5	2	66 (20			ه ا	15/65011 30	SICI FUR	1, occ. root			_]	^	1
28.75' Gray SILT & CLAY 29.25 Gray SILT & CLAY 11th m f Grave trace C + 5 and 29.75' Gray Clayer SILT 200' Gray Clayer SILT trace C + 5 and 2100' Gray Clayer SILT Trace C + 5 and 2115' Gray Parting Classes SILT 25 CLAY & SILT 2115' Gray Parting Classes SILT END OF BORING 14.0' - 1	3		-	-	7) L	20		-	=	dama d	gerclay	asilt, mod	HIPO		13			12
28.75' Gray SILT & CLAY 29.25 Gray SILT & CLAY 11th m f Grave trace C + 5 and 29.75' Gray Clayer SILT 200' Gray Clayer SILT trace C + 5 and 2100' Gray Clayer SILT Trace C + 5 and 2115' Gray Parting Classes SILT 25 CLAY & SILT 2115' Gray Parting Classes SILT END OF BORING 14.0' - 1	1,00	Ì		4	55 D	16			I			2.5	0.51	0	0		0	2
28.75' Gray SILT & CLAY 29.25 Gray SILT & CLAY 11th m f Grave trace C + 5 and 29.75' Gray Clayer SILT 200' Gray Clayer SILT trace C + 5 and 2100' Gray Clayer SILT Trace C + 5 and 2115' Gray Parting Classes SILT 25 CLAY & SILT 2115' Gray Parting Classes SILT END OF BORING 14.0' - 1	1			_	CCE	24	3-2		\neg	-		40.7	8.S			1	0	1
28.75' Gray SILT & CLAY 29.25 Gray SILT & CLAY 11th m f Grave trace C + 5 and 29.75' Gray Clayer SILT 200' Gray Clayer SILT trace C + 5 and 2100' Gray Clayer SILT Trace C + 5 and 2115' Gray Parting Classes SILT 25 CLAY & SILT 2115' Gray Parting Classes SILT END OF BORING 14.0' - 1	ار ي	1	-10			27			180	7.0 'Gray 1	of organization	AY ESILI	اما / اما		0			
28.75' Gray SILT & CLAY 29.25 Gray SILT & CLAY 11th m f Grave trace C + 5 and 29.75' Gray Clayer SILT 200' Gray Clayer SILT trace C + 5 and 2100' Gray Clayer SILT Trace C + 5 and 2115' Gray Parting Classes SILT 25 CLAY & SILT 2115' Gray Parting Classes SILT END OF BORING 14.0' - 1	8		-	6	SSF	24			-	51LT / SILT	ICLAY / CLAMA	SATUR			0		0	Z
28.75' Gray SILT & CLAY 29.25 Gray SILT & CLAY 11th m f Grave trace C + 5 and 29.75' Gray Clayer SILT 200' Gray Clayer SILT trace C + 5 and 2100' Gray Clayer SILT Trace C + 5 and 2115' Gray Parting Classes SILT 25 CLAY & SILT 2115' Gray Parting Classes SILT END OF BORING 14.0' - 1	9		[]	7	56%	74			e	8.50rg by. N	to the Clays	YSILT	1]		1
20 20 20 20 20 20 20 20 20 20	لغا		F I	′	ى دد		WH-WI	4					/140	<u> </u>				<u>'</u>
			- 25 - 25 - 30 - 35 - 40							29.75'6 210.0'6, trace Carray Corany CL 212.5'que soft, ca	any Clayeng CF Sand	SICT SICT ————————————————————————————————————						
			-															
			-50															

			V	le	hr	an				sh			ST BORING	1
—	Project Co	URT	8	TREE	T 801	LDING	#5					Shee	t No. 1 of 1	
				ELEC								Job (No. 01554.	64
	Boring Cont	tracto	or Pi	ARRAT	T WO	LFF						G.S.	Elevation 38	2.26
	Groundwate			-	,			Cas.	Samp.	Core	Tube		Ref. Elev	
	Date Wat	er De	epth	Water	Elev.	intake	Туре	HSA	\$5	_	•	Date	Started 6/16	192
10:20	6-16.93 7.5					0 pen 001 P	Diam		2."		_	Date	Finished 6/10	193
~			-			3-79	Weig		140#	_	-		BUTCH ST	
	i i			-	-		Fall	_	30"	_	_	Inspe		4K
		150	Γ	Sa	mpies			<u>`</u>	30					
	Well Con-	d a				Blows	per					SP00		4550
	struction		No.	Sa Type	Rec.	6 inch		CI	assification	on		OVMIT	NU Remarks	OUM HAV
	1					5-4		70750	<u></u>		1.0			
				SS A	18	5-6		Black, brown T	PIS OIL SILT	& CLAY trai	P 80075	0 0	2,2	0 2
	5	-	2	SS B	18	6-8		CLAYE	SILT			0		00
	0	-			10	10-11								
	(9)	-5	3	SSC	22	$\frac{7-9}{7-9}$		Orange brown moist, at	iff to us	777		0	0	02
	BENT E. ROUT		4	C C D	2	12-12		@3.5' Gray C	langy SILT.	little F San	day	0	0	A D
		-	7	SS D	2	12-13		@ 3.8' Org Br moist,	by mottle	CLAY & SIC	n i			0 3
	COMENT	-	5	SS E	20	1-1		moist,	SHIFF	_	9.75	0	0	0 3
	3	-10				1-1		@ 5.0' Gray			/ 10.0			
			6	SSF	22	1-1	□ '	05.8'6ray C	LAYESI, LT,	OCC. ROOT); I	a	0	0 2
		-	7	556	20	1-1		occ. thin 1/8"	lamination	uf SAND	/ ,	0	0	0 2
		15	_		211	1-1		1280'Gray	wlorgbr.	LAYESUT	.,			
ļ	¥	["	8	ss H	24	1-1		1 occ piece +	fine root,	soft.sat	16.0	0 (0	0 1
		-						@9.25'6ra		1	1			į
		 						Doce Piece	ora pr Pa	eat /	,			
		20						11			'			
		-						Q975'60 little F	Courd 3	et satuat				
		+ 1									Ĭ.			
								2100'6	ay clays	$\frac{4}{5}$ Cu =	_			
ĺ		-25						0.576		~~				
		- i						010.5'61 V. Sof	t Satur	الومل				
		<u> </u>						l l						
		Ē I						@15.75 V	ery thin Pa	Mina BZ				
		-30						claying	SILT					•
		 					\dashv	END OF	BORING	16.0'-	1			
								Ę.,, 5 ().	5	, 5	_			
		-												
		-35												
		t l												
		-												
		-40												
j														
		 												
		F												
		-45												}
		[]											-]
		 - 					#							}
		H]
Į		-50												

) \	W	le	hr	an			VĪro		eh		1		BORING g No. 8-		
,	Project Co	_				LDING	#5	•							10. 1 of 1		
	Client GE	neri	AL E	FLECT	PIC										01554,0		
Ĺ	Boring Con	tracto	or pr	TREAT	rt u	OLFF									vation 380		
	Groundwate	er							Cas.	Samp.	Core	Tube			f. Elev. 3 <i>8</i> 2		PVC
	Date Wat	ter De	epth	Water	Elev.	intake	Ту	ре	HSA	55	-	_			arted 6-16		
							Dia	ım.	するかり	2"	-	-			nished 6-16		
							We	ight	-	140#	_	_	Dri	ller ?	BUTCH STEC	IEN S	5
Ĺ							Fai	1	-	30"	-				or JHK		
	Well Con-	इन्	_	Sa	mpies			ļ					Sp	PM)		HS	A I
710	struction	20.2	No.	Sa Type	Rec.	Blows 6 inch				lassificati	on		OVM	1	Remarks	CUM	
3	40A 3 A4	FAO.	ון	SS A	12	9 - 9		BL	TOPSOL			_ 1.0	-	0		0	1
0	8 5 5 F	ğ -	-	<u> </u>		6 - 7					1 Alle root	PDU		1.			\Box
2	8 % 4 1 B	<u>3</u> [2	SS B	20	11-11		1		&SILT		45	<u> </u>	0.1	1	0	
5		-5	3	SS C	24	5-6			Granbronn trace(-)	SILTEC	-44)	٦	1	0		0	2
4" Pro+			<u> </u>	·	<u> </u>	2-2			225'Orem	146 1 C	gray not	, , , , , , , , , , , , , , , , , , ,	۰		•		
=	0007	F	4	55 D	24	2-1		\prod	CLAYESIL	T stiff	mary most] لوحا	70	0		2	
4	36 4 37	+	5	SS E	24	2-1		_		SP/SILT			0	0		0	1.5
	S. 500	10			10	WH-W	Н	<u> </u>	_			, /	6	0	İ	6	0.5
	=	F		SS F	18	WH-W		١	Saturate	n F-MSA d, Loose.	in D, and Sit	۲ /	F	 		\vdash	
Ì		. -	7	556	24	WH-W		١ ١		y F.M.SAN	<i>10.</i>	, 14	0	0		0	1
Ī	·	15						\Box	\ some(E12,14	,	/ T			<u></u>	- 	\Box
		-							1 @60' Org	br Fimst	₩D,	, 1	1				ł
-		-		•		 	-	1	Some	(4) Z' H							
		F						1	CLA	4 ESILT		_					
		-20							(STaw W	lere Work	SUTECIA	ايد					1
		-						1	804	t, satur	SILTECU Wed						ł
		F									SILTECLA						1
		-						1		bray CLA	_		1				
		- 25						İ	4702	Saturate	od						ł
		-											1				1
		-								o parimi			1				1
		-30	l]	at as	را ۱۱۰, ۲۰۰۵ ا ۱۱۰۱, ۲۰۰۵	£11.5		1				1
		 						ł	1			1	1				1
- {		t	1					İ	without	brayeca	y escit green blackf	iber	1				
		F] :									1				1
		-35					\dashv	1	END	OFBOR	N G 14.0-7						
		Ľ						1					1				
		-						1									- 1
		+						Ì					1				
		-40						I									
		-]				1									
]				İ									
		-45		[:				I									- 1
		 				ļ											
		t						İ									j
-		F															
		-50	1			-		1									

TEST BORING LOG Boring No. 58-49

					}	EMIC	O	ı				Boring No. S	B-49	7
Project R	IFS	Co	URT	STR	EFT	51	SA	SITE				Sheet No. 1 of		
					or Porat							Job No. 86143-00	11 00	<u> </u>
Boring Cor	tracti	or P	accas	H - Wa	1 1 +			• •				G.S. Elevation	J1.00	
Groundwat				-		1		Cas.	Samp.	Core	Tube	W.L. Ref. Elev.		
Date Wa	ter D	epth	Water	r Elev.	intake	Typ		HSA	35	_		Date Started 2-1	0-97	
	2.0'				0.24	Dia		41/4 =0	2"		-	Date Finished 2 -		
						-	ight	_	140#	-	_	Driller Mark Eas		<u> </u>
						Fall	<u> </u>	_	30"	_	_	Inspector JHK		
Wall Oak	ಕಾ		Sa	mple						· · · · · · · · · · · · · · · · · · ·			HAY) **,
Well Con- struction	2.2				Blows			_	Maa=:#:==a:					
Subcuon	- 0-	NO.	Type	Rec.	6 inch				Hassificati			Remarks	Spoon	#SA
	-	1	SS	8			AS	PHALT / G	RAVEL BAC	KFILL AS	pratt toas!	57	0.2	0.8
	-	-			9-5		@ 0.3 	S'Gray F- N	A GRAVEL,	some of San of Glavel, of Sand, to	d-fisilt	saturated@175'		
		2	22	12	6-8		_ z'6	orange GRI	AVEL, Some	of Sand	KSIH.		0.1	2.3
	-5	3	25	12	5-5		26'	Sian F-MG	PAVELand	tcf Sand, t	csit			
5.7	+	<u> </u>	 	-	8-6					te of Sandi			0.4	2.0
7000		4	22	15	3-3		San	viated @ 1.7	5'	=			0	2.3
*11 1	-	5	22	1	3 - 2 WH-W		<u>~~</u>	edium to 1			9.0			1.0
7	-10	-	 	<u> </u>	WH - 1		\sim	Claying S						1.2
2)4(1		6	22	0	1-1		<u>.</u>	ray claye	451LT + +20.00+	, saturate	. al		0	21.1
110	-	7	22	8	WH - 3	3	20	7 ancount	rend thin	hed 6" of			,,,,	1/1/
BENIOHIL	15	<u> </u>	 	_	WH - W	H	G	ray Claye	y SILT, INH	-le-lat Sa	nd l		14.1	146
Ø	F '3	8	22	16	WH - 1								3.1	60
5	-	9	55	18	<u>ω</u> Η - 1	H			layey SIL				2.3	424
EMENT	Ė	-	-		2 - 2				y SICT, litt	d Gray SILT	ACLAN		2.5	
	-20	10	SS	22	2-2	\Box				sict soft		*	1.0	185
0	}	11	55	24	WH - 2					AY, mediu			1.6	430
	. L	13	66		2-5		<u>⊕</u>	22 2 5 Com	y Clayens	70			1	
	-	12	25	24	3-3					some FSa	24.0	*	1.5	17.8
	- 25	1		ĺ			/.	200 / G	2101	2 such 6 20	<i>AG</i> /			
							_	END OF	BORING 2	24.01_1				
	-											, ,	C 1	
	-30				 	-#						upon completion	od to	11/9
	-30											poisuele mas dia	utra 7	10
	-		,									sulfa P via tra	4 - H	-
									•			method is no co	emon,	` ,
	-35													
	 					-#						water level in be	siehr	6
	F											was@ 20 up-		
]]										consection		
	-40													
	F											* Danotes Sois	ample	e
	-				 							Sent to a proforce	nalysi	15
	-45													
	1				ļ	\blacksquare						* HAN equipped	WITH	
	+					\dashv						an ili Tev lamp.		
	- 50				ļ									j

TEST BORING LOG Boring No. 58-50

						1	EMC	(On	_				Boring No. 58-50
Project	RI	FS	COL	JRT	STRE	ET S	15A	51	TE	· · · · · · · · · · · · · · · · · · ·			Sheet No. 1 of
Client						poration							Job No. 86143-001.00
Boring (Cont	racto	or Po	rratt	-wa	iff			*****				G.S. Elevation
Grouna							I	Ī	Cas.	Samp.	Core	Tube	W.L. Ref. Elev.
Date	Wat	er De	epth	Water	Elev.	intake	Тур	•	-	55			Date Started 2-11-97
	10/1						Diar	-		2"	_	-	Date Finished 2-11-97
							Wei			140#	_		Driller Mark Eques
	i						Fall		_	30"			Inspector JHK
W-# 0		£		Sa	mples	<u> </u>		•				-	
Well Co	on-	3.5				Blows				34			HNU
	7	-0-	NO.	Туре	Rec.	6 inch				Classificati	on		Remarks Spoon H
CEMENT BENT	1	}	1	SS	8			As	PHALT / GR	AVEL FILL	vill CC	1101	0.2 0
١٨		-	<u> </u>		 	8-4		620	s Gray MF	OF GRAVEL, SO	mactions	raipsilt	5.2 5
Ži.		Ė	2	2.2	12	4-3			3		····e (1 3×101)	3,5	0.2 2
86		-5	3	SS	14	4-3 2-3		Gra	a prom	CLAYESI	T + (0 (01-)	S Cond	
	1	-	_	133	'4	2-3						6.0	* 0.2 4
		-							END OF	BORING &	6.5' — !		
		-10											
		- 1											
		├											
		[
		- 15											* Denotes Sample Sent
		-					-						to lab for analysis
		-											upon completion of
		- 20				<u> </u>							buring boreholo was
		 											upon completion of burning bursholo was
		-					_						* HNU equipped with
		- 25				 							an 117eu lamp
		_											
		-	İ										
	- 1	-30											
			İ	1									
		-		İ			_#						
	1	25										l	
		-35 -	Ì										
	ŀ	-	ļ	ĺ									
	ł	-										Ī	
	Ì	- -40										į	
		-	j										
	}	-										- 1	
	Ì	-											
		-45	j									į	
	[- "											
	ŀ	-										į	
		-			}								
				1	L								

TEST BORING LOG Boring No. ≤B-51

						EMCC	on.				Boring No.SB-51
Project R1	F5	Co	URT	57	REET	5	/5A ST	īΕ		-	Sheet No. 1 of
Client Lo	cKh	eed	Max	tine	Corpor	athor	, , , , , , ,			·	Job No. 86143-001,000
Boring Con	tract	or R	arrat	t - w	1910		`				G.S. Elevation
Groundwate						ll .	Cas.	Samp.	Core	Tube	W.L. Ref. Elev.
			Water	r Elev.	intake	Туре		Bucket Ava		-	Date Started 2-10-97
						Diam		3"			Date Finished 2-10-97
	-					Weig		1 = 1		-	Driller JK/CT
	·					Fall	_				Inspector JHK, CT
	50		Sa	mples	<u>. </u>	1					Mapeoloi Jak, ET
Well Con-	2.5				Blows	Der					
struction		No.	Туре	Rec.	6 inch	•=		Classification	on		Remarks
1////	Ľ	7	AC	FULL		H	FI	LL	· · · · · · · · · · · · · · · · · · ·	1.0'	* Lab Sample
	ļ.							— F-M GRAVE	,	Ţ.	
	-				<u> </u>		onela	T-M GRAVE	ر ـــ	,	
	<u> </u>			1			anae	- F sand, s	Some Silt	- /	Rossela Lodge
	-5		i	l			dar	np, med &	ense.		Boring located on West Side of transformer pad
							FNI) C	F BORING	10'-1	 /	West Side of
	-			Ì			2.40	, orang	7.0 —		transfermer nad
	-					 					17445 187 MEN PSO
	-10			}	 						
											* Denotes soil sample
	- 1			ĺ		#					Sent to lab for analysis
	-15										SENT TO 146 TOI ANALYSIC
	t I										
	F I										, , .
	- 1										upon completion,
	-20				 						borenslo filled with
					 	- 					upon completion, borenolofilled with unused soil cuttings
		ſ									
	 -										
	- 25	1									
	-										
		ļ									
	-										
	-30		Ì			-#					
	<u> </u>	1								j	
	[1								
	┡ │	1									
	-35		1								
	 		j								
	 									1	
	-40									1	
	 	1									
										į	
	-45					_				İ	
	- 1			ļ							
	-			1						1	
		ſ	1								
	- 50		- 1							ł	
		- 1	1	- 1		- 41				1)

TEST BORING LOG Boring No. 58-52

					1	EM	cou,	•				Boring No. SB-52
Project RI	CFS	, (COUR	T 5	TREE	7	5/9	SA SI	TE			Sheet No. 1 of
Client L	cki	hee	dM	artiv	Corp	D/ 0	7	<u> </u>				JOB NO. 86143-001.000
Borina Con	tract	or P	a/ Ca1	H-W	VIET	0,0					· · · · · ·	G.S. Elevation
Groundwate					<u> </u>	ii —	i	Cas.	Samp.	Core	Tube	W.L. Ref. Elev.
Date Wa			Water	Elev.	Intake	Tve)e		Bucket Aug	НX		Date Started 2-10-97
						Dia			3"	4"		Date Finished 2-10-97
				1		₩	ignt i				_	Driller Mark Eques
						Fal			-	_		Inspector THK, CT
	60		Sa	mples		i			,		•	
Well Con-	0.3				Blows	per			01			
struction	٠.	No.	Туре	Rec.	6 inch	es			Classification			Remarks
	-	1	AL	FULL				CON	CRETE SLI	AB (2'4"/	* Lao Sample
	-						`	VO11	2 CAIRSPAC	ϵ) ϵ	ויר'כ	
								F	-111			
	-5	1						Black	Landbion	m		Boring located on
	+					_			GRAVEL		1	North Side of
								~~~ ~~~	ne c.f.	Sand		transformer pad
	Į.						1		le E) (lay		İ	1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	-10							1/4	$f \in \mathcal{L}(\mathbf{w})$	wy stet	1	* Donotes soilsamp
	-							51	19hT odp	ے مرخرا	1991	sent to lab for analysi
		1						END	man med d of BORING		71	SEAT TO 145 TOV ANALYS!
	-	l					!	LND	OF BURING	· / / –		upon complete tion
	-15	1										
	Ĺ											borehole was filled
												with unus-dsoil cuttie
	<b>-</b>	ł			<b> </b>							and topped off with
	-20	1										Concrete mix
	F											Concrete min.
	-				<del></del>							
	- 25											
	[23	1										
	-											
	r											
	-30											
	-				<u> </u>							
	<b>-</b>	1										
	-35	ĺ										
	-	İ				- #						
	t											
	-											
	-40	1			<del> </del>	┈╢						
	Ľ											
	<u> </u>											
	-				ļ							
	-45											
	F											
	+	1										
	1.				<del></del>							
	<b>⊢50</b>	ı	f l	l	<del></del>							I



### TEST BORING LOG

						EMCO	11				Boring No. SB 53
Project R3	FS	Co	ver	STE	EET		9 SITE				Sheet No. 1 of
Client Lo	xK	hee	dn	nart	in Cor	Pora	pon				Job No. 86143 -001.000
Boring Con	tract	or f	arra	1 - 1	7716W						G.S. Elevation
Groundwat						<u></u>	Cas.	Samp.	Core	Tube	W.L. Ref. Elev.
Date Wa	ter D	epth	Water	r Elev.	intake	Туре		BucketAu	,	1 -	Date Started 2-10-97
						Diam.	_	3"		-	Date Finished 2-10-97
						Weigh	t   ~	_	_	_	Driller JE/CT
						Fali	-	1_		-	Inspector JHK CT
Well Con-	52		Sa	Rec.				<del>' 1012</del>		· · · · · · · · · · · · · · · · · · ·	
struction	3.5		T	0	Blows		,	Naasiisasia			
	-0-	NO.	liype	Hec.	6 inch	es II	<del></del>	Classification	on ————		Remarks
7777	-	<u> </u>	AC	FULL				114		1.0 '	* Lab Sample
	+						Black	MF GRAV	EL,		
					<b> </b>	<del>  </del>	some(+)	ct Sand,	1.HPG-1S	(H.	
	<b>-5</b>	l	1	1			damo	medium	Varia	1	Boring located on
	-		İ								East Side of
	-						END	OF BORIN	16 1.0'	_1'	
	+								-		transformer pud
	-10										,
	-"		]	<u> </u>							
	-										* Denotes soil sumple
	<b> </b>	ļ	Ì	İ							sent to lab for analysi
	-15										SENT TO LAG TO ANALYST
	F	İ		1							
	-										upon completion,
	-										borehole filled with
	20										
											unused soil cuttings
	-										
	-										
	-25										
	_23										
	-										
	-										
	-30										
	-30										
	-					#					
	<b> </b>					<del>  </del>					
	-35										
	[33]									1	
	-	İ				#					
	<b> </b>										·
	40									i	
	[-"									Ì	
	- 1		ļ			<del>  </del>					
	-										
	<u> </u>									-	
	-45										
	-									r i	
	+ 1		1		-						
	t[				<u></u>	<del>-   </del>					
	-50			1		<del></del>	•			i	•



## TEST BORING LOG Boring No.MW-16A

					1	EM	CON	•				Boring No.MW-16
Project RI	F5	COL	PT !	STRE	FT S	151	A S	ITE	<del></del>			Sheet No. 1 of )
Client Lo	ckh	reed	Mar	tin	Corpore	110	~					JOD NO. 86 143-001.000
Boring Con	tracti	or P	arra	H - u	olfF							G.S. Elevation 374.5
Proundwate	er							Cas.	Samp.	Core	Tube	W.L. Ref. Elev. 379.3
			Water	r Elev.	Intake	Тур	) <del>0</del>	HSA				Date Started 2-12-97
20/97/2.3	3'BF	VC				Dia	m.	OE" WH				Date Finished 2 -12 -97
						We	ight	_				Driller Mark Eaves
						Fall		-				Inspector JHK
Vell Con-	53		Sa	mple	<u> </u>	$\dashv$						
truction	35	No	Type A.C.	Pac	Blows	per I		•	<b>Hass</b> ificati	on		Remarks
	<del>-</del> -0 -	1.40.	·	noc.	6 liken	. 11	Δ					Hellietys
	-	L	AC		<u> </u>	-	Brow	vcFSANO	randest-me	out teasit	t 1.75	
		2	AC				C.VI.	510	TECLAY	-156		
2 1084 Sereed	-		<u> </u>	<del>                                     </del>			04 71			777	3.5_	
450	-5			Ì	}	#	•	SAND	WISILT			
3 5		3	AC			-#	012	94 F.M	2400 2em	e (H) Clayer	ysict	
0.40	F						711	br F-CSAN	950me&ICla	eyoysia,M	HAHGU	
	F		-	<u> </u>	†		<del></del>			5 8.5' -		
	-10	1			<u> </u>			2700	, ,,,,,,,	9.5	_	
	Ľ			İ								
	-	l										
	<b>-</b> -	İ			<u> </u>	$-\parallel$						
	- 15	1						-				
	-				<u> </u>	-#		•				
	-20				<del></del>							
	-20											
	-											
•	-		-	-								
	- 25										:	
	-				<u> </u>						:	
	ן ו											
	-30					$\Box$						
	F 1		1		ļ							
	ן ן		İ									
	Γl											
	-35											
			l									
	F !											
	├ │											
	40	l										
	⊦ l											
	<b>-</b>		}									
:	-45										į	
	-		1			$\Box$						
	-	-										
			ĺ									
	- 50	1	- 1	1		-						



### TEST BORING LOG Boring No.MW-168

Project	OTT	. ^				ر تنے	_					Boring No.N		_
Project Client								SITE			<u> </u>	Sheet No. 1 of		
	-ock	hee	d Ma	1 tin	Corpor	47	<u>~</u>					JOB NO. 86143.	-001.6	00
Boring (		tor P	arrat	T-W	177	1		- 0			·	G.S. Elevation 3	79,6	57
		2001	Mass	. 51	intake	-		Cas.	Samp.	Core	Tube	W.L. Ref. Elev. 2	79.2	17
2/20/9.	1.01'0	POLICE	Wate	Elev.	intake			HSA	SS	_	1	Date Started 2 -	1-97	<u></u>
92014 1	177 6	FVL	┼		-	Diar		41/4.20				Date Finished 2	<u>-11-9</u> -	<u> </u>
			-			Wek Fall	gnt	-	140#		1-	Driller Mark E	<u>aur</u>	<u> </u>
		$\top$	Sa	mples	<u> </u>	1			30"		-	Inspector JHK	111.1	
Well Co	n- 🚡				Blows	er							SPE	ρm
struction	on lo	No.	Туре	Rec.	6 inch			c	lassificati	on		Remark	\$ 5000	nH
	∯   ,	1	SS	13			As	PHALT /SAI	ND GUL FIL	L Asphalt	to 0.5'			
\$ 5 E		<u> </u>		13	8-5		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Red Oronn 21e(4) SILT	CFSAND,	ondfifm 6	501, <u>1.75</u>	ł	0	_
BEN GROUT		2	SS	16	5-6		_	SILT	CLAY		/ 3.5		0.2	.   0
1 t 1	5	3	SS	2	1 - 1		610	a dellan pra	m EILTE	CLAY, ST. FT				+
2 2 8		-	3 5	-	WH-W1	_	^-	SANO	4/51LT				0	1
for the sea BEAT GROUNDS		4	88	4	2 - 2	0	4' Ed	yior of san	), some(+) ( 10, littleSil	clayensur tylittletimi	Saturated	ŀ	0.2	.   4
		5	SS	24	WH-W		1000	of ked left	moroum F.	CSAND,	7		0	1
jug .	10	1 .	50		WH - 1	_	120	Clave	eysict, 11th	sand fait	<u>l. /</u>			+
Borton, Fe	-	6	SS	24	1 - 1		Gr	ay Clayen	SILT West	soft, sa	~s ∔		0.2	L
8 7 5	`  <b> </b> -	17	SS	18	WH - W		<b>e</b> /	3.5'Gray C	layer SILT	with Frequ	<del>-</del> -		٥	٥
SSK	4 [18	8	85	7.0	wH-w		6.	irmas ot	SILTACLA	1				+
\$ 70	1 F	1	33	20	WH - WI		<u>@</u> ۱	40 Gray a	CLIPA SIT	066.056.00	al		0.2	<u>. L</u>
9 5 6		9	25	21	ωH -ω				8 CC 44 6 11	.s with. O, somesilte			٥	
SAND PACK ST.	;  F	10	55	24	WH-W		@	60'Gay	Jayey Si	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	£ \ 3,65			+
0 4 0	⊨20	)			WH - WH				SILT &CLA FSAND(1)				0.2	Ľ
تناظنا	] [	Ш	SS	24	WH-W			occ partme	FSANO(!)	16)	22.0		O. Z	2
	-	1	-	. '			1	occ partm					-	
	<u>ا</u> م					-#	10	186 Can	, clayeys I parting	ILT CUT				
	- 25													
	-						1		y sict & c					
	-						-		my clayer	-	_,			
	-30						L			.o.s'\$@20.				
	-							END OF	BORING	22.01	7			
	t	1				1						** HNU Equip	po d	
	F			İ		$\Box$						with an 11.7 ev	lamp	2
	-35													
			1			-								
	F		ł			$\Box$								
	<b>-</b>		ĺ											
	-40	1		Ì										
	-	1 1	ł											
	}			}							1			
	-45			į										
	- T	] ]				4								
	ŀ			ŀ							i			
		1 [		ŀ							į			
	_	, ,		L										



							W	الا					TEST BORING LOG
						;	EMC	On	•				Boring No _{MW} -17
Project	RI	FS	C	URT	STR	EET	5/	5A	SITE				Sheet No. 1 of
Client	Loc	<u>Kh</u>	eed	Mai	tin C	OFPOTA	سفل						Job No. 86143 -001.000
Boring (			or Po	arrat	1-w	olff							G.S. Elevation 381,76
Grouna						·	<u> </u>		Cas.	Samp.	Core	Tube	
				Water	Elev.	Intake	-		HSA				Date Started 2-12-97
2/10/97	5.12	2'BF	VC				Dlar		41/420			ļ	Date Finished 2-12-97
							Wei	ght	_				Driller Mark Eaves
		r		00			Fall						Inspector THK
Well Co	գո-	53	$\vdash \lnot$	Sa	mples	Rlowe	205						
Structi	þn	3.5	No.	Туре	Rec.	6 inch	es		C	lassificati	on		Remarks
77.00	N	<del>                                     </del>				Blows 6 inch	T i		SILT &	CLAV			
8	. 1				1			RIA	2121 4	CLAU 1.HI	o Rost May	ام.	
ξ.		Ι.		۸.							- (-08) 11/40	Ε,	
	Ž	١,	١	AC				0		um sict	tre an		
12/2/3	<b>i</b>	-5 -			}				1. 0.	3,51	L CL MY		
2 S	9	-										7.5	
"O SAND PACK	₹	t							Clayey	SILT, W/	Sand		
2 2	n	-10	2	AC				Gr	an clause	4 SILT I.H	tof Sand		
0 7	9	-		.,-				Gui	du.c. +	32001,1(V)	tof Sand littledson	I am Road	
	<u></u> 1	-							E 110	anamit Goi,	THITCI SON	4	
									CND GF	BBRING	- 12.01-	_^	
		- 15				ļ							
		F											
		-											
		-20											
		-											
	i	┝╶											
		-25											
		-											
		-					─#						
		Γ	Ì										
		-30		-									
		- 1											
						<del> </del>							
		-35											
		-											
		-											
		-40											
		- <b>~</b>											
						<b> </b>							
		[		1									
		-45											
						<del> </del>							
		[											
		├				<u> </u>							
		-50	1 I	ŀ			#						



## TEST BORING LOG Boring NOMWH7 B

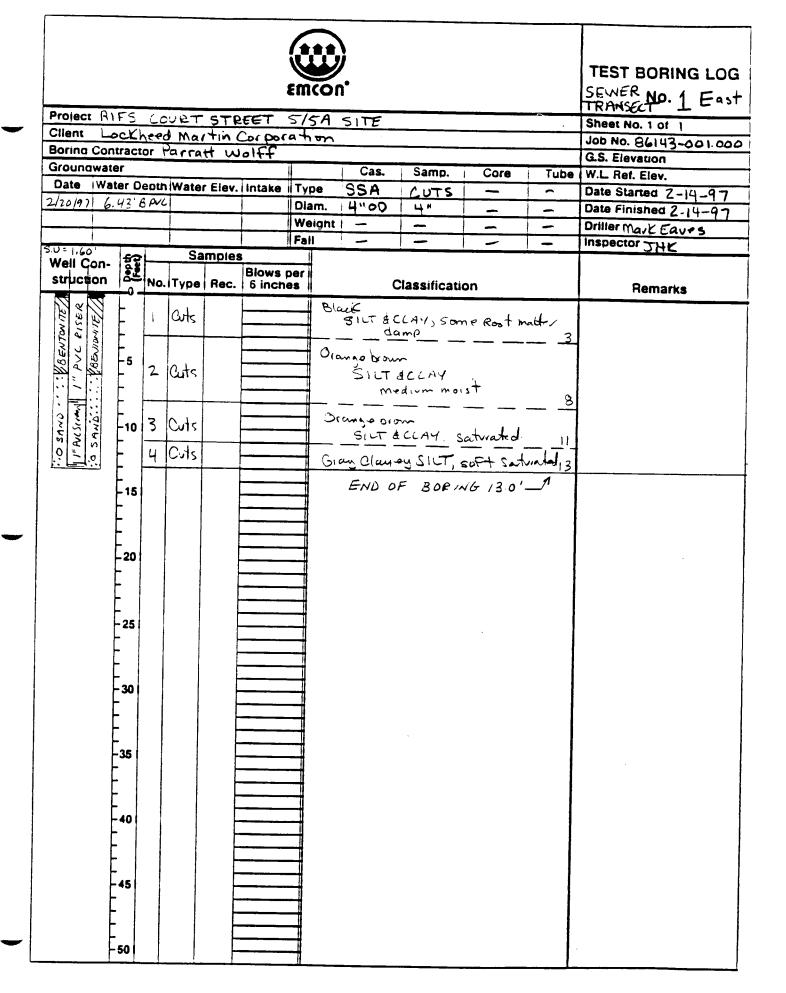
L									EM	(Ol	1				Boring NoMW	47	B
_	_	_		IFS		OURT		reet			SITE				Sheet No. 1 of		
_	lie		Lo	<u>sck</u> t	reed	Ma	rtin (	Car pora	1	~					Job No. 86143-0	01.0	00
					or Pa	irrat	t-wal	188							G.S. Elevation 3	81.	76
_	_		wat								Cas.	Samp.	Core	Tube	W.L. Ref. Elev. 3	84.2	22
┝	<u>Da</u>					Water	r Elev.	Intake	Ту		HSA	SS		_	Date Started 2 - 1	2-9	7
12	Įνο.	117	5.19	5 'BF	VC				_	m.	4747	2"	_		Date Finished 2-		
$\vdash$			-						-	light	_	140#	-		Driller Mark E	aut	<u> </u>
⇇	=	_	<u>!</u>	150		Sa	mples		Fa	11		30"	-	-	Inspector JHK	HN	
			on-	500				Blows	)er							72	PMI
Ľ	_		idn	<b>↓ŏ</b> -	No.	Туре	Rec.	6 inch	98			lassificati	on	_	Remarks	Spoor	HS
				-		SS	15	$\frac{1-2}{3-3}$		Blac	& SILTACLA	BLLAY	.t matter	-		0	٥
	i	1 1	3	È	7		<u> </u>	3-3	-	60.	5'Black SI	lut. Inthe f	Sand, tra	ce Roots		<u> </u>	+
	0	ابو	Georg	F	2	55	10	4-4		פישן	Orgby SILT	ECLAY				0	0.7
	Ġ	ISER	5	-5	3	55	15	3-3		676	S. ME OL MOLO	i Mottled Sii	TALLAY	5×ff		0	0
	527	<b>e</b>	BENT	F	4	55	19	5-6		e4.	o'Orango 6	oromsys	ILTECLA	1, stiff		-	<del>                                     </del>
	EM. 18ENT GROUT	7	Em./	-				6-5 WH-WI	$\dashv$	C C	layey SIC	T, w/ SAN	U/Reads	7.5	•	0	0
	CEM	7 7		F10	5	SS	18	WH-W	1	680	Clayey SIL	I I I HIGH	Sand Soft	saturated.		0	0
				-	6	55	16	WH-W1		E 4.0	Cray SI LT	SCLAY 11th	le () f San	d		0	0
5		2 " PV		F	7	SS	20	2-2		G4.	5 6 cay Clary 5.0' Gray C	14451LT, CO	mef San	12.75		$\vdash$	
Benton, te				-15	8	55	18	wH-w	_	101	1.0'Gray bl	ack claus	MSILT WIN	ih		0	0
3ent	¥	#1081en	ابد	E	9			12 - HW		10	equent 1/64 cc piece p	"Agitings L art decom	tgy F-511 401.0d u+9. B	NO,		0	0
	PAC	20	Š	-		<b>S</b> S	18	wH - W		(@	11.5 1 Gray (	clayeusi	LT and mf	havel		٥	0
	اما	#	SAND PACK	20	10	55	21	10 - HE	_	1 1 1	ittlectsand occ shell f	d. 3/4" Diece	Pat Ruch @1	11.75'		0	0
	SA			-	11	55	22	3 3 3 3 3 3 3 3 3		Q	120DK gra	4 Clay ou 5	ar littleFS	and		0	0
	δ		0] .	-	12	55		ωH - WI	7		125 DKgycl	enersitis	comectit so	ind,		$\vdash$	H
		<u>'-</u> '		- - 25				<u>wH - wi</u>	`-	$\vdash$	Clayey	SILT		24.0		0	0
				-						(	Gray SIL occ Tamin	TECLAY	,	_			
										1,	DIL Camin	atum 14°C	layeysili				
				F	1		- 1				●140'Gian Thinbed!	"large ME G	ond cecu				
				- 30					-1	1	trace sit	te14.51		~   <b> </b>			
				Γļ		l					@ 15'Giay						
				<b> </b>		ĺ	}	-		- 1	thin bed3	14" of Cla	4-43 CAGI	5.78			
				-35	- 1					0	@16.01G1a	y SILT & C	CAY SOFT	-			
				-	j		ļ		-		@20.016	ay wheel s	SICTACCA	۷, ا			
				ĿΙ	ı		ŀ					nhed cla				٠, .	1jr
				FI			[				@ 22 D' G	raysi ut 8	CCAY,		* # HNV equipp an 11.7 CV Lam	40 W	ηĘι
				-40	1		}		-	1	occ thi	had clau	4245ICT	11	anni /ev cam	٢	
			1	- 1							END OF	F BORING	24.01 -	<u> </u>			
				는			-		╢				- ,	l			
				-45					コ					I			
				-		1	-		-#					İ			
				FI		1			ゴ					1			
				ا ـ ا		1	}		-					į			
			ļ	-50		-	-		-					1			

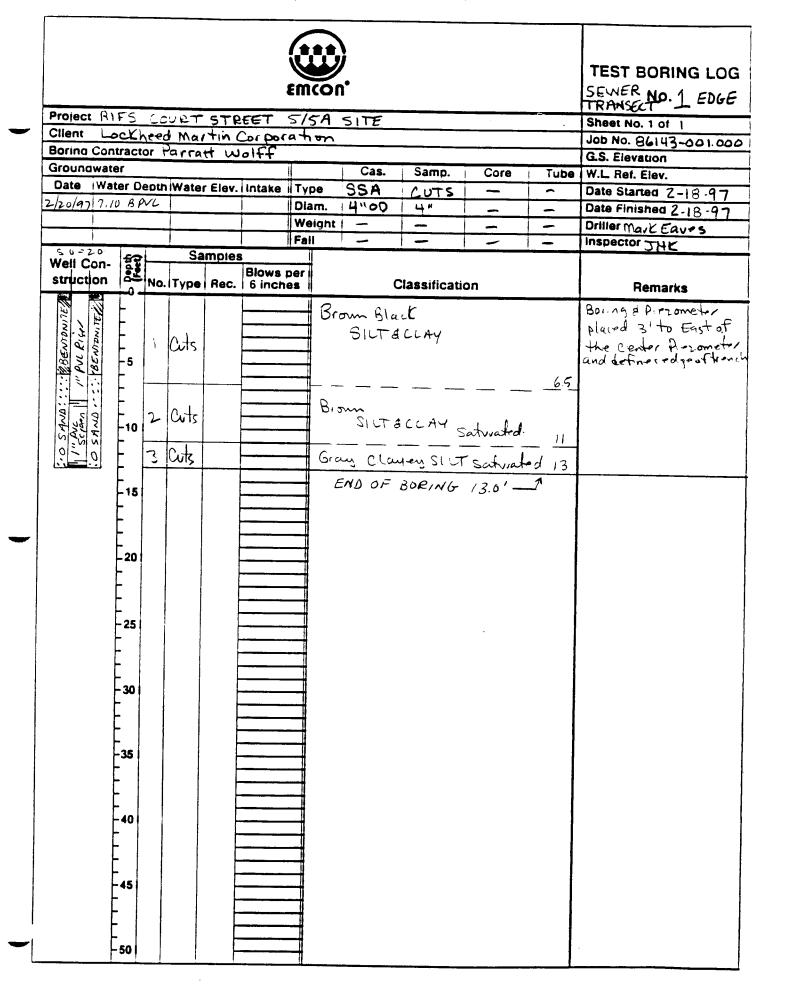


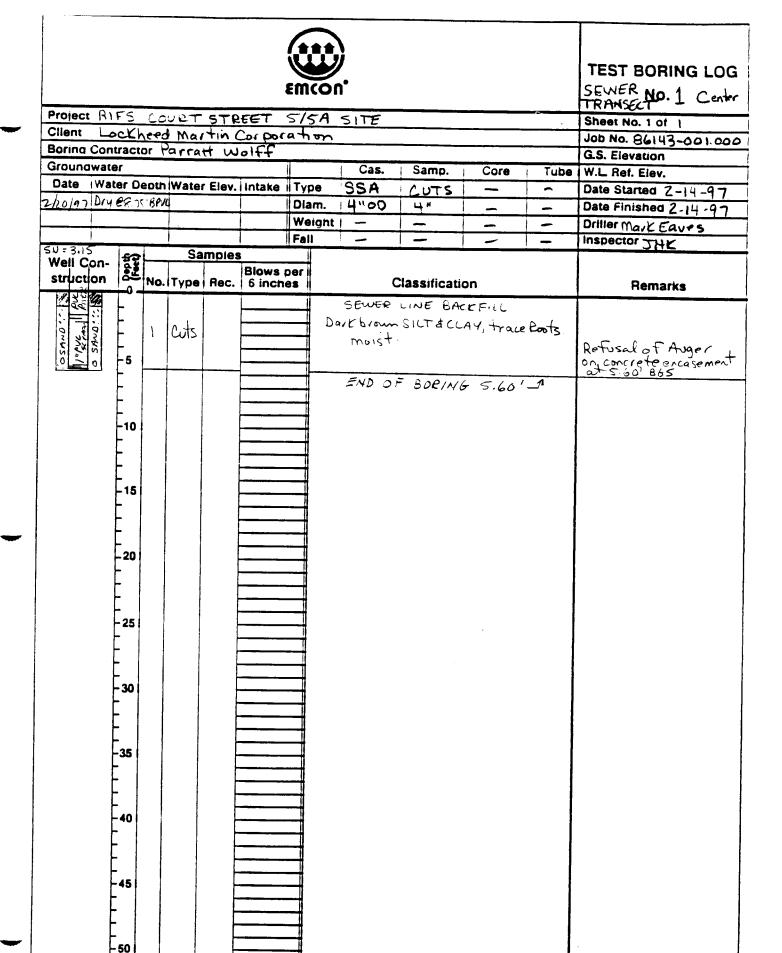
### TEST BORING LOG

Brokest	075	e ^				/ <del></del>					Boring No.MW-1
Client	KT+	<u>&gt; C</u>	WRT	ZIPE	er s	5A 51	TE				Sheet No. 1 of
Boring	Cootes	hee	d Mar	tin Ce	1 porat	<u> </u>		·			Job No. 86143-001.0
Ground		Ctor	PAIRET	π - Wo	117	n	C	C	0		G.S. Elevation 302.
		<u> </u>	1144-4-		Hanna	7	Cas.	Samp.	Core	Tube	1 303.
2/20/97				Water Elev.		Diam.	HSA				Date Started 2-12-9
21001-1	7437	DFV			-	<del></del>	1/4/±D			<u> </u>	Date Finished 2-12-9
			-	-	<del>                                     </del>	Weight Fall					Inspector JHK
			S	ample	<u>!</u>	11	<u> </u>			!	mehacion 2 HF
Well C	on-				Blows	Der					
structi	on is	N	o. Type	Rec.	6 inch	<b>es</b>	C	lassificati	on		Remarks
1 24							FILL	<del></del>		٠, ٠, ٠, ١	
11 88			I AC	ľ	ļ	15100	to chalk	layeysi cti	11ttle FMS	and, IV Hool	
Z. K.					<del> </del>			ey SILT			İ
:0 8ANO PACK:	286	5				<b></b>			LT & CLAY	,	
4/05	0 -	2	100			<del>  </del>	+		טו מננקש		
2 3	?	12	- AC	-	-	∦ ⟨	oray sic	7			
0 2		İ	İ								
	ŭ <b> </b> -1	0		-l				ey 5107		100	
	<b>-</b>		-		<u> </u>	—∦ €	NDOF	BORING ,	0.01_1	•	
		Į	-								
	-		-								
	<b>-</b> '	15	ļ			<del> </del>					
										į	
	-										
	<b>-</b>	20		İ							
	[	20		İ							
	-	ı									·
	<b>-</b>										
		25		1							
	-									1	
		-	1							j	
	-3	ю .				4					
	<b> </b>				<b> </b>						
		1									
	-		}								
	-3	5									
						<b>_</b>					
	-	1	1							Ī	
	<b>-</b>		1			<del> </del>					
		"									
	-									Ì	
	}		}		L					]	
	ļ.	5								İ	
	F.	٦								1	
	H									ł	
	-	1	1	1							




#### TEST BORING LOG Boring No_{1NV}-18 B


								EIII	COI	7				Boring No	N-18	В
Proje	ct	RIFS	5 (	<u>`</u>	RT S	TRE	धा इ	15	A S	ITE	<del>'</del>			Sheet No. 1 of 1		-
Clien	t )	امد	Khi	<u>eed</u>	Mai	rtin (	Corpor	<u>a</u> +				·	· · · · · · · · · · · · · · · · · · ·	Job No. 86143-	~	_
Borin	g C	ontri	acto	or R	arrati	- Wo	IFF							G.S. Elevation 3	22 /	2
Grou	naw	ater								Cas.	Samp.	Core	Tube	W.L. Ref. Elev. 3	010	2 2
Date	V	Vate	r De	pth	Wate	r Elev.	Intake	Ту	pe	HSA	SS	_		Date Started 2-1	2-9	<u></u>
420/9	776	.49	'B₽	V				Dia	ìm.	4/4"50	2"	-	_	Date Finished 2 -	12-9	<del>,</del>
	4							W	light	-	140#	_	-	Driller Mark Ga	146	
								Fa	11	-	36"	-	-	Inspector JHK	<del>/E 3</del>	-
Well	Cor	n-   1	53		Sa Sa	mple	<u> </u>								147	<u>ي</u>
Struc		n	35	No.	Type	Rec	Blows		1	_	lassificati	00				
3	+		•+		. 700	Rec.	8 IIICH			FILL		on		Remarks	Spoor	1
12	H	┨┞	.	١	55	16	2 - 2		Blibe	Clause Sur	ن جانلان ج	Sand. Y-(f)(	2taos		0	
100	1			2	CC		2 - 2		61.0	Swhite C	Canay SICT	itr() Poot	2.5		_	+
13 9	( 3	-	-	2	SS	26	3 - 2		\	layen SI	To I Co	HILAN CEIRA	AIC /		0.2	
CEMENT/BENT GREET	CEMBERT GEOVE	F	5	3	SS	16	$\frac{3-3}{3-3}$		ري (	ay w/ 019 }	VSIVE ACI				0	
123	85.75			,,	cc		5-5		6.0	10 Alda Dr	SICTACI	-AY			<u> </u>	+
F. J.	E	-	-	4	\$5	22	6-5		- في	1.25 Light	gray SILT	-			0	
		-		5	SS	10	2-2		0.	7.3 Gray/or	SILTECLA	r <b>Y</b>			0.1	Ī
1 PVC	8		10	/			WH -WH			75'Gaysi			Root		0.,	+
۱: ۱ '		-	-	6	<b>SS</b>	18	WH - 1		<u>ම</u>	8.0'Gray 5	ILTACCA!	-7 . ~~			0.2	1
		-		7	SS	20	4-4			:90Grāy( 210.0'Gray	Claversii	Ttacof-n	130 Sand 130			T
K	SAND PACK	Į.	15	8	SS		wH-w		1	011.0'DK&C	taray clau	you SILT			0	+
N S	2	-	_ <b> </b>	-	33	18	wH-w		1	011.0'DK&C	Sand occ	pathingism	SANO		0	
PAC	2	Ŀ	Ľ	9	SS	20	WH - W	7	6	211.7 Gray	Clayey SIC	T freq. pre	ciec		0	
0 0	3	F		0	ss	21	WH-WH		1	3120 Ga	1990). 1 ( ( Onders 5 )	ct.andf.m	(اران		_	T
SAND	O SAM	F	20	-	33	-1	WH - W		1.	little cf Sa	and trace i	oots			0	Ľ
0 8	.   0	Ė		11	S5	22	w + - W		L					•	0	ے
	4.	-	$-\Gamma_i$	2	55	19	WH-W			<u> Clayey ?</u>		. :			<b></b>	H
Ŀ	]	F	-	-	-3	17	wH - W	1	¬ '	Gray SICT	A CLAY W	14h 1115	24.0		0	Ĺ
		-	25				l- <u>-</u> -		1	@14.0'Gra		_				
		-		İ					- \	@16061au						
		<b> </b>				}		$\dashv$	- 1	Dec Mary	sin acci	9 Clayensi	,_		•	
		<b>-</b> 3	30		l	į			- 1				ч.			
		F			1	}	<del></del>			@18.0 Gi	aysı ctá	ACCAY	וו			
		t				ŀ		┨	- 1	@2016,	ay SICT	&CLAY wi	[~]			
		F			ľ				. \		bed cla			** HNU equippe	d wi	μ
		-3	5					-1		@220'G	waysict.	ACCAY W	th	an 117 ev lam	۹,	
						į	·	7	1	Freguen	tthin be	ds 1"011/1	16°4	•	•	
		-	İ		1			$\Box$	1			-3.25, 23.7				
		<b>-</b>	0			}		┥	i				1			
		[*								ENU 0	- BORING	6 24.0'-				
		-	-					4					[			
						}		-					ļ			
		-4	5										İ			
		F				Ĺ		4					1			
		t				.  -		-					1			
		F									•		- 1			
		- 54	0		1			_								
			i	1		•		H					1			




#### TEST BORING LOG Boring No. MW-19 S

						EM	con	1*				Boring No. M	W-I	95
Project RI	:F5	ده	>∪ £T	ST24	ET '	5/	5A 4	SITE				Sheet No. 1 of 1		
					C066						·	Job No.86143-	001 c	200
Boring Con	tracto	19 10	FRRA	77-	WOLF	Ł.	.,, .,	<u> </u>				G.S. Elevation		
Groundwate						I		Cas.	Samp.	Core	Tube	W.L. Ref. Elev.	319.	31
Date Wat	er De	pth	Water	Elev.	Intake	Ty	pe .	HSA	\$5			Date Started 6	-9-9	7
6-1097 2.25					<del></del>	Ola		41/4"ID		_		Date Finished 6		
						We	ight	_	146#	_	_	Driller Dova th	oma	
						Fal	ŀ	_	30"			Inspector THK		
Well Con-	हर	_	Type	mple	<b>B</b>				••				PH.	) * ;
struction	35	No	Type	Pac	Blows 6		1	C	lassificati	on		Remarks		7
A	<b>⊹</b> o-	140.	11 ype	nec.	o men		1					Hemark	bbook	ILIZ
	-	1	55	16	X -5	$\dashv$		PHALT /SI					0	6
20	t	_		_	6-8		/"	Hipfmb	JE SANDISI	meclayens	107, 1	Sah, aled a 3 '9"		†_
	_	2	<u>\$</u> 5	12	8-12	-	/90	os by F	M braubl f	andcf5and	14445311		0	C
200	-5	3	55	24	4-4			SILTE			5.3	ļ	0	6
1051.75	t	<u> </u>	~ -	1	4-3		100	ange bray w	nothyd Sici	T & CLAY	ļ			1_
00	F	4	SS	24	3-2		1 6	3.25 Or b	4451 UTEC	LAY WIT	1		0	C
7	<b>+</b>	5	55	24	1-1		٦	occ parti	- 1/64 clan	m's LCT			0	0
200000	10		<del></del>		1-1		10	3.75,049p.L	ed brelau-	MSILT SI	Khirahdi	ļ		
	F .	6	<b>S</b> S	24	1-1		16	24.0'0156			. 11		0	0
\$ <b>200</b>	}	フ	SS	14	1-1	-	ì	es.o'Gian	clamay s	ict, little f	Sand		0	0
	15	8	55	17	2.2		-	CLAY	ESILT				0	0
T. San	-	<u> </u>	2)	16	2.2	_	$\vdash$			soft, sa	<b>↓</b> T	· · · · · · · · · · · · · · · · · · ·		
	t			:			\	•		•	'			
	F,							6 80 G	ian SILT &	CCAY,	. [			
	-20					_			,	r f.c Sar	١٥		,	
							i \	<b>@8</b> .3'6	ray SILT	FCLAY				
	-						'	@15.01	Gray SILT	, trace . F	Sand			
	-				ļ			1 @ 1516	"Gim Cla	way SILT	1/4			
	- 25								of BORING		f	** DID sanibl		
	-							0.,0	-1 55( 740	/ <b>(</b>		with an 11.7eV	lamp	7
	<b>h</b>												•	
	-30													
	-				<del></del>									
	<u> </u>													
	-35				-									
	-											•		
	+													
	-40													
	-													
	-45										į			
	-				-									
	t .													
	F													
	-50													





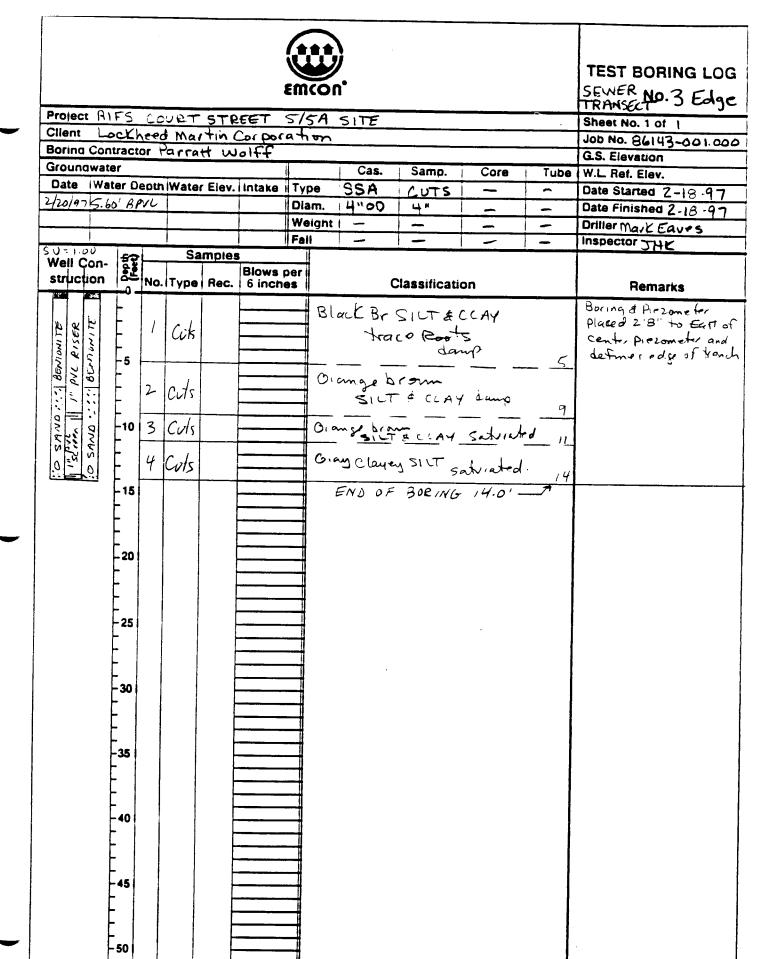




Project O. T.					Emco	ou.				TEST BORING LOG SEWER NO. 1 West TRANSECT
Project RIFS		URT	STR	EET	5/5/	4 SITE			· ·	Sheet No. 1 of 1
	heec	Mar	tin (	Jol bol	ation	<u> </u>				Job No. 86143-001.000
Boring Contrac	tor r	arra	H W	01++						G.S. Elevation
Groundwater				T	<u> </u>	Cas.	Samp.	Core	Tube	W.L. Ref. Elev.
Date Water	Depth	Water	r Elev.	intake	Type	SSA	CUTS	~	_	Date Started 2-14-97
2/20197 6.56	BPVL	<u> </u>			Diam		4"	_	_	Date Finished 2-14-97
					Weig	ht! —	-	_	_	Driller Mark Eaurs
5.0=1.80		<u> </u>			Fall	_	-		-	Inspector JHK
Well Con-	₽	Sa	mples							
struction	No.	Туре	Rec.	Blows 6 inch	es i	(	Classification	on		Remarks
1   1   1   1   1   1   1   1   1   1	3 4	cuts cuts				Black SILT  Brange by SILT &  Drange Dr. SILT &  Flay Clayer  END OF &	CLAY, SA	damp trusted atriated	3 11 13	



						EMC	<b>.</b> .				TEST BORING LOG SEWER NO. 2 East TRANSECT
Project R	FS	Co	URT	STR	FET	5/5	A SITE		· · · · · · · · · · · · · · · · · · ·	· .	Sheet No. 1 of 1
Client L	ock	1660	Mai	tin (	<u> </u>						Job No. 86143-001.000
Boring Con	tract	or t	arra	<del>t</del> w	0144						G.S. Elevation
Groungwat						il	Cas.	Samp.	Core	Tube	
Date Wa	ter D	eoth	Wate	r Elev.	Intake	Тур	SSA	CUTS	_	_	Date Started 2-17-97
2/20/97 10.1	4'BF	VL				Diar		4"	_		Date Finished 2-17-97
						Wei	gnt i —	<b>—</b>	_	_	Driller Mark Eaves
			<u> </u>			Fall		_	-	_	Inspector JHK
S.U=3.57 Well Con-	इस	-	Sa	mples	<u> </u>	#					
struction	- C	No.	Туре	Rec.	Blows 6 inch	es II		Classificati	on		Remarks
	F						Black	SILT & CO	4./		
1 2 X 3			Cuts				٦, ١	ace Root			
1. PVC RISER	+_	'	013				14	act con	'> damp	_	
2 7 60	- <b>5</b>							·		_ 5	
	ļ.	2	Cuts				Grange	me16			
	+	_	COL				3107	- & CLAY	damp		
10 SAND	-10	3	Cuts				Orang bro		# C ( A)	10	
S 5 5 5	L		Cols						ather atten	12	
	F	7	C012			4	Gray Clay	ey SILT	, satura	ted 14	
	-15						ENDOF	BORING	14.0'-		
	- 1										
										Ì	
	-20									1	
	F	İ	]							j	
	<u> </u>				- <del></del>	-#					
	- 25										
	<b> </b>			ł		╣			•	ļ	
	<b></b> 1	ļ		}						l	
	-30			į							
	-	Ì	1	}						1	
										1	
	-35			-						1	
				E							
	-			F						- 1	
	-40			ŀ							
	- '			F		$\exists$					
										- 1	
			1	-		-∦					
	-45									1	
	-		}	-						- 1	
<u> </u>	-									1	
}	-50			-						] -	




Project RIFS Client Lockh Boring Contract Groungwater Date Water De 2/20/97/8.27/8 P	ecth	arra	1716 ( H W	EET Corpor olff	atre	Cas. 9 SSA	Samp.	Core	Tube	Date Started Z-18-97 Date Finished 2-18-97
					Fall		-		_	Inspector JHK
Well Con- হি		Sa	mples	] 						3112
struction	No.	Туре	Rec.	Blows	es	(	Classification	on		Remarks
AND :: BENTONITE I		eck				Black Strace	SILT & C	CAY damp	5	Boing and Arzometer placed 3'4" to east of center prezometer and delines edge of the no
282		Cuts					CLAY d	•	9	,,
						Diampe bro	CLAY S	satuated		
0 0	4	Cuts				oray Clay	ey SILT	. Satu	ated 14	
- 15   - 20   - 25   - 25   - 30   - 35   - 40   - 45   - 45   - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 50     - 5						ENDOP	BORING			

		"	1(0)	) 1°				TEST BORING LOG SEWER NO. 2 Center TRANSECT
Project RIFS Cos	リシナ ミナロ	ET CI	(CA	CITE	<del></del>	<del></del>	~	
Client Lockheed	Martin C	2000	3/1	SILE			· · ·	Sheet No. 1 of 1
Boring Contractor Po	Coscate III	DI DOLA I	רפו					Job No. 86143-001.000
Groungwater	arratt wa	717-7						G.S. Elevation
				Cas.	Samp.	Core	Tube	W.L. Ref. Elev.
	Water Elev.			SSA	CUTS			Date Started Z-17-97
2/20/97 9.22' BPVL			am.	4"00	1 4"		_	Date Finished 2-17-97
			eignt	1 -		_	_	Driller Mark Eaves
5.0. = 3.3		Fa			_		-	Inspector JHK
Well Con-	Samples	<del></del>	4					
struction No.	Samples Type Rec.	Blows per 6 inches			Classificati	on		Remarks
0 SAND:::	Cuts		# {	Black Si	TECC	A Y		Retusal of Auger on concrete encasement
0 70 -			I		damp BORING		, ,	at 6.7' BGS
}			<b>\ </b>	\ A =	2 . 0 . //	1 1	6.7	0.7 883
-10 -15 -15 -20 -25 -30 -40 -45								

Contractor Parratt Wolff  Dawater  Cas. Samp. Core Tube W.L. Ref. Elev.  Water Depth Water Elev. Intake Type SSA CUTS — Date Started 2-17-97  8.86' BPVL  Diam. 14"00 4" — Date Finished 2-17-97  Weight — — Driller Mark Earl's  Fall  Samples  No. Type Rec. Blows per Sinches  Classification  Remarks  Black SILT & CLAY trace Roits  Orange brown		WER NO. 2 West ANSECT
Water Debth Water Elev. Intake i Type SSA CUTS — Date Stared Z-17.97  18 86 8pt   Diam. 14"00 4" — Date Finished Z-17.97  Weight — — Date Finished Z-17.97  Weight — — Differ Mark Eaves Inspector JHK  Samples  Samples  Remarks  Black SILT & CLAY  Trace Parts  Classification  Remarks  Plack SILT & CLAY  Trace Parts  Classification  Remarks  Classification  Remarks  Classification  Remarks  Classification  Remarks  Classification  Remarks  Classification  Remarks  Classification  Remarks		NO. 86143-001.002
Water Depth Water Elev. Intake Type SSA CUTS - Date Started Z-17.97    S & Bru   Dlam.   4"00   4" - Date Finished Z-17.97    Weight   - Driller mark Eaves   Inspector JHK    Samples   Samples   Classification   Remarks		
Date Finished 2-17-97 Weight		Ref. Elev.
Olam. 14"   Olam. 14"   Olam. 14"   Olam. 14"   Olam. 14"   Olam. 14"   Olam. 14"   Olam. 14"   Olam. 14"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam. 15"   Olam		e Started 2-17-97
Weight     Inspector THK    Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples   Inspector THK   Samples	100 4" Diam. 4"00 4" - Date	e Finished 2-17-07
Samples No. Type Rec. Blows per Classification Remarks  Black SILT & CLAY trace Parts  2 Livk Silt & CLAY damp  10 3 Cvis Silt & CLAY damp  4 Cvis Silt & CLAY Silt & CLAY  Satirated  END OF BORING 15.5'  -25  -40  -45	Weight I - Driff	ler May K Faras
Samples No. Type Rec. Blows per Sinches  Black Sittecary Trace Rots  Comage brown Sitt & Clare Sitt & Clay Trace Rots  Comage brown Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt & Clay Sitt &		or Have Eaves
Orange brown SILT & CLAY Trace Both  1 Cik  Black SILT & CLAY Trace Both  10 3 CV/s  Crange brown SILT & CLAY II  Gray Clayery SILT Saturated  END OF BORING 15.5'  -25  -30  -40	U = 2.30 Samples	sector 24K
Black SILT & CLAY  trace Parts  5  Crange brown  SILT & CLAY damp  9  10 3 Cris  Crange brown  SILT & CLAY  Gray Clayer SILT,  Satvated  END OF BORING 15.5'  25  -46  -46	/ell Con- Samples	
Black SILT & CLAY  trace Parts  5  Crange brown  SILT & CLAY damp  9  10 3 Cris  Crange brown  SILT & CLAY  Gray Clayer SILT,  Satvated  END OF BORING 15.5'  25  -46  -46	truction No. Type Rec. 6 inches Classification	Damarka
Black SILT & CLAY  trace Parts  5  Crange brown  SILT & CLAY damp  9  10 3 Cris  Crange brown  SILT & CLAY  Gray Clayer SILT,  Satvated  END OF BORING 15.5'  25  -46  -46	O DESCRIPTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY	riellarks
10 3 Cols  Crange brown FILTE CLAY  11  Gray Clayer SILT,  Satvated  15.5  END OF BORING 15.5'  36  40  45	Black SILT & CLAY trace Roots  Orange brown	
10 3 Cols  Crange brown FILTE CLAY  11  Gray Clayer SILT,  Satvated  15.5  END OF BORING 15.5'  36  40  45	NAM - SICT &CCAY	
10 3 Cols  Crange brown FILTE CLAY  11  Gray Clayer SILT,  Satvated  15.5  END OF BORING 15.5'  36  40  45	Siz + 1 Cik trace ents	
10 3 Cols  Crange brown FILTE CLAY  11  Gray Clayer SILT,  Satvated  15.5  END OF BORING 15.5'  36  40  45	Q  P	
10 3 Cols  Crange brown FILTE CLAY  11  Gray Clayer SILT,  Satvated  15.5  END OF BORING 15.5'  36  40  45	JE 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10 3 Cols  Crange brown FILTE CLAY  11  Gray Clayer SILT,  Satvated  15.5  END OF BORING 15.5'  36  40  45	Orange hisim	
10 3 Cols  Crange brown FILTE CLAY  11  Gray Clayer SILT,  Satvated  15.5  END OF BORING 15.5'  36  40  45	Sut & CLOV dama	
10 3 Cots  Grang Clayer STUT, Saturated  15.5  END OF BORING 15.5'  20  40  41  40  41  41  42  43  44  45	SICI & CLAY damp	
15   Gray Clayers Styr, Satisfactory   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.	10 2 C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C T 4 C C C C	
15   Gray Clayers Stat.   Saturated   15.5	Satvated CCA7	
20 = 25 = 30 = 35 = 36 = 36 = 36 = 36 = 36 = 36 = 36	7	
20 END OF BORING 15.5'  -25  -30  -45	Gray Clauser Str	
20 END OF BORING 15.5'  25 -36 -40 -40	1   P   C v75	
20 END OF BORING 15.5'  -30 -35 -45	5aniard	
-25 -30 -35 -40 -45		
-35 -35 -40 -45	END OF BORING 15.5'_7"	
-36		
-35 -35 -40 -45		
-30		
-30		
-35	-	
-35		
-35	-25	
-40		
-40		
-35		
-35	20	
-40		
-40		
-40		
-40		
-45	-35	
-45		
-45		
-45		
-45		
	[40]	
	-40	
	-40	
	-40	
├ <u>-</u>		

Project RIFS	Ĺ O:	JET	STE		EMCC S/S/F					TEST BORING LOG SEWER NO. 3 East
Client Lock	and	M - 4	<u>. J.: </u>	Cor por	<del>-1</del> -	SITE			· ·	Sheet No. 1 of 1
Boring Contract	75.40	mar		75. Der	a n ex	`	<del></del>			Job No. 86143-001.000
Groungwater	01 10	arra	$\pi \omega$	01++						G.S. Elevation
				,		Cas.	Samp.	Core	Tube	W.L Ref. Elev.
Date   Water D	eoth	Water	r Elev.	Intake	Туре	SSA	CUTS	_	^	Date Started 2-17-97
120/97 6.96' BI	VL				Diam.	4"00	4	_	_	Date Finished 2-17-97
					Weigr	nt   —	-	_	-	Driller Mark Eaves
					Fall		-			Inspector 2HK
U= 2.3		Sa	mple	3				<u>:</u>	<del></del>	SAE
Vell Con- ରିଥି truction ଦିଆ	No.	Туре	Rec.	Blows (	per i	(	Classificati	on		Remarks
######################################	2 3	Cuts Cuts				 Orange	brum T & CCAY  T & CCAY	damp damp damp	5: 9 11 13 1	





						M	رك					TEST BORING LOG
					•	EM	(01	1*				SEWER NO. 3 Center
Project	RIF	2د	CURT	STR	EET	5/5	A	SITE				Sheet No. 1 of
Client	<u> </u>	her	ed Ma	1tin (	Cor bor	a th	کھ					Job No. 86143-001.000
Boring (		ctor	Parra	H W	olff						-	G.S. Elevation
Grounav								Cas.	Samp.	Core	Tube	W.L Ref. Elev.
Date	Water	Dept	in Wate	r Elev.	intake	Тур	е	SSA	CUTS	-	_	Date Started 2-17-97
2/20/97 1	)14 <u>@8.</u>	54'81	ra			Dia	<b>m</b> .	4"00	LL H		_	Date Finished 2-17-97
						We	ight	<u> </u>	-	_	_	Driller Mark Eaves
						Fall			_		_	Inspector JHK
S.U = 2.3 Well Co	n-   5	오	Sa	amples	<u> </u>							
struction	n o	N	о. Туре	Rec.	Blows 6 inch	es			Classificati	on		Remarks
STAND .: But	-					1	R	lack s	ILT & CC	4 . 4		
	<b>;</b> }	] (	Cuts				_	trais	Romate a	A9 samp	_	
3 1/2 3			T .									Date Lat Avea
3 30 5	-5	2	- Cuts			$\Box$	Oı	ange b	own .	. 1		Refusal of Auger on concrete encasement at 6.2 'B65.
61-16	)  -		-		-	$\dashv$			TACLA	ay damp		at 6.2 1 865.
			ł					END O	F BORIN	16 6,2	1	
	-	1		İ								
	-1	0										
				1							i	
,	Ę											
	<b>-</b>	_									1	
	-1	5										
											Í	1
	-			[ :		$\square$						1
	-2		İ			-#					j	1
											ŀ	
	-										l	
	-					-#					Į	
	-2	5									Ì	
	-									•		1
	-				<del></del>						1	
	Ė		1 1		-						İ	
	F 30					<b>_</b>					1	1
	-			}							- 1	
	Ė		1 1	ŀ		-#						
	F										}	
	-35			}		-#					ł	
	<u> </u>	1		}							- 1	
											1	
	-			F							- 1	1
	-40	1		}		-#						]
	Ľ			-		$\exists$					1	
	F										1	
	<b>-</b> -			}		-#						
	-45	1		f							1	
	F											i
	-	1		F		4					j	
	 			-	<del></del>						1	
	- 50	1									1	



Client Lockheed Martin Corporation  Boring Contractor Parratt Wolff  G.S. Elevation  Cas. Samp. Core Tube W.L. Ref. Elevation  Date Water Depth Water Elev. Intake Type SSA CUTS — Date Started  Diam. 4"00 4" — Date Finishe  Weight — — Driller Mark  Socient  Section Samples  Well Construction  Samples  Blows per Since Core Tube W.L. Ref. Elevation  Socient Started  Socient Started  Diam. 4"00 4" — Date Finishe  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  Socient Started  S	of 1 143-001.000 on ov. 1 2-17-97 10 2-17-97
Boring Contractor Parratt Wolff  Groundwater  Date Water Deoth Water Elev. Intake Type SSA CUTS - Date Started 2/20/97 8 32' BPVC  Diam. 4"00 4" - Date Finishe Weight - Driller Mark  Weight - Driller Mark  Well Construction  Samples  Well Construction  Ren  Black SILT&CLAY  Trace Roofs  damp. G  Corange Diam.  SILT&CLAY damp 9  SILT&CLAY damp 9  SILT&CLAY damp 9  SILT&CLAY Saturded 11	143-001.000 on iv. 12-17-97 Id 2-17-97 Eaves
Boring Contractor Parratt Wolff  Groundwater  Cas. Samp. Core Tube W.L. Ref. Ele  Other Water Depth Water Elev. Intake Type SSA CUTS — Date Started  2/20/07/832'88VV  Diam. 4"00 4" — Date Finishe  Weight — — Driller Mark  Fall  Samples  Well Construction  Struction  No. Type Rec. Blows per 6 inches  Blows per 6 inches  Classification  Ren  Black SILT&CLAY  Line Boots  damp. 6  Company Diam.  SILT&CLAY dam? 9  SILT&CLAY dam? 9  SILT&CLAY Saturded 11	on iv. 12-17-97 002-17-97 Eaves
Groundwater    Cas. Samp. Core   Tube   W.L. Ref. Elevator	12-17-97 12-17-97 102-17-97 Eaves
Date   Water Deoth   Water Elev.   Intake   Type   SSA   CUTS   Date Started   2/20/97/8.32   8/9VL   Diam.   4"00   4"   Date Finishe   Weight   Double   Meight   Double   Diam.   4"00   4"   Date Finishe   Weight   Double   Diam.   4"00   4"   Date Finishe   Meight   Double   Diam.   4"00   4"   Double   Diam.   Grant   Diam.   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Grant   Gr	12-17-97 102-17-97 Eaves
Diam. 14"00 4" - Date Finisher  Weight Inspector J  Well Construction  No. Type Rec. 6 inches  Classification  Rem  Black SILT&CLAY  Amp. 6  Cols. 11 Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11  Cols. 11	Eaves HK
Weight   Driller Mark    Fall     Inspector J   Weight     Inspector J   Well Construction   No. Type   Rec.   Blows per   6 inches   Classification   Ren   Weight     Inspector J   Ren   Weight     Inspector J   Ren   Weight     Inspector J   Ren   Weight     Inspector J   Ren   Weight     Inspector J   Ren   Weight     Inspector J   Ren   Weight     Inspector J   Ren   Weight     Inspector J   Ren   Weight     Inspector J   Ren   Weight     Inspector J   Ren   Weight     Inspector J   Weight     Inspector J   Ren   Weight     Inspector J   Weight     Inspector J   Ren   Weight     Inspector J   Weight     Inspector J   Ren   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J   Weight     Inspector J	Eaves HK
Somples  Well Construction  No. Type Rec. Blows per 6 inches  Black SILT & CLAY  Trace Roofs  damp. 6  Citys  Orange Drown  SILT & CLAY damp  9  Orange Drown  SILT & CLAY Saturated 11	ΉK
Well Construction  No. Type Rec. Blows per 6 inches  Classification  Rem  Blows per 6 inches  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Rem  Classification  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  Comp  C	
Black SILT&CLAY  trace Roofs  damp.  5  Cits  Orange Drown  SILT&CLAY damp  9  Orange Drown  SILT&CLAY damp  9  Orange Drown  SILT&CLAY damp  10  3 Cuts  Orange Drown  SILT&CLAY damp  11	narks
Orange Syon a CLAY Saturated 11	
20 END OF BORING 13.5'	

# APPENDIX B SAMPLING LOGS

Wall No. MW-	1D Some LMC Syracuse CourtSt 5
Key No. 25	
,A"'\	West C Cam 3/13/97 Time in 9:27 Time Cut 946
PO Beckground	
Orseger Tubes - Background	
Net Com	00und
MELL INFORMATION	
	nc roc
Reference Point Menied on Cal	
Wed Diameter	2.0" 1.5' extension on PVC
Wed Deeth	36.59
Wester Table Depth	1,48
Length of Casing Above Grade	(iii)
	V
Sug Teat? (Y/Ng)	
Nacaresop? (1/(N)	
-	
WELL WATER INFORMATION	
angth of Weter Column	<u>55.41</u>
folume of Water in West	567
Purnaing Reso of Purna	0 25 gui. Sand pack HzO vol = 1.00 gcl
folume of Seder	0 75 gai.
Mnume of Pumoing	
tumber of Beds	
clume of Water Removed from	Wed 249 Evecusion Method: Baller ( ) Pump (/) Evecusion Rate
Actuative of Water Removed from Did well go dry? Y N	After 1 Values After 2 Values After 3 Values
Idiume of Water Removed from Md well go dry? Y N	After 1 Volume After 2 Volumes After 3 Volumes Amount Removed Removed
Perameter Livier	After 1 Volume   After 2 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volum
Personal S S S	After 1 Volume After 2 Volumes After 3 Volumes  Removed Removed Removed.
Personate Living  Personate 5.5  H 4.5	After 2 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Vo
Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Li	After 1 Volume   After 2 Volumes   After 3 Volumes   Removed   Removed
Personner Lives  Temperature 5.5  Personner 1.55  Conductance 1.200	After 2 Volume
Perameter Living  Temperature   5 5 1  SH   4.52  Conductance   1.200	After 1 Volume   After 2 Volumes   After 3 Volumes   Removed   Removed
Perameter Livites    Perameter   Livites	### 1 Volume   After 2 Volumes   After 3 Volumes
Perameter Living  Temporature   5.5    SH   4.5    Conductance   1.200	### 1 Volume   After 2 Volumes   After 3 Volumes
Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Li	### OC   Frecueton Reta   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ###
Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Livites  Perameter Liv	### 1 Volume   After 2 Volumes   After 3 Volumes     After 3 Volumes   Removed     10.6
Perameter Living  Perameter Living  Impostance 5.61  H 4.52  Conductance 1.200  PROUND-WATER CHARACTES  Temperame  Conductance 2.000	### OC   Frecueton Reta   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ###
Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Living  Perameter Li	### OC   Frecueton Reta   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ### 3 Volumes   ###
Perameter Livier  Perameter Livier  Temperature 5.61  PH 4.52  Conductance 1.200  PROUND-WATER CHARACTER  Temperature  Conductance Character  Temperature	After 1 Volume
Perameter Living  Perameter Living  Imposture 5.61  In 4.52  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  Conductance 1.200  PROUND—WATER CHARACTES  Temperame  CONDUCTANCE 1.200  PROUND—WATER CHARACTES  Temperame  CONDUCTANCE 1.200  PROUND—WATER CHARACTES  Temperame  CONDUCTANCE 1.200  PROUND—WATER CHARACTES  Temperame  CONDUCTANCE 1.200  PROUND—WATER CHARACTES  Temperame  CONDUCTANCE 1.200  PROUND—WATER CHARACTES  Temperame  CONDUCTANCE 1.200  PROUND—WATER CHARACTES  Temperame  CONDUCTANCE 1.200  PROUND—WATER CHARACTES  Temperame  CONDUCTANCE 1.200  PROUND—WATER CHARACTES	After 1 Volume
Perameter Living  Perameter Living  Tempositure 5.51  NH 14.52  Conductance 1.200  PROUND—WATER CHARACTES  Tempositure  Conductance 1.200  PROUND—WATER CHARACTES  Tempositure  Conductance 1.200  PROUND—WATER CHARACTES  Tempositure  Conductance 1.200  PROUND—WATER CHARACTES  Tempositure  Conductance 1.200  PROUND—WATER CHARACTES  Tempositure  Conductance 1.200  PROUND—WATER CHARACTES  Tempositure  Conductance 1.200  PROUND—WATER CHARACTES  Tempositure  Conductance 1.200  PROUND—WATER CHARACTES  Tempositure  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WATER CHARACTES  Tempositure 1.200  PROUND—WAT	After 1 Volume   After 2 Volumes   After 3 Volumes    Removed   Removed   Removed    10.6   10.7   11.1    5 21   5.74   6.14    900   900   700    ASSINCE AFTER SAMPLE COLLECTED  4.4 °C  700 65  6.71 SU  32.8 ATTU  36.7 From Might
Perameter Living  Temporature 5.51  SH 4.52  Conductance 1.200  PROUND-WATER CHARACTES  Temporature  Conductance 1.200  PROUND-WATER CHARACTES  Temporature  Conductance 1.200	April Volume
Parameter Living Temperature 5.51 pH 4.52 Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature Conductance 1.200  PROLING - WATER CHARACTES Temperature CONDUCTANCE 1.200  PROLING - WATER CHARACTES Temperature CONDUCTANCE 1.200  PROLING - WATER CHARACTES Temperature CONDUCTANCE 1.200  PROLING - WATER CHARACTES Temperature CONDUCTANCE 1.200  PROLING - WATER CHARACTES Temperature CONDUCTANCE 1.200  PROLING - WATER CHARACTES TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	After 1 Volume   After 2 Volumes   After 3 Volumes    Removed   Removed   Removed    10.6   10.7   11.1    5 21   5.74   6.14    900   900   700    ASSINCE AFTER SAMPLE COLLECTED  4.4 °C  700 65  6.71 SU  32.8 ATTU  36.7 From Might
Personner Livier Temperature 5.5   pH 4.5 - Conductance 1.200  PACUNO - WATER CHARACTES Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Te	Aper 1 Volumes   Aper 2 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3
Personner Liver Temperature 5.51 pH 4.52 Conductance 1.200  ERCUND - WATER CHARACTES Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature Tempe	APER 1 VOLUME   APER 2 VOLUMES   APER 3 VOLUMES    REMOVED   APER 2 VOLUMES   APER 3 VOLUMES    REMOVED   10.7   111    5 31   5.74   6.14    900   900   900   900    APER SAMPLE COLLECTED  4.4 °C  700 65  6.71 SU  3.67 74 - 43/1  10 = GWOLK WELL 9 Sand Vol = 6.67  10 = GWOLK WELL 9 Sand Vol = 6.67  24 VOAS OXCH
Perameter Livier  Temperature 5.5 in 14.5 de Conductance 1.200  ERCUND - WATER CHARACTES  Temperature 1.200  ERCUND - WATER CHARACTES  Temperature 1.200  ERCUND - WATER CHARACTES  Temperature 1.200  ERCUND - WATER CHARACTES  Temperature 1.200  ERCUND - WATER CHARACTES  Temperature 1.200  ERCUND - WATER CHARACTES  Temperature 1.200  ERCUND - WATER CHARACTES  Temperature 1.200  ERCUND - WATER CHARACTES  Temperature 1.200  ERCUND - WATER CHARACTES  Temperature 1.200  ERCUND - WATER CHARACTES  TEMPERATURE 1.200  TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TO	Aper 1 Volumes   Aper 2 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3
Personner Livier Temperature: 5.61 pM 4.53 Conductance: 1.300  PROUND - WATER CHARACTES Temperature Conductance: 1.300  PROUND - WATER CHARACTES Temperature Conductance: 1.300  PROUND - WATER CHARACTES  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Charactes  Temperature Conductance: 1.300  Pround Char	Aper 1 Volumes   Aper 2 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3 Volumes   Aper 3

13-04-64

Men No	SVNOALIV
Gy Ng. 7537	Samoung Parsonnel KITES KB
	Sampling Paragraph   KHG KB   Time Cut 18:19
, ,	weether micry distric 20's
reager Tubes - Background	MARINE MYCELLY ACTIVITY CO. 500
Compound	
VELL INFORMATION	
TIC !	TOC
Reference Point Meried on Caleng	
Net Diameter 2.0"	O(d)
Med Death 49.28 1	2.0' extension on PVC
Nesser Table Depth 2.76	
ength of Casing Above Grade (LUM)	
lug Toet (Ykg	
ledevelop? (1(N))	
$\boldsymbol{\mathcal{C}}$	
YELL WATER INFORMATION	
angth of Wester Column 465	
clume of Water in Well 7.44	
umping Rese of Pump	Sund puce H20 vol = 2.00
clume of Beller : 0.25 9.	ound fuce 1120 ver
Mnume of Pumping	
lumber of Bals	
	oct Seler() Pump (v)
Mer 1 Volume After 2 Volume Personater Livier Removed Removed	Removed.
Ference Living Removed Removed Personnel IIII 9.7	Removed:
Ference Living After 1 Volume After 2 Volume Personnel Living Removed Removed embersone Living 19.7	Removed.
Ferences Lyter Removed Removed Personal IIII 19.7	Removed.    S &   C1   7 < C     +2,00
Ference Living Removed Removed Personnel IIII 9.7	Removed.    S &   C1   7 < C     +2,00
Ference I Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   Afte	Removed.    S & C1   7 < C
Ference Intel Removed Removed Personnel Intel Removed Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Removed Personnel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel	Removed.    S & C1   7 < C
Ference Intel Removed Removed Removed Personnel Intel Removed Removed Removed Personnel Intel Removed Removed Removed Personnel Intel Removed Removed Removed Personnel Intel Removed Removed Removed Removed Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Removed Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel	Removed.    S & C1   7 < C
Ference Intel Afer 1 Value Afer 2 Value  Personator Intel Removed Removed  embergure 1:4:3:4:1:9:7  M. G.O.I. G.43:1:7:11  Conductance 1:4:00 >-5:00   3:4:00  ROUNG-WATER CHARACTERISTICS AFTER SAMPLE COLLECTE  embergure  G. 9:00  G. C. C. C. C. C. C. C. C. C. C. C. C. C.	Removed.    S & C1   7 < C
Ference Intel Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed	Removed.    S & C1   7 < C
Personator Living After 1 Values After 2 Values Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Remove	Removed.    S &   C1   7 < 5     +2,00
Ference Intel Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed	Removed.    S & C1   7 < C
Ference Live Removed Removed Removed Personnel Live Removed Removed Removed Removed Removed Personnel Live Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Live 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	Removed.    S &   C1   7 < 5     +2,00
After 1 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After	After 3 Volumes Removed  7  Mag 1  7
Ference I Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   Afte	- mag 12  + Sand mark vol = 9.449.4
After 1 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After	- 4 Schol park vol = 9.449.1
After 1 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After	- 4 Schol park vol = 9.449.1
After 1 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 3 Values   After 2 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After 3 Values   After	- Mar 3 Volumes  Removed  - 8 8  - 1 7.55  - 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200
After 1 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After	- Mar 3 Volumes  Removed  - 8 8  - 1 7.55  - 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200  - 1 200
After 1 Valuation Residence  Personation Livering Removed Removed  Personation Livering Removed Removed  Personation Livering Removed Removed  Personation Livering Removed Removed  Personation Livering Removed Removed  Personation Livering Removed Removed  Personation Livering Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed	- 4 Schol park vol = 9.449.1
After 1 Valuation Research  Personator Livery Removed Removed  Personator Livery Removed Removed  Personator Livery Removed Removed  Personator Livery Removed Removed  Personator Livery Removed Removed  Personator Livery Removed Removed  Personator Livery Removed Removed  Personator Livery Removed Removed Removed  Personator Livery Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed	- 4 Schol park vol = 9.449.1

Rey No. 3537  Semond Arrannel PS LATC:  PO Becaground C West C Case 3/11/97 Time in Time Cut 18:10  Oranger Tupes - Bacaground NA Westner Cold Alignment Cold Alignment Substitute St 305	West No.	MW 35	STO NAME LINE SYNTHING COUNTS 5/5A
Description   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   The Col   Th			Samuel Pik Kitti
Oragon Tuesa - Bacoground N/A  Well processor Compound  Well processor Compound  Well processor Compound  Well processor Compound  Well processor Compound  Well processor Compound  Well processor Compound  Well processor Compound  Well processor Compound  Well processor Compound  Well Compound  Well Waster Common  Well Waster Common  Well and Processor Compound  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Well Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster Common  Waster	_		
WELL REPORTATION  WELL REPORTATION  TO TOC  PRESENTED FROM Manage on Casing  Well Report 15, 51  Wase Token Coopy  Langer of Casing Above Cross  Stug Test? (Trify)  Reconvened? (Trify)  Reconvened? (Trify)  Well Water Calum  Yours of Water Calum  Yours of Water Calum  Yours of Water Among Type was  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Personal Stude  Pe	•	'—————————————————————————————————————	
WELL APPCHAATON  Reservence Prom Manage on Carry  West Cheen 1 5 5 1	Oranger Tubes -	- SecrementNA	Weether Cold Mintelli (Vertex St. 305
President Point Manado on Casard  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Williamer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Cla	West	Compound	
President Point Manado on Casard  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Williamer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Claimer  West Cla			
PARTICIPATE PORT MARKED ON CASING WASH CARRIED FOR CASING WASH TARK CASING CASING WASH TARK CASING CASING WASH TARK CASING CASING WASH TARK CASING CASING WASH TARK CASING WASH TARK CASING WASH CASING WASH TARK CASING WASH TARK CASING WASH TARK CASING WASH TARK CASING WASH TARK CASING WASH TARK CASING WASH TARK CASING WASH TARK CASING WASH TARK CASING WASH TARK CASING WASH TARK TARK CASING WASH TARK TARK CASING WASH TARK TARK TARK TARK TARK TARK TARK TARK	WELL INFORMA	TION	
RAMENDAMENT PORT MANAGO ON CASING WAST COMMENT WAST CASING ACCORD  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WAST CASING  WA		nc nc	roc
West Deannew West Toole Groth  Length of Casing Above Groce  Stag Teert (TR)  Meach and Court   23 4  West Toole Grown Above Groce  Stag Teert (TR)  Meach was Toole Grown   23 4  West Toole Grown   23 4  West Was Toole Grown   23 4  West Was Toole Grown   23 4  West Was Toole Grown   23 4  West Was Toole Grown   23 4  West Was Toole Grown   23 4  West Was Toole Grown   23 4  West Was Toole Grown   23 4  West Was Toole Grown   23 4  West Was Toole Grown   23 4  West Was Toole Grown   23 4  West Was Toole Grown   23 4  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Evacuation Metroc Baser (1/2 Pump ())  Ev	One of the last		
WEBS TO BOOK TO TO	<del></del>		
WILL VALER INFORMATION  WELL WATER INFORMATION  WELL WATER INFORMATION  WELL WATER INFORMATION  Langin of Water Column  Langin of Water Column  Langin of Water Column  Langin of Water In Well  Principle Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem  Perinciple Rem			<del></del>
Bug Test (Mg)  Receivage of (Mg)  Receivage of (Mg)  WELL WATER ENCONATION  Length of Wester Column  13 (4  Wolling of Wester of Wester in New  Philipping Rem of Plance  Volume of Bades  13 (5)  Evacuation Methods Bades  14 (7)  Serviciation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Evacuation Methods Philipping Ory 1 (8)  Evacuation Methods Bades (M)  Evacuation Methods Philipping  Evacuation Methods			7 / 105
Sand pack vol (Hzv) = 8.00 get  WELL WATER BUTCHMATION  WELL WATER BUTCHMATION  Welling of Water Column  Volume of Water Of Pains  Volume of Water Of Pains  Volume of Water Famous of Pains  Volume of Water Famous of Pains  Number of Bades  EVACUATION INFORMATION  Notice of Water Famous from West 31.0  Evacuation Rese  Parameter Linea Removed Reserved Reserved  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Reserved Removed  Famous Removed Removed  Famous Removed Removed  Famous Removed Removed  Famous Removed Removed  Famous Removed Removed  Famous Removed Removed  Famous Removed Removed  Famous Removed Removed  Famous Removed  Famous Removed Removed  Famous Removed Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous Removed  Famous	<del></del>		
WELL WATER INFORMATION  Length of Water Column  Volume of Buse in West  Purchage Rate of Pund  Volume of Buse in West  Perchage of Pund  Volume of Buse  PARTITION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION INFORMATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION  ROLLIATION	Longth of Casino	g Above Grade	
WELL WATER INFORMATION  Langer of Water Column  Volume of Water News  Purmoning Area of Pump  Volume of Bades  PARCHATION SUFCHARATION  PARCHATION SUFCHARATION  PARCHATION SUFCHARATION  PARCHATION SUFCHARATION  PARCHATION SUFCHARATION  PARCHATION SUFCHARATION  PARCHATION SUFCHARATION  PARCHATION SUFCHARATION  PARCHATION  After 1 Volume  After 2 Volumes  Parchation  Parchation  Parchation  After 1 Volume  Parchation  After 2 Volumes  Parchation  After 3 Volumes  Parchation  After 3 Volumes  Parchation  After 1 Volume  After 1 Volume  Parchation  After 2 Volumes  After 3 Volumes  Parchation  After 3 Volumes  Parchation  After 3 Volumes  Parchation  After 3 Volumes  After 1 Volume  Parchation  After 1 Volume  After 1 Volume  After 2 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 1 Volume  Parchation  After 3 Volumes  After 3 Volumes  After 1 Volumes  After 1 Volumes  After 1 Volumes  After 2 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 4 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 4 Volumes  After 4 Volumes  After 4 Volumes  After 4 Volumes  After 4 Volumes  After 4 Volumes  After 4 Volumes  After 4 Vol		)	
WELL WATER REPORMATION  Langer of Wester Column  Volume of Wester of Wester  Volume of Wester of Wester  Volume of Bader  Sand park vol (Hzv) = 8.00 gg/  Volume of Bader  Sand park vol (Hzv) = 8.00 gg/  Volume of Bader  Sand park vol (Hzv) = 8.00 gg/  Volume of Bader  Sand park vol (Hzv) = 8.00 gg/  Volume of Bader  Sand park vol (Hzv) = 8.00 gg/  Volume of Bader  Sand park vol (Hzv) = 8.00 gg/  Volume of Bader  Sand park vol (Hzv) = 8.00 gg/  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Bader  Volume of Pamo (Volume of Bader (VI Pump ())  Evacuation Method (Volume of Bader (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuation Method (VI Pump ())  Evacuat	- Y	- \	
Wolfung of Water Column  Wolfung of Water of Rung  Pumping Area of Rung  Wolfung of Marie   C 75  Wolfung of Marie   C 75  Wolfung of Bade  EVACUATION SMCCRMATION  Wolfung of Water Removed from West 31.0  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuati	Receverage? (Y/N	<u> </u>	
Wolfung of Water Column  Wolfung of Water of Rung  Pumping Area of Rung  Wolfung of Marie   C 75  Wolfung of Marie   C 75  Wolfung of Bade  EVACUATION SMCCRMATION  Wolfung of Water Removed from West 31.0  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuation Method: Bader (1/ Pump ( )  Evacuati			
Sand pull vol (HzV) = 8.00 get  Pursung Arm of Purso  Volume of Bader  EVACUATION INFORMATION  Notions of Water Aemoved from West  Pursunder  Intelligible After 1 Volume  Personation  After 1 Volume  After 2 Volume  After 3 Volume  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Remov	WELL WATER IN	IFCRMATION	
Sand pull vol (HzV) = 8.00 get  Pursung Arm of Purso  Volume of Bader  EVACUATION INFORMATION  Notions of Water Aemoved from West  Pursunder  Intelligible After 1 Volume  Personation  After 1 Volume  After 2 Volume  After 3 Volume  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Remov			
Withouse of Basies  Withouse of Basies  NACUATION INFORMATION  Rolling of Water Removed from West 31.0  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metrics: Basies (1/4 Pump ( )  Evecution Metri	Length of Water	Column 13.4	
Williams of Basian  Williams of Basian  NACUATION INFORMATION  Rolliams of Waser Removed from West 31.0  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion Metrod: Basian (1/1 Pump ( )  Evecusion (1/1 Pump ( )  Evecusion (1/1 Pump ( )  Evecusion (1/1 Pump ( )  Evecusion (1/1 Pump ( )  Evecusion (1/1 Pump ( )  Evecusion (1/1 Pump ( )  Evecusion (1/1 Pump ( )  Evecus	Volume of West	rin Well 2.18	Road nouse vol (H=0) = & ODasi-
NACIATION INFORMATION NUMBER OF BASES NACIATION INFORMATION NUMBER OF WEST REMOVED from West 31.0 EVECUSION RETORE BASES (1/4 Pump ( ) EVECUSION RETORE BASES (1/4 Pump ( ) EVECUSION RETORE BASES (1/4 Pump ( ) EVECUSION RETORE BASES (1/4 Pump ( ) EVECUSION RETORE BASES (1/4 Pump ( ) EVECUSION RETORE BASES (1/4 Pump ( ) EVECUSION RETORE AREA SAMPLE COLLECTED  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGRAPHY  TOMOGR	Pumping Rem of	if Pumo	and have for (1.50)
Minutes of Pumorig  Number of Bails  PACLIATION INFORMATION  Totaline of Wester Removed from Wasi 31.0  Evacuation Method: Baser (V) Pump ()  Evacuation Method: Baser (V) Pump ()  Evacuation Method: Baser (V) Pump ()  Evacuation Method: Baser (V) Pump ()  Evacuation Method: Baser (V) Pump ()  Evacuation Method: Baser (V) Pump ()  Evacuation Method: Baser (V) Pump ()  Evacuation Method: Baser (V) Pump ()  Evacuation Method: Baser (V) Pump ()  Evacuation Method: Baser (V) Pump ()  Evacuation Method: Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Remo			, , , , , , , , , , , , , , , , , , ,
NACUATION INFORMATION  ROLLING OF WASE PREMIONED TYPIN WAS 31.0  EVECUSION METHOD: Baser (1) Pump ( )  EVECUSION RESS.  PARAMETER:  LYTER APRIL VOLUME APER 2 VONUMERS APER 3 VOLUMENS  PREMIONED:  LYTER REMOVAD REMOVAD REMOVAD  FROMOGRAPH (1/1/2) 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1 5/2 1			
PRIAMERIE OF WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Tomography  The United States Same States Same States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States S			
EVECUTION METTO BEASET (M. Pump ( )  EVECUTION METTO WATER (M. Pump ( )  EVECUTION METTO WATER (M. Pump ( )  EVECUTION METTO WATER SHOWER (M. Pump ( )  EVECUTION METTO WATER (M. Pump ( )  EVECUTION METTO WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  TOMOGRAPHY  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  EVECUTION METTO CHARACTERISTICS AFTER SAMPLE COLLECTED  EVECUTION METTO CHARACTER SAMPLE COLLECTED  EVECUTION METTO CHARACTER SAMPLE COLLECTED  EVECUTION METTO CHARACTER SAMPLE COLLECTED  EVECUTION METTO CHARACTER SAMPLE COLLECTED  EVECUTION METTO CHARACTER SA	Number of Seas	134	
Conductance i 460 50 1 570 500  PROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Toncomment S. J. C.  Conductive i 41,00 105  M. U. 51 SU  Toncomment I 60 Phone 105  Described Chygon I 60 Phone 105  Described Chygon I 60 I 10 I 10 I 10 I 10 I 10 I 10 I 10	Temperature	Linear Removed Removed 4.71 % > 1 % 0	Removed
TOROGRAPH  SOLVEN  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT  GOVERNMENT			
Temposter  S. F C  Conductory  Hilloo us  Interesty  Discover Copyon  Leg Phr mg L  ASSELLAMEOUS COSSERVATIONS/PROCEEDS  TOTAL WELL + Sand vol = 10.18 g.  Sample 10 - Gw0355 Lab 10 = C5  TOV VOHS UNLY  K. BUSSING  K. BUSSING  K. BUSSING  K. BUSSING  K. BUSSING  K. BUSSING  Conductory  K. BUSSING  Conductory  K. BUSSING  Conductory  K. BUSSING  Conductory  K. BUSSING  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conductory  Conducto		37.	<del></del>
Temposation S. F. C.  Conduction Hillo us  I'm Uristic SU  Turbusary Using No. 10: 10: 10: 10: 10: 10: 10: 10: 10: 10:	PACUNO-WATE	ER CHARACTERISTICS AFTER SAMPLE COLLECTE	D .
General Grygen  Liste SU  Liste SU  Liste SU  Liste SU  Liste SU  Liste SU  Liste SU  Liste SU  Liste SU  Liste SU  Liste SU  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su  Liste Su			·
Commend Caygon ILG PAR MG IL  Commend Caygon ILG PAR MG IL  Commend Caygon ILG PAR MG IL  Commend Caygon ILG PAR MG IL  Commend Caygon ILG PAR MG IL  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG PAR MG ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Commend Caygon ILG  Com	Temperature	(S.)	
Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G PAR MG IL  Commend Crygon II G II G II G II G II G II G II G II	Conductive	. 4400 h	>
Described Origin 1469 Ather mg/L  Described Origin 1469 Ather mg/L  Described Origin 16:		<del></del>	<del>U</del>
Described Caygon Heg phoning IL  Described Caygon Heg Phoning IL  Described Caygon Heg I I I I I I I I I I I I I I I I I I I	Turbiday		
SCELLANEOUS COSSERVATIONS/PROBLEMS total well + Sand vol = 10.18 g.  Sample 10 - Gw0355 Lab 10 = C5  TCV VOAS Gruy  LAMPLE DESTINATION (AS ve Fied EX some By. KK Kitty  K. BUSTINE			
SIMPLE DESTINATION (AS WE FED EX SONE BY KK KITC)  **	<u> </u>		
SCELLANEOUS COSSERVATIONS/PROCEEDS total well + Sand vol = 10.18 g.  Sample 10 - Gwo355 Lab 10 = C5  TCV VOAS Gray  LAMPLE DESTINATION (AS ve Fied EX sone By. KK Kitty  K. Bilistine		<b>M</b>	
SCELLMEOUS COSSERVATIONS/PROCEEDS TOTAL WELL + SUND VOL = 10.18 G.  SUMPLE 10 - GW0355 Lab 10 = C5  TCV VOLTS ONLY  LAMPLE DESTINATION (AS WE FED EX SOMBLY KK KITCH  K. BILISTING			
TCV VOITS ORLY  LAMPLE DESTINATION (AS WE FED EX SORBY KK KITC)  K BILISTING		1C 4:	•
TCV VOITS ONLY  BAMPLE DESTINATION (AS WE FED EX SORBY KK KITC)  K BUSTINE	MSCELL AMECH	B CASE AVATIONS/COLOR FUE TOTA &	well + Sand vot = 10.18 a.
TCV VOITS ONLY  BAMPLE DESTINATION (AS WE FED EX SORBY KK KITC)  K BUSTINE	O s	10 010286	101-10-CT
TCV VOITS ONLY  BAMPLE DESTINATION (AS WE FED EX SON BY KK KITC)  K BILISTING	<u> </u>	mple 11) - GWU355	UWD 10 " US
ADDREST VAS VA FED EX SON BY KK KITCH		TOV VOAS ONGEL	
K. Breistine			· · · · · · · · · · · · · · · · · · ·
K. Breistine		ATTON A AS	-X - KK WH.
	TEPOLEGIA —	, ,	·

13-04-64

SANTONING PRINCIPLE  TO BROUGHT TUBER - BASE COTAND  THOSE CONTROL OF THE SANTONING CONTROL OF THE SANTONING PRINCIPLE  TO TOC  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON CASE  THE SANTONING PRINT MARKS ON		MW-3D Sommon LMC Syracuse Court St 5
TO BEADSTOURNE   West   Case   SECTOURNE   West   Case   SECTOURNE   West   Case   SECTOURNE   West   Case   SECTOURNE   West   Case   SECTOURNE   West   Case   SECTOURNE   West   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   Case   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOURNE   SECTOU		
CONCRETE SECTION  WELL PROCNATION  WELL PROCNATION  WELL PROCNATION  WELL PROCNATION  WELL PROCNATION  WELL PROCNATION  WELL PROCNATION  WELL PROCNATION  WELL PROCNATION  WELL PROCNATION  WELL PROCNATION  WELL PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WATER PROCNATION  WELL WA	•	21167
WELL SOFCRAATON  WELL SOFCRAATON  WELL SOFCRAATON  WELL SOFCRAATON  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER REPORTATION  WELL WATER COURACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER COURACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER COURACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER COURACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER COURACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER COURACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER COURACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER COURACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER COURACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER COURACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER COLLEGE WATER COLLECTED  WELL WATER COLLEGE WATER COLLEGE WATER COLLECTED  WELL WATER COLLEGE WATER COLLEGE WATER COLLECTED  WELL WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE WATER COLLEGE	-	
MELL DEFORMATION  MENT PAIR MATTER OF CAMPA COUNTY  MENT TONG CAMPA ADONG CHOCK  MENT TONG CAMPA ADONG CHOCK  MELL WATER DEFORMATION  MELL WATER DEFORMATION  MELL WATER DEFORMATION  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER OF PAIR  MININGER O	Oreager Tube	e - Secround Weather CIONAY OFFICE 30 S
Resonance Point Marriag on Caury  West Claims  West Claims  West Claims  West Claims Across Grown  C. 441  Langer of Caury Around Cross  West Trace Coron  West Trace Coron  West Trace Coron  West Trace Coron  West Trace Coron  West Trace Coron  West Trace  West Trace Coron  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Tr	Wed	Compound
Resonance Point Marriag on Caury  West Claims  West Claims  West Claims  West Claims Across Grown  C. 441  Langer of Caury Around Cross  West Trace Coron  West Trace Coron  West Trace Coron  West Trace Coron  West Trace Coron  West Trace Coron  West Trace  West Trace Coron  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Trace  West Tr		
Medical Depth Advance on Casing  West Classes  S.C.	WELL INFORM	MATION
Medical Depth Advance on Casing  West Classes  S.C.		
Medicanian Four Manual on Clarky  Will Dearn Street Dearn  Will Dearn Court  Well I was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore Dearn  Will Was Fore		TOC I TOC
WHET DEAD COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COUNTY  WHET TO BE COU		
WELL THE PROCREATION  LENGTH of Water Column  St. 11  WELL WATER PROCREATION  LENGTH of Water Column  St. 11  WELL WATER PROCREATION  LENGTH of Water Column  St. 11  WOULD of Adad Dack 1- 1- 20  Would of Punching  Number of Basis  WALLATION PROCREATION  Under of Water Removes from West  Bell well go dry 1 Y N  Englusion Matter  Parameter Uniter Removes from West  Removed Removed Removes  Removed 1700 1 10 1 10 1 10 1 10 1 10 1 10 1 1		
West Table Deore Chang Above Grace (14)  Bug Teeff (Mg)  WELL WATER RECRIMATION  WELL WATER RECRIMATION  WELL WATER RECRIMATION  WELL WATER RECRIMATION  WELL WATER RECRIMATION  WELL WATER RECRIMATION  WELL WATER REPORMATION  WELL WATER REPORMATION  WELL WATER REPORMATION  WELL WATER REPORMATION  WELL WATER REPORMATION  WELL WATER REPORMATION  WATER T VOILED ABOVE CASE  WELL WATER REPORMATION  WATER T VOILED ABOVE CASE  WELL WATER REPORMATION  WATER T VOILED ABOVE CASE  WELL WATER REPORMATION  WELL WATER REPORMATION  WELL WATER T VOILED ABOVE CASE  WELL WATER SWAPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  WELL WATER CHARACTERISTICS AFTER SAMPLE COLLECTERISTICS AFTER SAMPLE COLLECTERISTICS AFTER SAMPLE COLLECTERISTICS AFTER SAMPLE COLLECTERISTICS AFTER SAMPLE COLLECTERISTICS AFTER SAMPLE COLLECTERISTICS AFTER SAMPLE COLLECTERISTICS AFTER SAM	West Diameter	
Surger of Casing Above Gracia  Situation of Casing Above Gracia  WELL WATER REFORMATION  Langer of Water Couran  Signification of Stater  Working of Water Removes from West  Source of Mater of Mater Couran  Source of Water Removes from West  Bracuston Method: Sasser () Pump (Agrand Courant  Working of Ory) Y (N)  Evacuation Rese  Parameter United Removes from West  Removed 1 7 (N)  Franciscon Rese  Parameter United Removes from West  Removed 1 7 (N)  Franciscon Rese  Parameter United Removes from West  Removed 1 7 (N)  Franciscon Rese  Parameter United Removes from West  Removed 1 7 (N)  Franciscon Rese  Parameter United Removes from West  Removed 1 7 (N)  Franciscon Rese  Parameter United Removes from West  Removed 1 7 (N)  Franciscon Rese  Parameter United Removes from West  Removed 1 7 (N)  Franciscon Rese  Parameter United Removes from West  Removed 1 7 (N)  Franciscon Rese  Parameter United Removes from West  Removed 1 7 (N)  Franciscon Rese  Removed 1 7 (N)  Franciscon Rese  Removed 1 7 (N)  Franciscon Rese  Removed 1 7 (N)  Franciscon Rese  Removed 1 7 (N)  Franciscon Rese  Removed 1 7 (N)  Franciscon Rese  Removed 1 7 (N)  Franciscon Rese  Removed 1 7 (N)  Franciscon Rese  Removed 1 7 (N)  Franciscon Rese  Removed 1 7 (N)  Franciscon Rese  Removed 1 1 (N)  Franciscon Rese  Removed 1 1 (N)  Franciscon Rese  Removed 1 1 (N)  Franciscon Rese  Removed 1 1 (N)  Franciscon Rese  Removed 1 1 (N)  Franciscon Rese  Removed 1 1 (N)  Franciscon Rese  Removed 1 1 (N)  Franciscon Rese  Removed 1 1 (N)  Franciscon Rese  Removed 1 1 (N)  Franciscon Rese  Removed 1 (N)  Franciscon Rese  Removed 1 (N)  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese  Franciscon Rese	Wed Occur	
BLY TEST (PM)  WELL WATER PROTOBLATION  WELL WATER PROTOBLATION  WELL WATER PROTOBLATION  WASHINGTON WASHER COLUMN  FORWARD OF WASHER OF WASH  WACLIATION PROTOBLATION  WASHINGTON OF BASH  WACLIATION PROTOBLATION  WASHINGTON OF BASH  WACLIATION PROTOBLATION  WASHINGTON OF BASH  WACLIATION PROTOBLATION  WASHINGTON OF BASH  WACLIATION PROTOBLATION  WASHINGTON OF BASH  WASHINGTON OF BASH  WASHINGTON OF BASH  WASHINGTON OF BASH  WASHINGTON OF BASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WASH  WA	Wester Table C	3eon C.41
Rug Toet (Mg)  The service of Mark Column  The TI  Well WATER RAFORMATION  Well WATER RAFORMATION  Langer of Wester in West  Purmoung Area of Purmo  Foodman of Marker in West  Purmoung Area of Purmo  Foodman of Marker in West  VACIATION RAFORMATION  Number of Basis  VACIATION RAFORMATION  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  Ramonad  R	Length of Car	and Above Grade LULLy
WELL WATER PRICCHATION  WELL WATER PRICCHATION  Langer of Weser Counn  St. 71  Mounts of Weser in the 1  St. 77  Mounts of Base of Punn  Mounts of Base  WACLATON PRICOMATION  Mounts of Base  WACLATON PRICOMATION  Mounts of Base  WACLATON PRICOMATION  Mounts of Weser Removed from West  Removed Removed Removed  Personnel total Resource Removed  Removed Removed Removed  Removed Removed  Removed Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Remo		
WELL WATER PRICCHATION  WELL WATER PRICCHATION  Langer of Weser Counn  St. 71  Mounts of Weser in the 1  St. 77  Mounts of Base of Punn  Mounts of Base  WACLATON PRICOMATION  Mounts of Base  WACLATON PRICOMATION  Mounts of Base  WACLATON PRICOMATION  Mounts of Weser Removed from West  Removed Removed Removed  Personnel total Resource Removed  Removed Removed Removed  Removed Removed  Removed Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Remo	4	$\Omega$
WELL WATER PROCRIMATION  Wenger of Wester in Went  Volume of Wester in Went  Wounder of Wester in Went  Wounder of Bester  WACLIATION PROCRIMATION  VOLUME of Wester Permones from West  Waster Permones from West  Wester Permones from West  Wester Permones from West  Wester Permones from West  Wester Permones from West  Personation Inter  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Personation  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linker  Linke		
April Deliver of West of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest	Nocewace? (1	(m)
April Deliver of West of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest of Mest		
PRINCE OF WEST IN WEST  NACHATION INFORMATION COLUMN OF BASE  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION ARE 2 VOILINGS  RESIDENCE  NACHATION INFORMATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  N	WELL WATER	INFORMATION
PRINCE OF WEST IN WEST  NACHATION INFORMATION COLUMN OF BASE  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION ARE 2 VOILINGS  RESIDENCE  NACHATION INFORMATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  N		
PRINCE OF WEST IN WEST  NACHATION INFORMATION COLUMN OF BASE  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION COLUMN OF WEST  NACHATION INFORMATION ARE 2 VOILINGS  RESIDENCE  NACHATION INFORMATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  RESIDENCE  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  NACHATION ARE 2 VOILINGS  N		(ILO)
APPLE DESTINATION CAS  WALLATICN INFORMATION  OURS OF West Permoner Trom West 220.  EVACUATION INFORMATION  COURS OF West Permoner Trom West 220.  EVACUATION INFORMATION  After 1 Volume  After 2 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 3 Volumes  Permoner  After 3 Volumes  Permoner  Permoner  Livian  After 3 Volumes  Permoner  Permoner  Livian  After 3 Volumes  Permoner  Permoner  Livian  After 3 Volumes  Permoner  Permoner  Livian  After 3 Volumes  Permoner  Permoner  Livian  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 4 Volumes  After		
APPLE DESTINATION CAS  WALLATICN INFORMATION  OURS OF West Permoner Trom West 220.  EVACUATION INFORMATION  COURS OF West Permoner Trom West 220.  EVACUATION INFORMATION  After 1 Volume  After 2 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 1 Volume  Permoner  Livian  After 3 Volumes  Permoner  After 3 Volumes  Permoner  Permoner  Livian  After 3 Volumes  Permoner  Permoner  Livian  After 3 Volumes  Permoner  Permoner  Livian  After 3 Volumes  Permoner  Permoner  Livian  After 3 Volumes  Permoner  Permoner  Livian  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  After 3 Volumes  Permoner  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 3 Volumes  After 4 Volumes  After		Vol. of sand park 1.30
Minutes of Pumping  NACHATION INFORMATION  Columb of Wester Removed from West After 1 Volumes  Minutes of Wester Removed from West After 1 Volumes  Personation tricks Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed	Pumoing Resi	
PARTICIPATION INFORMATION  Columbe of Water Removed from West 22G. Evecusion Method: Bader ( ) Pump ( ) Grant CS  Mid west go dry? Y N Evecusion Rate	rature of Se	4 C · 2 S
PATENDER OF STREET SAMPLE COLLECTED  WORDSHAFT VOLUME AND LOCATIONS AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AND LOCATIONS AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AFTER SAMPLE COLLECTED  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N	Minutes of Pu	saging ·
PATENDER OF STREET SAMPLE COLLECTED  WORDSHAFT VOLUME AND LOCATIONS AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AND LOCATIONS AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AFTER SAMPLE COLLECTED  WORDSHAFT VOLUME AFTER SAMPLE COLLECTED  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N  WORDSHAFT V N	Number of Re	
Countries of Wester Removing from West 223 Evacuation Method: Bader () Pump ( or grand C State West go dry 1 Y N )  Francisco Institut Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad Removad		
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100		After 1 Values After 2 Valueses After 3 Valueses
IN 17.74 SU WITHOUT THE THE SAMPLE COLLECTED  WITHOUT THE CHARACTERISTICS AFTER SAMPLE COLLECTED  WITHOUT THE CHARACTERISTICS AFTER SAMPLE COLLECTED  WITHOUT THE CHARACTERISTICS AFTER SAMPLE COLLECTED  WITHOUT THE COLLECTED WIS TO THE SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU	Personer	Lyter Removed Removed Removed
IN 17.74 SU WITHOUT THE THE SAMPLE COLLECTED  WITHOUT THE CHARACTERISTICS AFTER SAMPLE COLLECTED  WITHOUT THE CHARACTERISTICS AFTER SAMPLE COLLECTED  WITHOUT THE CHARACTERISTICS AFTER SAMPLE COLLECTED  WITHOUT THE COLLECTED WIS TO THE SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU WITH SU	Temperature	14.8 1 11.0 1 11.4 1 11.8 1
CONQUESTINATION CAS  MATERIOLOGIC 1 1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1 1900  1900 1		
SCHO-WATER OWARCTERISTICS AFTER SAMPLE COLLECTED  19.8 °C  1800 (US  17.74 °SU  17.8 NTU  19.8 NTU  19.8 °C  20.8 NTU  19.8 °C  20.8 NTU  19.8 °C  20.8 NTU  19.8 °C  20.8 NTU  19.8 °C  20.8 NTU  19.8 °C  20.8 NTU  19.8 °C  20.8 NTU  19.8 °C  20.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8 NTU  19.8		1900 1900 1900
1800 US  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  1774 SU  177	O-COCE NO	11/50 1100 1 1/00
1800 US  7.74 SU  17.74 SU  17.74 SU  17.74 SU  17.75 NTU  18000 Sunder Congress Success Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunde		
1800 US  7.74 SU  17.74 SU  17.74 SU  17.74 SU  17.75 NTU  18000 Sunder Congress Success Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunde	MOUND-WA	NTER CHARACTERISTICS AFTER SAMPLE COLLECTED .
1800 US  7.74 SU  17.74 SU  17.74 SU  17.74 SU  17.75 NTU  18000 Sunder Congress Success Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunder Congress Sunde	<del> </del>	
T774 SU  THE SU  THE NATU  THE MATERIAL PHINE ING IL  SCHLANEOUS COSSERVATIONS MORE WELL + RAND VOI = 7.07  Sample ID - GWO3DS Lab ID+ O2  TCL VOAS UNLY  MAPLE DESTINATION CAS  TELLEX SAMBY RB/KHG  R. BIEVSTONE		1 9.8
T774 SU  THE SU  THE NATU  THE WALL  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N  TO N	Onductively	. 1800 (15
Sample ID - GWOBDS Lab ID# OD  TCL VOAS ORLY  MEDICAL DESTRUCTION CAS  WELL EX SON BY RB/KHG  R. BLEVSTILLE  MEDICAL DESTRUCTION CAS  WELL EX SON BY RB/KHG  R. BLEVSTILLE  MEDICAL DESTRUCTION CAS  WELL EX SON BY RB/KHG  R. BLEVSTILLE  MEDICAL DESTRUCTION CAS  WELL EX SON BY RB/KHG  R. BLEVSTILLE	H	7 74 80
Sample ID - GWO3DS Lab ID# Od  TCL VOAS URly  MAPLE DESTINATION CAS  WE FER EX SAM BY RB/KHG  R. BLEVSTILLE	wordsy.	
Sample ID - GWOBDS Lab ID#- OD  TOU VOAS ORLY  MAPLE DESTINATION CAS  WE FER EX SAM BY RB/KHG  R. BLEVSTILLE	Name and City	
Sample ID - GWOBDS Lab ID# OD  TCL VOAS ORLY  NUMBER DESTINATION CAS  WELL + BARD VOI = 7.07  Sample ID - GWOBDS Lab ID# OD  TCL VOAS ORLY  NAMPLE DESTINATION CAS  WELL + BARD VOI = 7.07  K. BLEVSTONE		And the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o
Sample ID - GWOBDS Lab ID# OD  TCL VOAS ORLY  NUMBER DESTINATION CAS  WELL + BARD VOI = 7.07  Sample ID - GWOBDS Lab ID# OD  TCL VOAS ORLY  NAMPLE DESTINATION CAS  WELL + BARD VOI = 7.07  K. BLEVSTONE		) <b>"</b>
Sample ID - GWOBDS Lab ID# 02  TCL VOAS ORLY  MAPLE DESTINATION CAS  WELL + Rand VOI = 7.07  Sample ID - GWOBDS Lab ID# 02  TCL VOAS ORLY  MERCE DESTINATION CAS  MERCE EX SAMBY RB/KHG  R. BLEVSTILLE	$\sim$	$\sim$
Sample ID - GWOBDS Lab ID# OD  TCL VOAS URLY  MERCE DESTINATION CAS  MERCE EX SMR RB/KHG  R. BLEVSTILL	embradion Sta.	
Sample ID - GWOBDS Lab ID# 02  TCL VOAS URLY  MERCE DESTINATION CAS MERCE EX SON RB/KHG  R. BLEVSTILL		1001 + 3010 = 7.07
TCL VOAS URLY  AMPLE DESTINATION CAS IN FEREEX SORRY RB/KHG  R. BLEVSTILL	THE CELLANGO	AS DESERVATIONS/PROBLEMS
TCL VOAS URLY  AMPLE DESTINATION CAS IN FEREEX SORRY RB/KHG  R. BLEVSTILL	C	Sample ID - GWOBDS Lab IDF OD
R. BLUSTILL	<del></del>	TA: 104- 10 A.
R. Blevstine		ICL VORS ONLY
R. Bierstine		22/
R. Bierstine	MARTLE DEST	MAIRIN CAS un Feil EX SANGEN KBIKHG
		$\mathcal{O} = \mathcal{O}_{A} \circ \sigma \leftarrow \sigma$
		Find Sampling Coordinator

13-0a-04

Was No. MW - 5D	en un LIM Salvague (274 St 5/5A
(2) () (	Semong Personne KHG RB
Aey No. 2537	Semoing Personnel
PID Beckground Weil	Cam 3/2/97 Time in 10:20 Time Cue 1035
Orseger Tubes - SackgroundNA	Weather Sun / Clouds 30's
Well Compound	
	· ·
WELL INFORMATION	
	Troc i troc
San and San Maria and Care and	
Reference Point Meried on Casing	
	C "
	7.01
Weser Table Cooth	87 1.22
Length of Casing Above Grade	
Sug Test? (YM)	
Recovered? (T(N))	
$\circ$	
WELL WATER INFORMATION	
Langth of Water Column Ale	
Volume of Westr in Well 나니	Sand pack H20 vol= 1.0
Purnoing Rese of Purno	Sand piece Hz VVI 1.0
Volume of Seder	
Minuse of Pumping	
Number of Baris	
Did well go dry? Y (N	Evecusion Method: Bailer ( ) Pump (U)  Evecusion Rase
Values of Water Removed from West U. C. C. C. C. C. C. C. C. C. C. C. C. C.	Evecuation Rase
Old well go dry? Y N After 1 Volume	After 2 Volumes - After 3 Volumes
Old well go dry? Y N After 1 Volume Personeer Intel After 1 Volume	After 2 Volumes After 3 Volumes Removed Removed
Peramoter Lives Removed Temporetare 5,60 15.2	After 2 Volumes - After 3 Volumes Removed - Removed
Personate Linear Removed Temperature 5.60 16.2- ph 533 6.33	After 2 Volumes After 3 Volumes Removed Removed
Peramoter Lives Removed Temporetare 5,60 15.2	After 2 Volumes After 3 Volumes Removed Removed
Personate Linea Removed  Temperature 5.60 16.2  pH 5.33 6.33	After 2 Volumes After 3 Volumes Removed Removed
Peramoter Lives Amount Temperature 5,60 16.2 pH 533 6.33	After 2 Volumes After 3 Volumes Removed Removed
Personner Line Removed  Temperature 5.60 16.2 ph 533 6.33	After 2 Volumes After 3 Volumes Removed Removed
Perantur Intel Removed Temperature 5.60 16.2- pm 5.33 6.33 Conductance 750 619  GROUND-WATER CHARACTERISTICS AFTER	After 2 Volumes After 3 Volumes Removed Removed I I I I I I I I I I I I I I I I I I I
Peraneur Intel Removed Temperature 5.60 16.2 pm 5.32 6.33 Conductance 750 619  CAROLINO-WATER CHARACTERISTICS AFTER	After 2 Volumes After 3 Volumes Removed Removed Removed I 1 ( 3   1 ( < )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1 ( )   1
Personner Intel Removed Temperature 5.60 16.2 pm 533 6.33 Conductance 750 619  Conductance 750 619  Conductance 8.1 Conductance 8.1 Conductance 8.1	After 2 Volumes After 3 Volumes Removed Removed
Temperature   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   S.   Conductors   Conductors   S.   Conductors   Conductors   S.   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors   Conductors	After 2 Volumes After 3 Volumes  Removed Removed
Temperature   S.   Conductance   Tomperature   S.   Conductance   Tomperature   S.   Conductance   Tomperature   S.   Conductance   Tomperature   S.   Conductance   Tomperature   S.   Conductance   S.   Conductance   Tomperature   S.   Conductance   Tomperature   S.   Conductance   Tomperature   S.   Conductance   Tomperature   S.   Conductance   Tomperature   S.   Conductance   Tomperature   Tomperature   S.   Conductance   Tomperature   Tomperature   S.   Conductance   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   Tomperature   To	After 2 Volumes After 3 Volumes Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Remove
Personner Lives Amer 1 Volume Personner Lives Amer 1 Volume Temperature 5.60 16.2- pH 5.32 6.33 Conductance 750 619  GROUND-WATER CHARACTERISTICS AFTER Temperature 8.1 Conductancy 7.29	After 2 Volumes After 3 Volumes  Removed Removed
Temperature   S.   Conductions   S.    Temperature   S.   Conductions   Temperature   S.   Conductions   Temperature   S.   Conductions   Temperature   S.   Conductions   Temperature   S.   Conductions   Temperature   S.   Conductions   Temperature   S.   Conductions   T.   S.   Turbustry   Turbustry   Temperature   S.   Turbustry   Temperature   S.   Turbustry   Temperature   T.   S.   Turbustry   Temperature   T.   S.   Turbustry   Temperature   T.   S.   Turbustry   T.   S.   Turbustry   T.   S.   Turbustry   T.   S.   Turbustry   Turbustry   T.   S.   Turbustry   Turbustry   T.   S.   Turbustry   Turbustry   Turbustry   Turbustry   T.   S.   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry   Turbustry	After 2 Volumes After 3 Volumes  Removed Removed
Temperature   S.   Conductions   S.    Temperature   S.   Conductions   Temperature   S.   Conductions   Temperature   S.   Conductions   Temperature   S.   Conductions   Temperature   S.   Conductions   Temperature   S.   Conductions   Temperature   S.   Conductions   Temperature   Temperature   S.   Conductions   T.   Temperature   Temperature   S.   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   T.   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temperature   Temper	After 2 Volumes After 3 Volumes  Removed Removed
Temperature   S.   Conductance   Townsee   S.   Conductance   Townsee   S.   Conductance   Townsee   S.   Conductance   Townsee   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   S.   Conductance   Conductance   S.   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conductance   Conduct	After 2 Volumes After 3 Volumes  Removed Removed
Temperature   S.   Conductance   Townsone   S.    Temperature   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   Townsone   To	Mer 2 Volumes   Mer 3 Volumes     Removed   Removed
Personner Intel Removed Temperature 5.60 16.2 pt 5.32 6.33 Conductance 750 619  Conductance 750 619  Conductance 750 619  Temperature 8.1 Conductancy 7.27 pt 7.39 Turbidly 15.47 Character Characteristics AFTER	Mer 2 Volumes   Mer 3 Volumes     Removed   Removed
Did well go dry? Y N   After 1 Volume   Perameter   India   Removed   Temperature   5.60   16.2   pm   5.33   6.33   Conductance   750   614   Conductance   750   614   Conductance   750   614   Conductance   7.34   Temperature   8.1   Conductance   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temperature   7.34   Temp	Mer 2 Volumes   Mer 3 Volumes     Removed   Removed
Did well go dry? Y N   After 1 Volume   Peramous   Instel   Removed   Temperature   5.60   16.2   pm   5.33   6.33   Conductance   750   619   Conductance   750   619   Conductance   750   619   Conductance   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   750   7	After 2 Volumes After 3 Volumes  Removed Removed
Personal Index Removed Temperature 5.60 16.2- ph 15.32 6.33 Conductance 750 619  GROUND-WATER CHARACTERISTICS AFTER Temperature 8.1 Conductance 750 619  Temperature 8.1 Conductance 750 619  Temperature 8.1 Conductance 750 619  Temperature 8.1 Conductance 750 619  Temperature 8.1 Conductance 750 619  Temperature 8.1 Conductance 750 619  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29  Temperature 7.29	Mar 2 Volumes
Did well go dry? Y N    Personal Temperature   19,60   16.7- ph   532   6,33 Conductance   70   619  GROUNG-WATER CHARACTERISTICS AFTER  Temperature   8,1 Conductance   8,1 Conductance   7,77 ph   7,77 Decoved Crygen   3,94  Reading? Y N Combresson Standard Readings   10; MISCELLANEOUS COSSERVATIONS/FRCOLEMS  Sample ID - 6 TC L VO	Mer 2 Volumes   Mer 3 Volumes     Removed   Removed
Personner Livier Removed Temperature 5.60 16.7 pm 1532 6.33 Conductance 750 69  GROUND-WATER CHARACTERISTICS AFTER  Temperature 8.1 Conductance 7.70 Turbusty 7.77 Conductance 7.70  Reading 7 N Conformation Standard Readings 15.47  Conformation Standard Readings 17.70  MISCELL ANEOUS OBSERVATIONS/FRCDLEMS  Sample 10 - 6  TCL V0/	Mar 2 Volumes   Mar 3 Volumes     1
Temperature   5,60   16.2- ph   532   6.33 Conductance   750   619  GROUNG-WATER CHARACTERISTICS AFTER  Temperature   8,1 Conductancy   7.29 Turbudly   15.47 Described Cryspen   3.96  MISCELL MEGUS COSERVATIONS/FROSLEMS  SAW THE ID - 6	Mar 2 Volumes
Temperature   5,60   16.2-  ph   532   6.33  Conductance   750   69  GROUND-WATER CHARACTERISTICS AFTER  Temperature   8,1  Conductance   7,27  Turbusty   7,27  Turbusty   15,47  Discoved Crygen   2,96  MISCELL ANEOUS COSERVATIONS/FROBLEMS  Sample   10 - 6  TC L VO  SAMPLE DESTINATION (AS	Mar 2 Volumes   Mar 3 Volumes     1
Temperature   5,60   16.2-  ph   532   6.33  Conductance   750   69  GROUND-WATER CHARACTERISTICS AFTER  Temperature   8,1  Conductance   7,27  Turbusty   7,27  Turbusty   15,47  Discoved Crygen   2,96  MISCELL ANEOUS COSERVATIONS/FROBLEMS  Sample   10 - 6  TC L VO  SAMPLE DESTINATION (AS	Mar 2 Volumes   Mar 3 Volumes     1

041.1 (-1)	1,000 0 0 1
Well No. MW GD	Semond Foregroup K+tto RB
Key No	Samoting Personnel K-It(5 KB
PO Beauground West 12.	2 Cam 3/13/97 Time in Time Cut 17:15
Dreeger Tubes - Secreptung	Weather Sun 2015
Well Compound	
	<del></del>
WELL INFORMATION	
<u></u>	
TX	<u>c 1 100</u>
Reference Point Mented on Casing	
West Diameter 2.(	
Wed Destri	· <del>                                     </del>
Wester Table Copts 3,	67 4.10
Langth of Casing Above Great	
Sug Test? (Y/(g)	
Recevedo7 (Y/17)	
WELL WATER ENFORMATION	
Longth of Wester Column 35.79	<del></del>
Volume of Wester in Well 5.72 3.08	
Purnoing Rese of Purno	sand pack HaO vol = 8-04 4.02
Volume of Bailer	
Minutes of Purnoing	
Number of Bails	
<u> </u>	
Old well go ary? Y (Nr ) 6	Atter 2 Volumes - After 3 Volumes
Parameter Intel Removed	Removed Removed
Temperature ! 10 .6 : 9.0 1	9.3 1 96
ph 17.29. 7.62 1	7.45   7.73
Conductance   \$13 2100	23.50 3300
GROUND-WATER CHARACTERISTICS AFTER SAM	PLE COLLECTED .
Temperatre 5.7	
Conduction 1979	3 , , , , ,
) عا. بى	
147.	
Classified Citygen 1.9%	ugl
(C.	
Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name o	
Coffbreton Standard Readings10;	_ <del>(; 7</del>
	total well + sand vol = 9.74
MISCELLAMEOUS OBSERVATIONS/PROBLEMS	THINK WILL YHONK VOI
Nample ID-GWI	060S Lab 10# 40
	<u> </u>
BAMPLE DESTINATION AAC	Frd Ex son ex PB KHG
Laboratory (F(3)	Sour By FV3 LICT
	K. Brevitine
Fe	aid Sampling Coordinator

13-00-64

	AW-75  1537  West 47 pm  carpround NA  Combound	Cam 3/12/9/7	KHO KIS
WELL INFORMATION Reference Point Ma. Well Diameter Well Depth Weter Table Depth Length of Casing As	1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC   1 ThC	3.87	
Sug Test? (Y(N))_Recoverage? (Y(N))_	MATION		
Langth of Water Coll Volume of Water in N Pumping Rete of Pu Volume of Balar Minuse of Pumping Number of Balas	D-10	Sand pack Hz	20 vol = 8.04
EVACUATION INFOR	Toward from West 31 9 AL Evecuation M Evecuation A		
Conductance   1	8 40 1 60 85 693 1 73	763   U.S.4   712	
Temperature Conductivity get Turbedity Discovered Oxygen		OC NS SU NTII	V deller best ach bein
Rodino? (Y) N		√,	* Collect dupércale hére Sample 113 - Dup51 Lais 10#11
SAMPLE DESTINATION LABORREDTY	WCAS, Semi VOAR,	Sy son By KATES / 1  KILISTINE  G COOTERSET	PB dis inetas.
* Collect	FB here, labels	ample ID - GNIFF	BIR/Lab 10#52 @ 1640  RACER0057327

Samoung Proporties  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  West Compound  W	Well No. MW-85	- LMC SYVANISE CONFEST ELT
The coa (156) The search of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of the coance of th	2 / 2 7	STAND STANDS COUNTST 5/5/
WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  Langua of Death and a constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of		Samoung Personnel 1-17(-) / 1-D
WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  Langua of Death and a constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of		Cam Time in Time Cut 1450
WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  WELL RECHARATION  Langua of Death and a constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of the constance of	Oreager Tubes - Secriptound	wearer treachet dringle precey, @30
Parameter Point Manage on Casing  The Toc  Parameter Point Manage on Casing  Was Deem 2.0"  Was Deem 12.51  Was Deem 12.51  Was Deem 12.51  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Parameter 1.55  Was Pa	West Compound	, g,
Resonance Point Manner on Casing  West Dearn 2 C '		
Resource Point Names on Casing  West Dearn 2000 1.5.5   1.95  West Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5  West Tains Dearn 1.5.5  West Tains Dearn 1.5	WELL INFORMATION	
Resource Point Names on Casing  West Dearn 2000 1.5.5   1.95  West Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5   1.95  West Tains Dearn 1.5.5  West Tains Dearn 1.5.5  West Tains Dearn 1.5		
Manufacture Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Professional Profes	! nc	TOC
West Deanner    2.0"	<del></del>	
Medical Death 12.51   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   19		<u>.                                    </u>
WELL TABLE CAMPA ADONE CRISCO  LENGTH OF CAMPA ADONE CRISCO  LENGTH OF WEST COLUMN  WELL WATER REPORMATION  LENGTH OF WEST OF WEST  PARTICULAR OF READ OF RAME  WOULD BE VIEW OF WEST  PARTICULAR OF READ  WATER OF COLUMN  WOULD BE VIEW OF WEST  PARTICULAR OF RAME  WATER OF THE COLUMN  WATER OF THE COLUMN  WATER OF THE COLUMN  WATER OF THE COLUMN  WATER OF THE COLUMN  WATER OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE COLUMN  PARTICULAR OF THE C		<u>'</u>
Sund Teert (1779)  Medium of Meser Column  Langer of Weser Column  Langer of Weser Column  Langer of Weser Column  Langer of Weser Column  Langer of Weser Column  Langer of Weser of Weser  Mourise of Meser  Volume of Basis  National of Pumo  Volume of Basis  NATION  Notions of Meser Proposed from Wese (2.5)  Evacuation Methods Baser (1) Pump (1)  Evacuation Rase  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed  Personal Index Removed		I i GC
Sing Feet (1779) A.  Recoverage (1779) A.  WELL WATER BUPCHAATION  Langer of Wester Column  Volume of Wester or west  Pursoning Fast of Purso  Volume of Wester in west  Pursoning Fast of Purso  Volume of Wester in west  Pursoning Fast of Purso  Volume of Wester in Medical in Indiana  Personing of Wester in Medical in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Personing I was a fast in Indiana  Per		1.13
WELL WATER SHIPCHMATION  Length of Wester Column   10 916    Volume of Wester Column   175    Would grave of Wester in West   1.75    Would grave of Plumo    Volume of Bades   1.25 g.    Minimed of Plumoning    Minimed of Plumoning    Minimed of Wester Prognomed from West   5    Evacuation Methods   8aser / 1 Pump ()    Evacuation Rest    Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Personation   1.9      Per	Length of Casing Above Grade [LLISH	
WELL WATER INFORMATION  Langer of West Corumn   10 916    Woutine of Search   175    Woutine of Search   175    Woutine of Search   175    Woutine of Search   175    Woutine of Search   175    Woutine of Search   175    Woutine of Search   175    Woutine of Search   175    Woutine of Search   175    Woutine of Search   175    Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuation Method: Beaser () Pump ()  Evacuati	. †	
WELL WATER INFORMATION  Langer of Wester Column  10 910  Wollwise of Wester in West  17 5  Williams of Baster  EVACUATION INFORMATION  Wollwise of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinomy  Milliams of Parinom	Sug Test (Y/M) N	
Langer of Water of Water is week 1.75  Purposing Rets of Purio  Volume of Water is 0.359.  Minuse of Purposing  Number of Bades  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION RETS  Personater 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79	Redevelop1 (Y/M)	
Langer of Water of Water is week 1.75  Purposing Rets of Purio  Volume of Water is 0.359.  Minuse of Purposing  Number of Bades  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION RETS  Personater 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79	<del></del>	
Langer of Water of Water is week 1.75  Purposing Rets of Purio  Volume of Water is 0.359.  Minuse of Purposing  Number of Bades  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION INFORMATION  Notions of Water Resigned from West 6.5  EVACUATION RETS  Personater 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79  Information 1.79	WELL WATER INFORMATION	
Women of Wester in West  Permany Rem of Plump  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  W		
Women of Wester in West  Permany Rem of Plump  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  Wolf of = 7.37 g  W	Lasers of Mary Causes 20 GH 1	
Natural of Bader  Identification of Bader  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bades  Number of Bade		4
Monume of Bader    1.25g.		Sand pack working of
Municipe of Balas  EVACUATION INFORMATION ROTURN OF WEST PRINCIPED from West (2.5)  EVECUSION METHOD: Did west go dry? (*) N  EVECUSION RESIDE  Personation  Intel  After 1 Volume  Personation  Intel  After 1 Volume  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad  Residuad		
Municipe of Balas  EVACUATION INFORMATION  Moduring of Wester Prescribed from West 6:5  Evacuation Method: Basker 1/) Primp ()  Evacuation Rese  Personation  Intel After 1 Volume  Personation  Intel After 1 Volume  Personation  Intel After 1 Volume  Personation  Intel After 1 Volume  Personation  Intel After 1 Volume  Personation  Intel After 1 Volume  Personation  Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel Inte	Volume of Bader : 0 - 15 g -	1.319.
EVACUATION INFORMATION  POULING OF Water Promoved from West (1.5)  EVACUATION INFORMATION  POULING OF Water Promoved from West (1.5)  EVACUATION INFORMATION  PROMOVED (1.5)  PROMOVED IN EVACUATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION  PROMOVED IN INFORMATION	Minutes of Pumping	y y
EVACUATION ENFORMATION  Volume of Wester Removed from West (1.5)  Evacuation Metroct: Baser (1) Pump (1)  Evacuation Rase  Personers  Living Removed  Removed  Removed  Removed  Removed  Tompostation 7.4  PM 1 (1.8)  Evacuation Rase  Removed  Removed  Removed  Tompostation 7.4  PM 1 (1.8)  Evacuation Rase  Removed  Removed  Tompostation 7.4  PM 1 (1.8)  Evacuation Rase  Removed  Removed  Tompostation 7.5  PM 1 (1.8)  Evacuation Rase  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Tompostation 7.5  PM 1 (1.8)  Evacuation Rase  Removed  Tompostation 7.5  Total (1.8)  Evacuation Rase  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Tompostation 7.5  Total (1.8)  Evacuation Rase  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Total (1.8)  Evacuation Rase  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Total (1.8)  Evacuation Rase  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Re	Number of Bads ~ + 1/2	
Conduction of Wester Reproduct Trom West (2.5)  Did west go dry? (Y) N  Evacuation Research  Personal Invited After 1 Volume After 2 Volumes After 3 Volumes  Personal Invited Removed Removed Removed Removed.  Tempostative 17.4: 1  I I I I I I I I I I I I I I I I I I		
Conductance of CSD  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MINISTER 17 CAY  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MINISTER 17 CAY  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MINISTER 17 CAY  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MINISTER 17 CAY  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 17 CAY  MINISTER 1	Parameter Lyter Removed Rem	
Consultance i 704 70  Tourisonance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70  Consultance i 704 70		
TOURDONNER CHARACTERISTICS AFTER SAMPLE COLLECTED  TOURDONNER 17 CY CC  CONCLUSION 440 LIS  JAMES 11 4 NTU  DESCRIPTION 9114 NTU  DESCRIPTION 10.31 From ingl.  MISCELLANEOUS COSSERVATIONS PROBLEMS TOTAL WILL + SAND PARK VII = 9.12 g.  Sample 1D - MW 8S Lab 10# 04  TCL VEAS UNLY  LAMPLE DESTINATION CAS  WE FELEX SAMBY RB/KHG  R. BUESTINE		
Tomocomers 17 C4 CC  Conductory 4440 LNS  pm 43 SU  Turbully 91.4 NTV  Described Coygen 10.31 fpur ing/L  Constructory 10.31 fpur ing/L  Constructory No. 24: 27  Constructory No. 24: 27  Constructory No. 24: 27  Constructory No. 24: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 26: 27  Constructory No. 26: 26: 27  Constructory No. 26: 26: 27  Constructory No. 26: 26: 27  Constructory No. 26: 26: 27  Constructory No. 26: 26: 27  Constructory No. 26: 26: 27  Constructory No. 26: 26: 27  Constructory No. 26: 26: 27  Constructory No. 26: 26: 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No. 26: 27  Constructory No	- 3 - 1	
TOROGENERY 1440 LIS  MY 143 SU  TOROGEN 10.31 Spen ing/L  DESCRIPTOR DESCRIPTIONS/PROSLEMS TOTAL WILL + SAND PARK VE1 = 9.129.  Sample 1D - MW 88 Lab 10+ 04  TCL VEAS ONLY  AMPLE DESTINATION CAS IN FILEX SOR BY RB/KHG  R: BIESTINA  R: BIESTINA  R: BIESTINA		
Conduction : 440 LIS  pri : 43 SU  INTERESTY 91.14 NTU  Described Carygeon 10.31 Epon ing/L  Described Suncard Readings 10: Ve: 17  ASCELLANEOUS COSSERVATIONS/PROBLEMS TOTAL WILL + Sand park VII = 9.128.  Sample 1D - MW8S Lab 10# 04  TCL VEAK UNLY  LAMPLE DESTINATION CAS No Fed EX Sorr By RB/KHG  R: BUE:Shipe	PROUND-WATER CHARACTERISTICS AFTER SAMPLE COLL	EC180
Conductive: 440 LIS  PM : 43 SU  Toronson 91.4 NTU  Consoned Caygon 10.31 From invg/L  ASCELLANEOUS COSSERVATIONS/PACELENS TOTAL WILL + SAND PARK UT1 = 9.128.  Sample 1D - MW8S Lab 10# 04  TCL VEAS UNCY  LAMPLE DESTINATION CAS No Fed EX Son By RB/KHG  R: BUESTINE  R: BUESTINE		·/
Described Caygon 10.31 Spen mg/L  Described Caygon 10.31 Spen mg/L  Described Suncard Readings 10:		
Described Cargon 10.31 from ing/L  Described Cargon 10.31 from ing/L  Described Standard Readings 10; /1: /1  ESCELLANEOUS COSSERVATIONS/PROBLEMS TOTAL WILL + Sand park VE1 = 9.129.  Sample 1D - MW 8S Lab 10# 04  TCL VEAS ONLY  LAMPLE DESTINATION CAS IN FELEX Some by RB/KHG  R: BUSSINE	Conductivity 440	/
Described Caygen 10.31 from ing 1.  Described Suncard Readings 10:	<u> </u>	
Sample 1D - MW 8S Lab 10# 04  TCL VEAS ONLY  LAMPLE DESTINATION CAS  WELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS  WE FELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS  WE FELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS  WE FELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS  WE FELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS  WE FELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS  WE FELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS  WE FELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS  WE FELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS  WE FELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS  WE FELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS  WE FELLEX SAME REPLETED TO BE A SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTINATION CAS WE SAME PARK VEI = 9.12 9.  LAMPLE DESTI		
Sample 1D - MW8S Lab 10# 04  TCL VEAS UNCY  ABOUTED PRINTING CAS IN FELEX SON BY RB/KHG  RECTION STRUCTURE OF THE SAME PARK UTI = 9.12 8.	Dissolved Citygen 10.31	from wall
Sample 1D - MW8S Lab 10# 04  TCL VEAS UNCY  MAPLE DESTINATION CAS  WE FELLEX SOMEN RB/KHG  R: BUSSINE		i, J.
Sample 1D - MW8S Lab 10# 04  TCL VEAS UNCY  ABOUTED PRINTING CAS IN FELEX SON BY RB/KHG  RECTION STRUCTURE OF THE SAME PARK UTI = 9.12 8.	lectino? (Y) N	
Sample 1D - MW88 Lab 10# 04'  TCL VEAS GNEY  LAMPLE DESTINATION CAS IN FELEX SOMEN RIBIKHCY  R: BUISTINE	Calibration Standard Residings 10; 4;	<u></u>
Sample 1D - MW88 Lab 10# 04'  TCL VEAS UNCY  LAMPLE DESTINATION CAS IN FELEX SOMEN RIBIKHCY  R: Breisting	1	
Sample 1D - MW88 Lab 10# 04'  TCL VEAS UNCY  LAMPLE DESTINATION CAS IN FELEX SOMEN RIBIKHCY  R: BUISTINE	MISCELLANEOUS OBSERVATIONS/PROBLEMS	WWW. Sandpark VII = 7.12 3.
TCL VEAS ONLY  LAMPLE DESTINATION CAS IN FELEX SOMEN RIBITION  R. BUSSINE	Sample ID - Miller	lah 10 + 04'
REPUBLICANTION CAS IN FELEX SOME BY RIBIKHG	1	Note of the original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original original
REPORTED CAS No FELEX SON BY RIBIKHCY REPORTED REPORTED REPORT REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REPORTED REP	TCL VEAS ONLY	
R. Buistine		0.01
R. Buistine	ADDRESS CONTROL (AS IN FELL	Ex come KBIKHG
	K:	

13-04-94

Well No. MIN - 10	STO NAME LANC SYVACUSE COURT St. 5/54
Key No. 2537	Sampling Personnel KHC, KK
PO Beckground C Well C	
Draeger Tubes - Sacriground NA	Cam 3/12/97 Time in 1141 Time Cu 1300 Weather SUM Clouds @ 30°F
Well Compound	
WELL INFORMATION	
TIC	<u>roc</u>
Reference Point Marked on Casing	
Wed Clameter 9.0"	
West Costs 14.0 1	
Water Table Ocotts 5.59	5.85
Langth of Casing Above Grade 2.02	
Sug Teat? (Y(Ng)	
Receverage 7 (1974)	
WELL WATER INFORMATION	
MET AVIEL BACKWAI CA	
Length of Wester Column 6.41	
Volume of Weer in Weil 1.55	and pack $H_20$ voi = 4.70°
Valume of Befor 0.25 g.	
Minutes of Pumping	
Number of Bals ~ 96	
ACIDITIES OF METER WEIGHTED FORM AND AND AND AND ADDRESS OF THE PROPERTY INVESTIGATION AND ADDRESS OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROP	± Saler (i.) Pump ( )
Values of Water Removed from West 240 Evacuation Method Evacuation Rate	± Baier (L) Pump ( )
Cld well go dry? Y (N') Evacuation Rate	
Cld well go dry? Y (N²) Evacuation Rate	After 3 Volumes 400
Cld well go dry? Y (N') Evacuation Rate _  After 1 Volume After 2 Volume Parameter Lyder Removed Removed	After 3 Volumes 400
Cld well go dry? Y (N) Evacuation Rate  After 1 Volume After 2 Volume Parameter Livited Removed Removed Temperature: 4.5 5 3 1 48	Removed. 5.5
Cld well go dry? Y (N) Evacuation Rate  Personnel Liviar Removed Removed  Temperature 4.5 5.7 1 4.8  pm 15.22 5.79 5.73	After 3 Volumes  Removed.  1 U.O 5.5
Cld well go dry? Y (N) Evacuation Rate  After 1 Volume After 2 Volume Parameter Livited Removed Removed Temperature: 4.5 5 3 1 48	1 4.0 5.5 1 4.28 5.35
Cld well go dry? Y (N) Evacuation Rate  Personnel Liviar Removed Removed  Temperature 4.5 5.7 1 4.8  pm 15.22 5.79 5.73	1 4.0 5.5 5.25 1 2011 1946
After 1 Volume	1 4.0 5.5 5.25 1 2011 1946
Personal Inter Polymer After 2 Volume Personal Inter Polymer Inter Removed Removed Removed Temperature   4.5   5.3   4.8    DH   5.22   5.79   5.73    Conductance   236   863   1163  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTER	1 4.0 5.5 5.25 1 2011 1946
Personner Lyter Removed Removed Temperature   4.5   5.7   4.8   5.73   5.73   5.73   5.73   6.73   6.73   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6	1 4.0 5.5 5.25 1 2011 1946
Personner Inter Removed Removed Temperature   4.5   5.7   4.8    Conductance   2.3   80.3   110.3  CAROLHO-WATER CHARACTERISTICS AFTER SAMPLE COLLECTER CONDUCTORS   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6   6.0    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1.6    Conductors   1	1 40 5.5 1 40 5.5 1 40 71 1946
Personner Lyter Removed Removed Temperature   4.5   5.7   4.8   5.73   5.73   5.73   5.73   6.73   6.73   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6.75   6	After 3 Volumes
Personal Liver Removed Removed Removed Temperature 14.5   5.7   4.8   5.73   5.73   5.73   5.73   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.	After 3 Volumes
After 1 Volume	After 3 Volumes
After 1 Volume	After 3 Volumes
Parameter Lyter Removed Removed Temperature 4.5 5.2 1 48 5.73 Conductance 236 863 1 1103 Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 1 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance 5 °C Conductance	After 3 Volumes    1
After 1 Volume	1 400 1 400 1 400 5.5 5.35 1 2011 1966
After 1 Volume  Personal Invited Removed Removed Temperature Invited Removed Removed Temperature I 4.5   5.3   4.8    DM   15.22   5.79   5.73    Conductance   236   863   11033  CACUNO-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED CONDUCTORY   1898 LIS    DM   6.48 SU    Turbusty   200 NITH  Calibration Standard Readings   10; 4: 7	Mars volumes 441  Respond  1 40  5.5  1 4.28  5.35  1 7071  1946  Mg/L  Well + Jand pack = 605 spls.
After 1 Volume  Personal Invited Removed Removed Temperature Invited Removed Removed Temperature I 4.5   5.3   4.8    DM   15.22   5.79   5.73    Conductance   236   863   11033  CACUNO-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED CONDUCTORY   1898 LIS    DM   6.48 SU    Turbusty   200 NITH  Calibration Standard Readings   10; 4: 7	Mars volumes 441  Respond  1 40  5.5  1 4.28  5.35  1 7071  1946  Mg/L  Well + Jand pack = 605 spls.
Personal Inter Removed Removed Temperature 14.5   5.7   1 + 8    DM   5.22   5.79   5.73    Conductance 236 863   1163  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTER  Temperature   5   0 C    Conductance   798 MC    Turbusty   700 NITL  Described Standard Readings   10: 4: 7  MISCELLANEOUS COSSERVATIONS/FINCELEMS   Total  Sample 15 GWO10 S	401 1 40 1 40 5.5 5.35 1 2071 1946 well t fand pack = 6 05 sylls. Lab 10 # 50
After 1 Volume  Personal Invited Removed Removed Temperature Invited Removed Removed Temperature I 4.5   5.3   4.8    DM   15.22   5.79   5.73    Conductance   236   863   11033  CACUNO-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED CONDUCTORY   1898 LIS    DM   6.48 SU    Turbusty   200 NITH  Calibration Standard Readings   10; 4: 7	401 1 40 1 40 5.5 5.35 1 2071 1946 well t fand pack = 6 05 sylls. Lab 10 # 50
PRESENTED IN THE PRODUCT OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COL	well t land pack = 6 05 sqls.  Lab 10 # 50  Only DEC Split total inetals
PRESENTED IN THE PRODUCT OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COL	1 00 5.5 1 6.78 5.35 1 7011 1946 mg/L  well t fand pack = 6 05 syls.  Lab 10 # 50
After 1 Volume  Personal Invited Removed Removed Temperature 14.5   5.3   4.8    DM   15.22   5.79   5.73    Conductance   236   863   1163  CACUMO-WATER CHARACTERISTICS AFTER SAMPLE COLLECTER  Temperature   5   0 C  Conductance   5   0 C  Conductance   1898 LIS  DM   6.48   30  Turbustry   300 NITH  Calibration Standard Readings   10; 4: 7  MISCELLANEOUS COSSERVATIONS/PROBLEMS Total  Sample 1D - GWO10 S  TCL VOAS TOtal , dist. metals  SAMPLE DESTINATION (AS)   Fed EX	Marsverse 40:1  1 0.0  1 0.0  5.5  1 2071  1906   Well t dand pack = 6.05 syls.  Lab 10 # 50  Only DEC split total inclus  Series Kitches
After 1 Volume  Personal Invited Removed Removed Temperature 14.5   5.3   4.8    DM   15.22   5.79   5.73    Conductance   236   863   1163  CACUMO-WATER CHARACTERISTICS AFTER SAMPLE COLLECTER  Temperature   5   0 C  Conductance   5   0 C  Conductance   1898 LIS  DM   6.48   30  Turbustry   300 NITH  Calibration Standard Readings   10; 4: 7  MISCELLANEOUS COSSERVATIONS/PROBLEMS Total  Sample 1D - GWO10 S  TCL VOAS TOtal , dist. metals  SAMPLE DESTINATION (AS)   Fed EX	well t dand pack = 6 05 sylls.  Lab 10 # 50  Only DEC split total inclus  Existing

Sampler Property Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construct	Well No. MW-11		Sno Name	LMC Syras	euse Court	st 5/5
The Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Compositi	25.2.7		Samoung Pe	monne Kito	RB	
MA WARDER SECTION OF CAMPOUND AND AND AND AND AND AND AND AND AND A		1 2 0 m	Cam 3/	14977man	Time Cut 10:00	
The profice of the profit Manage on Casing and Casing and Casing and Casing and Casing and Casing and Casing and Casing and Casing and Casing Across and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second	. 1	A P	•	Smu Stee		
TC TOC  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Carrier Control  Selection of Selection  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Method Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Carrier Control  Selection Ca						
TIC TOC  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPR	Well Compound _					
TIC TOC  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPRETATION AND THE COLOR TOCK  INTERPR	WELL INFORMATION					
See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See Description  See De						
The December 3-0"   13.29   14.64   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15.61   15	1	nc I	τοc			
The Decom 13.30   4.04    The Test TYPE Decompose Chains   1.60    The Test TYPE Decompose Chains   1.60    The Test TYPE Decompose Chains   1.60    The Test TYPE Decompose Chains   1.60    The Test TYPE Decompose Chains   1.60    The Test TYPE Decompose Chains   1.60    The Test Type Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The Test Decompose Chains   1.60    The T	Reference Point Marked on Casing					
The Table Door 3, 79   4-04  Anger of Carry Above Grace   1 (00)  BLI WATER RECONATION  BLI WATER RECONATION  BLI WATER RECONATION  BLI WATER RECONATION  BLI WATER RECONATION  BLI WATER RECONATION  BLI WATER RECONATION  BLI WATER RECONATION  WATER OF PARTON  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  BLI WATER RECONATION  WATER RECONATION  BLI WATER RECONATION  RECONATION RECONATION  RECONATION RECONATION  BLI WATER RECONATION  RECONATION RECONATION  BLI WATER RECONATION  RECONATION RECONATION  RECONATION RECONATION  WATER RECONATION  RECONATION RECONATION  RECONATION RECONATION  BLI WATER RECONATION  RECONATION RECONATION  WATER RECONATION  RECONATION  WATER RECONATION  RECONATION  WATER RECONATION  RECONATION  WATER RECONATION  RECONATION  WATER RECONATION  RECONATION  WATER RECONATION  RECONATION  WATER RECONATION  RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER RECONATION  WATER	Wed Dismeter	J.O"				
ELL WATER POPCHATION  BOTH (1/16)  ELL WATER POPCHATION  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)  BOTH (1/16)	Well Depth	13.30				
ELL WATER PAPAMATON  BELL WATER PAPAMATON  BOUND of Water in West  United of Water in West  United of Water in West  United of Water in West  United of Water in West  United of Water in West  United of Water in West  United of Water in West  United of Water in West  United of Water in West  After 1 Volume  After 2 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Volumes   After 3 Vo	Wester Table Coots	3.79	4.04	<i>i</i>		
ELL WATER RECOMMENDON  AND OF WASH COLUMN  4.5]  Stund of Wash was war 1.53  Windled ARM of Wash of Auro  Windled Arm of Auro  Windled Arm of Auro  Windled Of Based  ARM of Arm of Wash Arm of Wash of Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Was	Length of Casing Above Grade	i.60	,			
ELL WATER RECOMMENDON  AND OF WASH COLUMN  4.5]  Stund of Wash was war 1.53  Windled ARM of Wash of Auro  Windled Arm of Auro  Windled Arm of Auro  Windled Of Based  ARM of Arm of Wash Arm of Wash of Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Was						
ELL WATER RECOMMENDON  AND OF WASH COLUMN  4.5]  Stund of Wash was war 1.53  Windled ARM of Wash of Auro  Windled Arm of Auro  Windled Arm of Auro  Windled Of Based  ARM of Arm of Wash Arm of Wash of Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Wash Arm of Was	Bug Test (Y/h)					
SULL WATER REFORMATION  And Service of Many Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Se	Receverap? (Y/(N))					
Section of Wester or West 1.52  United of Wester or West 1.52  United of Wester or West 1.52  United of Basker 1.52  United of Basker 1.52  United of Basker 1.52  United of Basker 1.52  United of Basker 1.52  United of Basker 1.52  United of Wester Parameter In West 1.52  United of Wester Parameter In West 1.52  After 1 Volume 1.52  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump	<u> </u>					
Section of Wester or West 1.52  United of Wester or West 1.52  United of Wester or West 1.52  United of Basker 1.52  United of Basker 1.52  United of Basker 1.52  United of Basker 1.52  United of Basker 1.52  United of Basker 1.52  United of Wester Parameter In West 1.52  United of Wester Parameter In West 1.52  After 1 Volume 1.52  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump ( )  Evacuation Method: Basker (V Pump	WELL WATER INFORMATION					
STATE OF VICTOR OF PARTO STATE SAMPLE COLLECTED  THOMSON OF MATCHARACTERISTICS AFTER SAMPLE COLLECTED  THOMSON OF MATCHARACTERISTICS AFTER SAMPLE COLLECTED  THE THOMSON OF THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THE SAMPLE OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THE SAMPLE OF THE SAMPLE COLLECTED  THE THE SAMPLE OF THE SAMPLE COLLECTED  THE THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF						
STATE OF VICTOR OF PARTO STATE SAMPLE COLLECTED  THOMSON OF MATCHARACTERISTICS AFTER SAMPLE COLLECTED  THOMSON OF MATCHARACTERISTICS AFTER SAMPLE COLLECTED  THE THOMSON OF THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THE SAMPLE OF THE SAMPLE COLLECTED  THE THOMSON OF THE SAMPLE COLLECTED  THE THE SAMPLE OF THE SAMPLE COLLECTED  THE THE SAMPLE OF THE SAMPLE COLLECTED  THE THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE OF THE SAMPLE COLLECTED  THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF THE SAMPLE OF	Length of Wester Column	9.51				
Sand Pick H2C Vol = 4.70  Stune of Base  VACUATION INFORMATION  Stune of Waser Responsed from West  a west go dry?  N  After 1 Volume  After 2 Volume  After 2 Volume  After 2 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3 Volume  After 3	Actume of Wester in Well	107	_			
ACCUATION INFORMATION Interned of Wester Reproved from West  After 1 Volume  After 2 Volumes  After 3 Volumes  Parameter  Livian  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed	<del></del>	<u> </u>	ad DA	INV HOU	of = 470	
MULTION INFORMATION  WALL TOOL INFORMATION  WALL TOOL INFORMATION  WALL TOOL INFORMATION  WALL TOOL INFORMATION  WALL TOOL INFORMATION  WALL TOOL INFORMATION  After 1 VOILURE  After 2 VOILURE  After 2 VOILURE  After 3 VOILURE  Parameter  Livian  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed		2.25	me yer	1120 0	-1.10	
ACUATION INFORMATION Interior of Wester Reproved from West 9.0  Serecussion Method: Baser (V Pump ( )  Evecusion Method: Baser (V Pump ( )  Evecusion Method: Baser (V Pump ( )  Evecusion Method: Baser (V Pump ( )  Evecusion Method: Baser (V Pump ( )  Evecusion Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: M						
ACCUATION INFORMATION whene of Wester Association West 9.0  Evacuation Method: Baser (V Pump ( )  Evacuation Ratio  After 1 Volume  After 2 Volumes  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed		210				
EVECUATION SERVATIONS PROBLEMS  TO LET VOAS METALS A SERVE LET SAMPLE COLLECTED  FOR THE STREET STATE SAMPLE COLLECTED  FOR THE STATE SAMPLE COLLECTED  FOR THE STATE SAMPLE COLLECTED  FOR THE STATE SAMPLE COLLECTED  FOR THE STATE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE STATE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED  FOR THE SAMPLE COLLECTED	Number of Bells	_30				
MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARAC		_	f			
MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  MOUND-WATER CHARAC						
CONDUCTORISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  DOUBLE-WATER CHARACTERISTICS AFTER SAMPLE COL			<del>- i</del>			
MOUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  10.4 °C.  17.42 SV  17.42 SV  135.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NITV  155.5 NI			i	<del>i</del>		
170 us  170 us  170 us  170 us  1355 NTV  1355 NTV  1355 NTV  1355 NTV  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  135	W87 0/	1		<del>`</del>		
170 us  170 us  170 us  170 us  1355 NTV  1355 NTV  1355 NTV  1355 NTV  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  1350 SU  135	OC MO WATER CLARACTERISTICS	STED CAMPIE COLLECTED				
17.10 US  17.103 SU  13.55 NITV  13.55 NITV  13.55 NITV  MG/L  CELLANEOUS COSSERVATIONSPICCIONS + Total well + Land vol = 4.22  10.1126 ID = GNOIIS Lab ID # 44  TCL VOAS, metals - tot. 3 diss / DEC split  MAPLE DESTINATION CAS  No Fed Ex Son By Kitter RB  R. Brichestine		, <del></del>	•			
17.10 US  17.103 SU  13.55 NITV  13.55 NITV  13.55 NITV  MG/L  CELLANEOUS COSSERVATIONSPICCIONS + Total well + Land vol = 4.22  10.1126 ID = GNOIIS Lab ID # 44  TCL VOAS, metals - tot. 3 diss / DEC split  MAPLE DESTINATION CAS  No Fed Ex Son By Kitter RB  R. Brichestine	emperare :	0.4 36.				
135.5 NITV  135.5 NITV  135.5 NITV  135.5 NITV  135.5 NITV  135.5 NITV  150.00 Decord Conygon +1.50 mg/L  CELLANEOUS COSSERVATIONS/PROCEEUS + D fal well + Land vol = 6.32  12. 10 = GNOIIS Lab ID # 44  TCL VOAS, metals - tot 7 diss / DEC split  MAPLE CESTINATION CAS METALS - tot 7 diss / DEC split  R. Brenstine						
135.5 NTV  MODERAN SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMMER SUMME	- :7	7/211				
SCELLANEOUS COSERVATIONSPRICUENS + DEAL WELL + LAND VOL = 6.22  10: 10 = GNUOLIS Lab ID # 44  TCL VOAS, METALS - FOT. 7 DLIS / DEC April  MAPLE DESTINATION CAS IN FED EX SON BY KHEY RB  R. BIENSTINE	urtically					
SCELL MECULIS COSSETVATIONS FROLENS + DEL WELL + LAND VOR = 6.22  LANDING 1D = GINDIIS LAS ID # 44  TCL VOAS, METALS - FOF. 7 DLIS / DEC SPLIT  MAPLE DESTINATION CAS VA FED EX SON BY KHEG RB  R. BICKSTINE	Senatved Cirygen	+.50 mg/L	-		•	
SCELL MECULIS COSSETVATIONS FROLENS + DEL WELL + LAND VOR = 6.22  LANDING 1D = GINDIIS LAS ID # 44  TCL VOAS, METALS - FOF. 7 DLIS / DEC SPLIT  MAPLE DESTINATION CAS VA FED EX SON BY KHEG RB  R. BICKSTINE						
Jan 12 10 = GNO118 Lab 10 # 44 TCL VOAS, metals - tot. 7 dis / DEC split  MPLE DESTINATION CAS IN FEEL EX SON BY KHEG RB  R. BICKSTILL	neline? (Y / N					
1 AANTAGE 1D = GOVOITS Lab 1D # 44 TCL VOAS, metals - tot 2 dis / DEC split  MPLE DESTINATION CAS IN FEED EX SON BY KHEG RB  R. BIENSTINE	alibration Standard Readings	10; 4; 7				
1 AANTAGE 1D = GOVOITS Lab 1D # 44 TCL VOAS, metals - tot 2 dis / DEC split  MPLE DESTINATION CAS IN FEED EX SON BY KHEG RB  R. BIENSTINE	-	- In 1.0 ::	1010 +	10. d 100 -	- 1. 22	
TCL VOAS, metals - tot 3 dis / DEC split  WE DESTINATION CAS TELL SOM BY KITTER RB  R. BILLYSTIA	IISCELLANEOUS OBSERVATIONS/PRO		ra .	and voc -	- U.AA	
TCL VOAS, metals - tot. 3 dis / DEC split  WE FED EX SORBY KITG RB  R. BILLESTINATION	12210G 10=1	3000115	iæbí i	D# 44		
WAPLE DESTINATION CAS VA FED EX SOM BY KITTO RB  R. BICKSTILL			2011		nlit	
CAS Va FRA CX Sora By KITCO KB  R. BICKSTILL	100 00/15	TWILL I - JOT.	- 7 WM	1 DEC A	The same	
R. Breistie	MAPLE DESTINATION (14.2	Fol Si	/ . i/	14 00		
Field Sampling Coordinator	EDOTEDRY	- ITALY	Sort By	THE KD		
Field Sampling Coordinator		_ K. B	161×571	ی		
		Field Sampling Coon	dinesor	<del></del>	<b>3</b> *	

13-04-64

West No. M(V) - 13	<b>}</b>	SOR NAME LINC	Svvacusi	Court St. 5/5A
40 No. 2537		Semona Personne	HIT RB	
	/ed	Can 3/3/477	7	Ce 17:05
		Wester Silve	101-2-10 2	1015
reager Tubes - Background		- Jak	LANGUA	<del>V</del>
Compound :				
ELL INFORMATION				
	nc I 1	·oc		
eterence Point Marked on Calend	1			
led Diemeter	<b>みの"</b>			
feli Cesth	14.39 1			
esser Table Cepth		lele		
ength of Casing Above Grade	1.81			
mgan ar casang Abow Greas		<del></del>		
20 Teat (MN)				
ELL WATER INFORMATION				
ingth of Weter Column	0.03			
lume of Westr in Well	1.60			
moing Rese of Pump	5/11	ed pack Ho	7 Vol - 5	.40
sume of Seder	0.25	the house 112		
nume of Pumoing				
	L78			
amour or days	- 7.8			•
Perameter Lives Remomentaries (6.4   9.2   7.8   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7	ned Removed	Removed.		
OUND-WATER CHARACTERISTICS	5.4 °C			
onducting . (	098 US			
	6.89 50			
	SOCO NTU			
seawed Oxygen	10.9 mg/L			
	, /			
<b>⊈no?</b> (Ÿ) N				
Abreston Standard Readings	_ 10; 4; 7	1		
	MOLLOS I MA	s/MSD here	121.0	went i Car h = 7 0 a
SCELLANEOUS OBSERVATIONS/PRO	BLEWS COLLEGE MIC		TUTOX	well + Card = 7.0gg
cample 10.	- GWOLDS (	US/MSD),	Lab 10 #	= 37
		1 4 5 2 6	0:70 6011	all land he is a shall be
TCL VOAS, SUC	Hs, metals To	0+ & DISS /	DEC SPIT	all but disi metals
MPLE DESTINATION ALAC	- , -	r	•	
MPLE DESTINATION () AS	with tx	Som By KHG RI	5	
	V . K10	ristine		
	Field Sampling Coordina			4-
	reig sempling Coordina			-
WA MALLA				
#/Coure				

ħΛia	J-13	Name LM Syvanuse Coluci St. 5/
) (	777	amoung Personnel Kittin RK
Key No.		
PO Beckground	West C4	am 3/12/97 Time in time Cue 18:15  Meather Shir, Church's @ 30 °F
Orseger Tupes - Background	NA W	reather Sun Clorics 6 50 P
Ned Co	moound	•
WELL INFORMATION		
NEET IN CHILLIAN		
	t no i roo	
Reference Point Marked on C	aeng	
West Clameter	7.0 "	
Wed Ceath	13.60	
Wester Table Depth	7.97 8.0	Dig :
Langth of Casing Above Grad	<b>235</b>	
Sug Tout (Y)		
100010007 (Y/(1)		
WELL WATER INFORMATION		
Length of Weter Column	563	
Volume of Weser in West	0.90	
Pumping Rese of Pump	sand	jack H20 vol = 5.36
Valume of Seder	0.25	- parces 1170 roc -3: 30
Minutes of Purnoing		
Number of Bails	24	
		•
	After 1 Volume After 2 Volumes -	-After 3 Volumes
Perameter Index	Removed Removed	Removed.
Temperature   5.0 i	5.7 1	
pm 15.4	641	
Conductance   905	1677 1	
PROUND-WATER CHARACT	ERISTICS AFTER SAMPLE COLLECTED	
Temperature	4.9 °C	
Conductive	1776 US	
	7.31 SU	
we way	>>00 NTL'	
Diseased Citygen	7.15 mg/L	
		·
lustra? (Y) N		
Calibration Standard Readings		
MSCELLANEOUS OBSERVAT	ionsproblems total we	u + sand vol = 6.26
A am no	ID = GWO13S L	ab 10#16
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
<u> </u>	VOAS Only	
MANPLE DESTINATION	AS * Fed GX \$	ener KHG PB
*polespil	1 2	
		stre_
	Field Sempling Coordinates	•

13-00-04

WOUND MW-14	_	San Name LMC	Syracuse	Court St. 5/5A
Key No. 3537		Samoung Fereinnel		
	West O	ran 2/17/97	3-c	Ime Cue 1210
Draeger Tubes - Sacreround N		Weather GUN (	donas 30°	5>
West Compound	<del></del>			<del></del>
	<del></del>			
WELL INFORMATION				
		<del></del>		
	nc !	тос		
Reference Point Marked on Casing		<u> </u>		
Well Diameter	2.0 "			
Well Desth	12:19			
Weser Table Dooth		.45		
Langth of Casing Above Grade	7.50	<u>'</u>		
Sug Test (1/6)				
Redevelop? (Y/(1)				
WELL WATER INFORMATION				
Transport of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the fermion of the ferm				
Length of West Column	(c.C.7			
Volume of Westr in West	C 677	•		,a
Pumping Rese of Pump	- 8	and pack H	50 vol= 6	.709×
Volume of Baler	0.75	, , , , , , , , , , , , , , , , , , ,	20 0	0
Minutes of Pumping				
<del></del>	212			
	السينية السيارة			•
Clid well go dry? (Y) N  After 1 \ Personner   Index   Rem		After 3 Volumes		
Temperature   8.3	1	1		
pm ! (c.43				
Conductance   8 9	1			
GROUNG-WATER CHARACTERISTICS	AFTER SAMPLE COLLECTED	•		
	11 2	<del></del>		
	4.3 °C			
Conductivity	607 45			
Turbidity	5.19 SU			
Dissolved Citygen	11.22 ppn	mall		•
	- T T			
Rodinot (Y N		•		
Calibration Standard Readings	_ 10; 4; 7			
		011 + 00 1	0	1-7107
MISCELLANEOUS OBSERVATIONS/PRI	SLEWS TOTAL W	ell + Sand Lab # ID-	- pack vo	1-1.0
Sample 15	) - GW014S	Lab#ID-	15'	
	ops only			
	TIS ONLY			<del></del>
SAMPLE DESTINATION CAS	Eal Ev	Som By KITO PF	2	
LaboratoryC/ (C			<u>ر</u>	
		rstine		
	Field Sampling Coord	Instal		<b>.</b>

13-02-64

v No. けっ	<u> 1- 15                                  </u>	Samoung Personnel	CHG KK	<u>ouu</u> st 5
Background	West C_	317197 7		<u> </u>
seper Tubes - Secretour	<u> </u>	Wester Slin (		
-	mpound			
ELL INFCRMATION				
	nc l	тос		
sterence Point Marked on I				
ed Clemeter	3.0"			
ed Cecth	13.60 1			
ster Table Desth	2.87	3.10		
ingth of Casing Above Gra	» 1.95			
<i>(</i> *)				
TOWN (YM)				
CONTROL TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PARTY TO THE PAR				
ELL WATER INFORMATION	t e e e e e e e e e e e e e e e e e e e			
	10.72			
ingth of Weter Column	10.13			
lume of Westr in Well	(1)	sand pack Hz	0 vol = 6.5	10 g.
moing Reta of Pump		and puce "		
sturne of Bester	(2.35			
Invited of Purroing	216			
umber of Beds				
VACUATION INFORMATION NUMBER OF WILLIAM PROVIDED IN 18 WHITE THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE	<u> </u>	± Baser (*) Pump ( )		
lucie of Water Removed In	rm West 7.0 Evecuation Method Evecuation Ratio			
lume of Water Removed In It well go dry?	Frequestion Method Evacuation Ratio			
lustic of Water Removed In a well go dry? Y N	After 1 Volume Removed Removed	es After 3 Volumes		
Number of Water Removed In a well go dry?   Perameter Lyder impessure 1 4.31	Frequeston Method Evecueston Resin	es After 3 Volumes Removed		
Personate Lyter  H.31  H.31	Frequestion Method Evecusion Resident Parties After 1 Volume Removed Removed	es After 3 Volumes Removed		
Personate Lyter  H.31  H.31	Frecueston Method Evecueston Resta	es After 3 Volumes Removed		
Personate Lives H.31  1 5.35  Onductance H.31	Frequestion Method Evecusion Resident Parties After 1 Volume Removed Removed	Resoved.		
Personate Lives H.31  1 5.35  Onductance H.31	After 1 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After	Resoved.		
Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perame	After 1 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After	Resoved.		
Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramoter Lyder  Peramo	After 1 Values After 2 Values Removed Removed Removed H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70 I H-70	Resoved.		
Perameter Livest Indicators   H-31   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35   H-35	After 1 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After	Resoved.		
Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramo	After 1 Volume   After 2 Volume   Removed   Removed   Removed   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Vo	After 3 Volumes Removed		
Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramo	After 1 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After	Resoved.		
Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramo	After 1 Volume   After 2 Volume   Removed   Removed   Removed   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Volume   After 2 Vo	After 3 Volumes Removed		
Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perameter Lyter  Perame	Frecueston Method Evacuation Ratio Evacuation Ratio Evacuation Ratio Evacuation Ratio Evacuation Ratio After 1 Volume Removed Removed Removed Part 10 1  EPRISTICS AFTER SAMPLE COLLECTER  3.8 - C	After 3 Volumes Removed		
Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramo	After 1 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After	After 3 Volumes Removed		S-112
Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramo	After 1 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After	After 3 Volumes Removed	puck vol=	8.42
Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramoter Lyter  Peramo	After 1 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After	After 3 Volumes Removed	pur vol=	8.42
Personner Liver No No No No No No No No No No No No No	After 1 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After	After 3 Volumes Removed	puck Vol=	8.42
Peramoter Liver Nonderd In No. 1997 N. N. 1997 N. N. 1997 N. N. 1997 N. N. 1997 N. N. 1997 N. N. 1997 N. N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 1997 N. 19	After 1 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After	After 3 Volumes Removed	puk Vol=	8.42
Peramoter Lives of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second	After 1 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After	ing 1 L  well + Sand Lab 1D	···	8.42
Personner Liver No No No No No No No No No No No No No	After 1 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After 2 Values   After	After 3 Volumes Removed	···	8.42

Well No. MW-16 A Size Name LMC Syracuse Gurf & t \$ 15 A  Key No. 2537 Sampling Personnel R-B   KHG  PIO Background O Well O Date 3/11/97 Time in Time Cut 1430  Oranger Tubes - Background NA Weather Cutrost Britzell Britzell Britzell Britzell
WHINO. TO
Key No. Sampling Personnel 105 KPC7
PIO Background
Well Compound
WELLINFCRMATION
TIC TOC
Reference Point Marked on Casing
Well Diameter 2 inch
Well Death 8. V A
Water Table Depth 2.29 2.59
Length of Casing Above Grade Flus h
Sing Test? (Y/N) N
Redevelop? (Y/N)
WELL WATER INFORMATION
Length of Water Column  Volume of Water in Weil  Pumping Rate of Pump  Volume of Rate of Pump  Volume of Rate of Pump  Volume of Rate of Pump
Volume of Water in Well 0. 99 gol Volume of water
Pumping Rate of Pump 4.69 gol
Volume of Basier 0 25 god
Minutes of Pumping
Number of Bails ~ 2 9
Volume of Water Removed from Well 6 gol Evacuation Method: Bailer (v) Pump ( )  Clid well go dry? (Y) N Evacuation Rate
5.76 50-1
5.75 gg
After 1 Volume After 2 Volumes After 3 Volumes
Parameter Initial Removed Removed Removed.
Parameter Initial Removed Removed Removed.  Temperature 5-2 5.6
Perameter Initial Removed Removed Removed.  Temperature 5-2 5.6   pH 6-70 5-62
Perameter Initial Removed Removed Removed.  Temperature 5-2 5.6   pH 6-70 5-62
Parameter Initial Removed Removed Removed.  Temperature   5-2   5.6   pH   6-70   5-62   Conductance   600   610    GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED
Parameter Initial Removed Removed Removed.  Temperature 5-2 5.6  DH 6-70 5-62  Conductance 600 610  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED
Parameter Initial Removed Removed Removed.  Temperature 5-2 5.6  ph 6-70 5-62  Conductance 600 610  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperature 50 70  Temperat
Parameter Initial Removed Removed Removed.  Temperature 5-2 5.6  pH 6-70 5-62  Conductance 600 610  Temperature 50 70  Temperature 50 70  Conductance 600 Manko 5  pH 5-6-7 50 50 Manko 5  pH 5-6-7 50 Manko 5
Parameter Initial Removed Removed Removed.  Temperature 5-2 5.6  pH 6-70 5-62  Conductance 600 610  Temperature 50 70  Conductance 600 Manko 5  pH 5.67 SU  Turbidity 10.7.5 NTU
Parameter Initial Removed Removed Removed.  Temperature 5-2 5.6  pH 6-70 5-62  Conductance 600 610  Temperature 50 70  Temperature 50 70  Conductance 600 Manko 5  pH 5-6-7 50 50 Manko 5  pH 5-6-7 50 Manko 5
After 1 Volume After 2 Volumes After 3 Volumes Parameter Index Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed
After 1 Volume After 2 Volumes After 3 Volumes Parameter Index Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed
After 1 Volume After 2 Volumes After 3 Volumes Parameter Index Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed
After 1 Volume After 2 Volumes After 3 Volumes Parameter Index Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed
After 1 Volume  After 2 Volumes  Parameter  India:  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Remov
After 1 Volume  After 2 Volumes  Parameter  India:  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Remov
After 1 Volume After 2 Volumes After 3 Volumes Permanet Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed Remove
After 1 Volume  After 2 Volumes  Parameter  India:  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Remov

****

WOUND MW-16B	Sino Name LMC Syraeuse Court St 5/5A
Key No2537	Sampling Personnel RB / KHG
PID Background	O Date 3/11/97 Time in Time Cut 1410
Draeger Tubes - Background NA	wearner directist, breezy, duzzu, 30's
Well Compound	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
WELL INFORMATION	
	TIC, I TOC
Reference Point Marked on Casing	
Well Diameter	Z.O"
	21.78
Water Table Depth	1.84 2.22
Length of Casing Above Grade	ush
Slug Teet? (Y/N) N N N N N N N N N N N N N N N N N N	
Length of Water Column 19	74 Vol. of water in sand pack = 8.04 gal
Volume of Water in Well 3.	9 Vol. of water in such pack of g
Pumping Rate of Pump	
Votume of Basier C -	75 g.
Minute of Pumping	
Number of Bails ~ >1	
Did well go dry?	Evacuation Rate
"After 1 Volume	After 2 Volumes After 3 Volumee
Parameter Initial Removed	Removed Removed
Temperature ! (0,7°C)	
рн 525.	
Conductance     8 00	
GROUND-WATER CHARACTERISTICS AFTER	
Temperature         /0.1           Conductivity         /600	
pH 6.15	SU
Turbidity -6.7.	
Dissorved Oxygen 6.19	from mali-
	/: /7 = total well + Sand pack vol = 11.23 g.
MISCELLANEOUS OBSERVATIONS/PROBLEMS	10 men 1 state 10 il 10
Sample 10 - Gin	116 DS / Lab 11) # 03
TCL VOAs only	1
	/ DEC Split
SAMPLE DESTINATION CAS	VIA FED EX SOMBY RB/KHG

WOUND MW 173 STONE LIME SYVACUSE COTIFT ST 5/5A
Semond Personnel KH(2 Pb
PO Secreption Cam 118 pp Cam 3118191 Time in Time Cut 1440
Weather SUN / ISTALL @ 50 C
WELL INFORMATION
TC I TOC
Reterence Point Mented on Casing
Well Diameter 2.0"
Well Cests
Length of Casing Above Grade 2:23
Langth of Casing Above Grade 7.75
Sug Tod? (17(4))
Recoverage (YAM)
WELL WATER INFORMATION
Langth of Wester Column 9 9 9
1 600
Purnoing Rese of Purno Seind pack water Vol. = 7.40
Volume of Baler : U. F.S.
Number of Bals ~ 10%
Transaction Capt
EVACUATION INFORMATION /
Volume of Water Removed from West 27 GV Evecuation Method: Baser (V) Pump ( )
Clid well go dry? Y (N) Evecuation Rate
After 1 Volume After 2 Volumes - After 3 Volumes
Perameter Lyder Removed Removed Removed
Temperature! 4:0 : 5.8 : 5.4
Conductance 1737 3290 1 3130 1 2100
Conditional 175 3210 1 3770 200
GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED
Temperature 4.2 °C
Conductivity : 2041 US
Tool 108 S ALTU
Classified Original 6 74 fre MG/1
Reduct V N
Celibration Standard Readings 10; 4; 7
MISCELLANEOUS OBSERVATIONS/PROBLEMS TO tal Will + Sand pack = 8.99 Ral.
Sample 1D - GW 1785 Las 10 # 12
TCL VOAS UNCY DEC Split
LABORRORY VA FELLEX SOR BY KHG RE
Find Sampling Coordinator

13-02-04

day No. 2537 Same	LMC Syvacuse Court 87 5/5A
	sung Personnel KHC7 PK
PO Background O West O 1 14 Ppm Came Orange Tubes - Securous O NA West	3/12/97 Time in Time Cur 14-20
	sur dondes 40's
Well	
WELL INFORMATION	
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
100	<del></del>
Reference Form Merced on Casing West Diameter	
West Destri	
Wester Table Doors 4.59 4.85	
Langth of Casing Above Grade 3 34	
Slug Test? (Y/M)	
Recevalog? (Y/N)	
WELL WATER INFORMATION	
WELL WATER BALCHINA SA	
Longth of Wester Column 20 64	
Valume of Wester in West 3:20	
Purnoing Reso of Purno Sand	pace H2C vol= 6.4g.
Volume of Balar	
Minume of Purroing	
Number of Balls	
EVACUATION INFORMATION	
Volume of Water Removed from Well 6.5 Cyl Elecustron Method: Baller (	) Pump (V)
Did well go ary? (Y) N Evacuation Ratio	· •
	For 3 Volumes
	Removed.
Temperature 1.9	
PM ! (0.0)	
Conductance I 43%	
GROUNG-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED	
GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Tomographe : 43 °C	
GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Tomocomus  4.3 : C  Conductivity  2900 45	
Conductance   43%	t Sand vol - 9.70
Conductance   43%	+ Sand vol - 9.70 Lab id # 10
Conductance   43%	t Sand vol - 9.70 Lab is # 10
Conductance   43%	Lab in # ic
Conductance   H   W	t Sand vol - 9.70 Lab id # ic Lab id # ic
Conductance   H   W	Lab in # ic

13-00-64

1111 i C < 1	STO NAMO LMC Syracuse Court 87 5/5A
Well No. MW-18A	Sto Name LIVIC SVI AP (14) COOK SI SIST
Key No. 3537	Sampling Personnel RB KH(7
PO Beckground O west O 14 177m	
Oreager Tubes - Beckground	Weather SUMMY & 30° F
Well Compound	·
WELL INFORMATION	
nc	toc
Reference Point Manked on Casing	
West Clameter 2.0"	<u> </u>
West Death 12.20 1	<u> </u>
Wester Table Dooth 6:30	6.58
Length of Casing Above Grade 2.83	
Sug Test? (10)	
Pacavaco1 (fM)	
WELL WATER INFORMATION	
METT MYIEV BALCHEVISON	
Length of Westr Column 5.90	
A 22.1	
Volume of Water in Well 0.94	1. 1 1 1 1 1
	sand pack that vol = 4.70
Vature of Bater : 0.3C	
Minutes of Pumoing	
Number of Bads ~ 20	
After 1 Volume After 2 V	1
Parameter Inter Removed Remo	ned Penoved
Temperature ! 5.4   0.0	
M 1815 8.00 1	
Conductance 945 959 1	
GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLE	CTED .
Tonocense 10.2 °C	
Conduction 1 920 US	
7,43 Si	
Turky 95.5 No	
Observed Oxygen 4:54 U.S.	
	9/
Redire? (Y) N	
Calibration Standard Readings10;4;	
MISCELLANEOUS OBSERVATIONS/PROBLEMS	l well + land vol = 5.64_
MISCELLIMEOUS OBSERVATIONS/FRCBLEMS	والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمنا
Sample 1D-GW1858	Lub 10 # 23
TCL VOAS only	/ DEC 10lit
SAMPLE DESTINATION () AR I I I I I I I I I I I I I I I I I I	SI and VHZ IPB
LABOREDRY C7   S We 1-4 W	SA SHEET WILLIAM
.,)	ill a size to
<u> </u>	Breistine
Feld Samplin	BILISTINE COORDINATION

Sampling Personnel Ltt(-) PK  PD Bactground	Well No. /V/V/ - 1 5 D	
PO BEOURDON OF MANAGEMENT ON HER SAMPLE COLLECTED  TOMORD PROPOSED THE SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTER SAMPLE COLLECTED  TOMORDON MATER CHARACTERISTICS ATTERISTICS ATTERISTICS ATTERISTICS ATTERISTICS ATTERIST		STO Name LMC SYVAPLLE COURTS+ 5/5
Dragger Tuess - Bacopyone NA CONDUNTS  WELL PROPILATION  WELL PROPILATION  WELL PROPILATION  WELL PROPILATION  WELL PROPILATION  WELL PROPILATION  WELL WATER PROPILATION  Langer of Casera Above Graco  Langer of Water Court  Would age of Many  Well Water Resource  Well Water Resource  Well Water Resource  Well Water Resource  Langer of Water Court  Would of Water Resource  Well Water Resource  Well Water Resource  Well Water Resource  Well Water Resource  Well Water Resource  Well Water Resource  Well Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource  Proposed Water Resource		Sampling Personnel KII(+) K-D
WELL PAPCHMATICH  WELL PAPCHMATICH  WELL PAPCHMATICH  WELL PAPCHMATICH  WELL PAPCHMATICH  WELL PAPCHMATICH  WELL PAPCHMATICH  WELL PAPCHMATICH  WELL WATER PAPCHMATICH  Langer of Wash Course  WELL WATER PAPCHMATICH  Langer of Wash Course  WELL WATER PAPCHMATICH  Langer of Wash Course  WELL WATER PAPCHMATICH  Langer of Wash Course  WELL WATER PAPCHMATICH  Langer of Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash Course  Well Wash C	PO Beckground U West 2.5 pp.	7
WELL PAPERMATON  WELL PAPERMATON  TO TOC  Parameter Paper Married on Casing  Well Coloren  #4. US    Well Coloren  #4. US    Well Coloren  #4. US    Well Coloren  #4. US    Well Water Flame Govern  #5. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35    #6. 35	Dreeger Tubes - BackgroundNA	Weather 50 dark
PARTICIPATION OF CHARACTERISTICS AFTER SAMPLE COLLECTED  Temporary Water Cologon  After 1 Water Cologon  Well Water Reported to Water Cologon  Well Water Reported to Water Cologon  Well Water Reported to Water Cologon  Well Water Reported to Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Fundament Tool  Well Water Cologon  Well Water Cologon  Well Water Reported Tool  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Wat	West Compound	
PARTICIPATION OF CHARACTERISTICS AFTER SAMPLE COLLECTED  Temporary Water Cologon  After 1 Water Cologon  Well Water Reported to Water Cologon  Well Water Reported to Water Cologon  Well Water Reported to Water Cologon  Well Water Reported to Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Cologon  Well Water Fundament Tool  Well Water Cologon  Well Water Cologon  Well Water Reported Tool  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Reported Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Water Theory  Wat		
Parameter Point Nanaga on Casing  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  We	WELL INFORMATION	
Parameter Point Nanaga on Casing  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  West Cleanmer  We		
West Deem 3.0 "  West Deem 4.4. US  West Tools Deem 5.59 5.00  Length of Camp Above Grace 1.47  West Tools Champ Above Grace 1.47  West Waster Of Waster Of Man 1.49  West Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waster Of Waste	The I	TOC
WAS DEAD TO SET STORY OF STORY STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF STORY OF	Reference Point Mented on Casing	
WELL DESCRIPTION OF THE PROPOSED STATES AND SECURITY OF THE PROPOSED STATES AND SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY OF SECURITY O	West Clameter . 2.0"	
WELL WATER INFORMATION  Langth of Water Couran  WELL WATER INFORMATION  Langth of Water Couran  Well Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of Water of W		
Sing Test? (1/6)  Medicined of Water Column  Well Water part Column  Wolling of Water Column  Wolling of Water Column  Wolling of Water Column  Wolling of Water of Water  Wolling of Water of Water  Wolling of State  Willing of State  Wolling of State  Wolling of Water of Pennong  Number of State  Parameter  Lotter Removed from Water States (1) Pump (V)  Execution Rese  Parameter  Lotter Removed  Parameter  Lotter Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed		5.60
Sug Test (16) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17) Reconvoice (17)		<del></del>
WELL WATER PAPERMATION  Langer of West Column  Langer of West of West of West of Pump ()  Volume of West of Pump ()  Volume of Base ()  Menure of Pumping ()  Number of Base ()  Menure of Pumping ()  Number of Base ()  Menure of Pumping ()  Number of Base ()  Menure of Pumping ()  Number of Base ()  Personal Femous ()  Personal Ton West Removed ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Person	Cangara Casa Assort Casa	
WELL WATER PAPERMATION  Langer of West Column  Langer of West of West of West of Pump ()  Volume of West of Pump ()  Volume of Base ()  Menure of Pumping ()  Number of Base ()  Menure of Pumping ()  Number of Base ()  Menure of Pumping ()  Number of Base ()  Menure of Pumping ()  Number of Base ()  Personal Femous ()  Personal Ton West Removed ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Personal ()  Person		
WELL WATER RYCHAITCH  Langth of Wester Column  19.26  Volume of Wester is west  Volume of Wester is west  Volume of Basies  SAMPLE DESTINATION  Volume of Basies  After 1 Volume  After 2 Volumes  After 1 Volume  After 2 Volumes  After 3 Volumes  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  R		
Notions of Water of Puno  Volume of Water Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Removed Removed Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved	Pleasevelage 7 (TPR)	
Notions of Water of Puno  Volume of Water Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Trom west  Parameter Inter Removed Removed Removed Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved Tromoved		
VOLUME OF WEST IN WEST PLYNOLOGY PRES OF BASE  EVACUATION INFCRIMATION VOLUME OF WEST PRINCIPLE IN WEST  EVACUATION INFCRIMATION VOLUME OF WEST PRINCIPLE IN WEST  EVACUATION INFCRIMATION VOLUME OF WEST PRINCIPLE IN WEST  EVACUATION INFCRIMATION VOLUME OF WEST PRINCIPLE  EVACUATION INFCRIMATION VOLUME PRINCIPLE  EVACUATION METER CHARACTERISTICS AFTER SAMPLE COLLECTED  TEMPOREMENT  TO US  SHOPP  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO U	WELL WATER INFORMATION	
VOLUME OF WEST IN WEST PLYNOLOGY PRES OF BASE  EVACUATION INFCRIMATION VOLUME OF WEST PRINCIPLE IN WEST  EVACUATION INFCRIMATION VOLUME OF WEST PRINCIPLE IN WEST  EVACUATION INFCRIMATION VOLUME OF WEST PRINCIPLE IN WEST  EVACUATION INFCRIMATION VOLUME OF WEST PRINCIPLE  EVACUATION INFCRIMATION VOLUME PRINCIPLE  EVACUATION METER CHARACTERISTICS AFTER SAMPLE COLLECTED  TEMPOREMENT  TO US  SHOPP  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO US  TO U		
PUNCHER OF PUNCH  VOLUME OF BASS  EVACUATION ENFORMATION  Volume of Water Paymoved from Week  Paymoved from Week  After 1 Volume  After 2 Volumes  Paymoved  Paymoved  After 3 Volumes  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Paymoved  Pa		
Manuse of Purious  Number of Basis  EVACUATION INFORMATION  Volume of Water Removed from West 3 5 Chercuston Method: Saler ( ) Pump (V)  Did well go dry? V N Execusion Rese  Personer Units Removed Removed Removed Removed  Temporature	Volume of Water in Well 3, 08	
Manuse of Purious  Number of Basis  EVACUATION INFORMATION  Volume of Water Removed from West 3 5 Chercuston Method: Saler ( ) Pump (V)  Did well go dry? V N Execusion Rese  Personer Units Removed Removed Removed Removed  Temporature	Purnoling Retail of Purno	and man 40 vol= 8 04
Manuser of Pumong  Number of Bales  EVACUATION INFORMATION  Volume of Waser Removed from West  Old west go dry?  After 1 Volume  Personers  Intel  After 1 Volume  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Re	Valume of Bader	and puck his voca over
Number of Bass  EVACUATION INFORMATION  Volume of Waser Removed from West 3 5 Cyclerecuston Metrod: Baser ( ) Pump (V)  Did wol go dry? \( \text{N} \) N  Evacuation Rate		,
EVACUATION INFORMATION Volume of Waser Removed from West 35 Greateston Method: Bader (1) Pump (V)  Did well go dry? V N Evacuation Rase  Parameter Living Removed Removed Removed Removed  Temperature Living Removed Removed Removed Removed  Temperature Living Removed Removed Removed  Temperature Living Removed Removed Removed  Temperature Living Removed Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Temperature Living Removed  Tempera		
Wolune of Water Removed from Well  Did well go dry?  After 1 Volume  Personation Rese  Personation  Invited Removed  Removed Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Removed  Remo		•
GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  TEMPORARY  TO US  BM 8.48 50  Turbusty 201 Collection  Temporary 100 US  BM 8.48 50  Turbusty 201 Collection  Temporary 201 Collection  The H.32 mg/L  Machiner (V) N  Continued Presented According 100 4: 7  Machiner (V) N  Continued Congress Total will + Land vol = 11.12  Sample ID = GW18DS Lab 10 # 61  TCL VOAK OXLY  SAMPLE DESTINATION CAS  WE FEL EX Serr By KHG CB  Liberish Ne		
Conductance i 2020    Conductance i 2020    Conductance i 8:6 °C  Conductancy   720 us  per   8:48   50  Transfer   10    per   10   10    per   10   10    Conductancy   10    per   10   10    Conductancy   10    Per   10   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10    Conductancy   10	Temperature	
TOMOGRAPHY S.16 °C  Conclusions : 8.6 °C  Conclusions : 700 US  pM : 8.48 50  Turbusty Not collected Majle  Described Crygen : 12 4: 4.32 mg/L  MISCELLANEOUS OBSERVATIONS/PROCEEDS TOTAL WILL + Land VOL = 11.12  Sample ID = GWI8DS Lab 10 # 61  TCL VOAK ONLY  EARPLE DESTINATION (A8 WE FED EX SONE BY KHO : RB  BOOTHORY P BY KHO : RB  EARPLE DESTINATION (A8 WE FED EX SONE BY KHO : RB  BY BYEYSTARE		
Tomocomer : 8.6 °C  Conclusion : 700 US  pM : 8.48 50  Turbusty wat collected  Turbusty wat collected  Turbusty wat collected  Turbusty wat collected  Turbusty wat collected  Turbusty wat collected  Turbusty wat collected  Turbusty wat collected  Turbusty wat collected  Turbusty wat collected  Turbusty wat to full thank vol = 11.12  Sample ID = GWI8DS Lab 10 # 61  TCL VOAK OLLY  EAMPLE DESTINATION CAS  WE FEL EX SORR BY KHO : CB  P. Brierstyne	<b>pr</b>	
Tomosumo : 8.6 °C  Conduction : 120 us  ph : 8.48 '5U  Tutosty viol Collection  Contractor Reactings 10: 4: -7  Mactine 7 V N  Contractor Reactings 10: 4: -7  Mascellane Cus observations proceeds to full will + land vol = 11.12  Sample ID = GWI8DS Lab 10 # 61  TCL VOAT Only  EMAPLE DESTINATION CAS WE FED EX SAME BY KHG PB  ROOTEDTY RECEIVED IN TO SAME STATE OF THE SAME SAME SAME SAME SAME SAME SAME SAM		
Tomosumo : 8.6 °C  Conduction : 120 us  ph : 8.48 '5U  Tutosty viol Collection  Contractor Reactings 10: 4: -7  Mactine 7 V N  Contractor Reactings 10: 4: -7  Mascellane Cus observations proceeds to full will + land vol = 11.12  Sample ID = GWI8DS Lab 10 # 61  TCL VOAT Only  EMAPLE DESTINATION CAS WE FED EX SAME BY KHG PB  ROOTEDTY RECEIVED IN TO SAME STATE OF THE SAME SAME SAME SAME SAME SAME SAME SAM		
TOTO US  PM 8.48 50  Turbery 100+ Collection  Demond Original 10: V: V  Construction Surround Recordings 10: V :: V  MASCELLANEOUS COSSETVATIONS/PHOSLEMS TOTAL WELL + Land vol = 11.12  Sample 1D = GW18DS Lab 10 # 61  TCL VOAK ORLY  EAMPLE DESTINATION CAS WEEL EX SAMELY KHG PB  ADDITION V SAMELY KHG PB  PL Bririshine	Conductance   JO3C	
TOD US  PM 8.48 50  Turbery 100+ Collection  Demond Organ 14 4.32 mg/L  Machine (V) N  Conformation Surround Recordings 10: V = V  MACHINE (V) N  Conformation Surround Recordings 10: V = V  MACHINE (V) N  Conformation Surround Recordings 10: V = V  MACHINE (V) N  Conformation Surround Recordings 10: V = V  AND Lab 10 # 61  TCL VOAT ORLY  BAMPLE DESTINATION CAS  WE FED EX Surrey KHG PB  AND Lab 10: PB  P Breystine	Conductance   JO3C	
S.48 50  TOTAL MOT CONCERNA  COMMING ONLY  MACHINET (V) N  CASTORISMON STRUCTURES TOTAL WELL + LAND VOL= 11.12  Sample 1D = GW18DS Lab 10 # 61  TCL VOAK ONLY  BAMPLE DESTINATION CAS VA FED EX SORRY KHG PB  RECEIVED TO THE CASTORISMON CAS VA FED EX SORRY KHG PB  RECEIVED TO THE CONTROL OF THE CASTORISMON CAS VA FED EX SORRY KHG PB  RECEIVED TO THE CONTROL OF THE CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CASTORISMON CA	CONDUCTION OF THE CONTRACTERISTICS AFTER SAMPLE COLLECTED	
Toronto Organ  Note: H.32 mg/L  Received Organ  Note: H.32 mg/L  Received Organ  Note: H.32 mg/L  Received Organ  Note: H.32 mg/L  Received Organ  Note: H.32 mg/L  Received Organ  Note: H.32 mg/L  Received Organ  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.32 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/L  Note: H.33 mg/	CONQUERTOR OF THE SAMPLE COLLECTED  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGERATE  TORROGER	
Consorred Crygen  10: 4: 4.32 mg/L  Consorred Precings 10:	CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSUCENCE   CONSU	
Construction Standard Readings	CONSUMER CHARACTERISTICS AFTER SAMPLE COLLECTED  Tonocombre : 8:6 °C  Consumbry : 7:70 45  pm 8:48 56	
Sample 1D = GW18DS Lab 10 # 61  TCL VOAK ONLY  EAMPLE DESTINATION CAS IN FED EX SOM BY KHO RB  R BY CONSTRUCTION	CONQUESTION   1	
Sample 1D = GW18DS Lab 10 # 61  TCL VOAK ORLY  EAMPLE DESTINATION CAS IN FED EX SOM BY KHO RB  R BRITISTIAL	CONQUESTION FOR CHARACTERISTICS AFTER SAMPLE COLLECTED  TOROGONANO SOLO COLLECTED  CONQUESTION TO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLLECTED  TOROGONANO SOLO COLL	
Sample 1D = GW18DS Lab 10 # 61  TCL VOAK ORLY  EAMPLE DESTINATION CAS IN FED EX SOM BY KHO RB  R BRITISTIAL	CONQUERTOR OWNACTERISTICS AFTER SAMPLE COLLECTED  TOROGODOR : 8.6 °C  CONQUERTOR : 7.70 CC  SM : 8.48 '50  Turburary : 10.1 CC   RC.45.6.	
Sample ID = GWI8DS Lab 10 # 61  TCL VOAK ONLY  EAMPLE DESTINATION CAS IN FED EX SOMEY KHG PB  P Britishine	Conductance   JOJC      GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Tomography   8.6 °C  Conductany   700 45  ph   8.48   56  Turbiday   101 Collectic A  Turbiday   101 Collectic A  Rection 7 (V) N	mg/L
Sample ID = GWI8DS Lab 10 # 61  TCL VOAK ONLY  EAMPLE DESTINATION CAS IN FED EX SOMEY KHG PB  P Britishine	Conductance   JOJC      GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Tompositure   S.6 °C  Conductivity   180 us  pH   S.48   Si  Turbustry   101 cilled to A  Turbustry   101 cilled to A  Rection 1 V N  Calibration Standard Recedings   10; 4; 7	mg/L
TCL VOAK ONLY  SAMPLE DESTINATION CAS WE FED EX SOMEN KHG PB  R BRITISTINE	Conductance   JOJC      GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Tompositure   S.6 °C  Conductivity   180 us  pH   S.48   Si  Turbustry   101 cilled to A  Turbustry   101 cilled to A  Rection 1 V N  Calibration Standard Recedings   10; 4; 7	mg/L
TCL VOAK ORLY  EAMPLE DESTINATION CAS VO FED EX SOMEY KHO PB  R BREVSTINE	CONGUERRORI 2020  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Tombourse : 8:6 °C  Conductivity : 7:20 LC  get : 8:48 '50  Turbidity : 101 Collectic A  Turbidity : 101 Collectic A  Conductivity : 102 LC  MESCELL ANEOUS OBSERVATIONS/FROSLEMS TO FUL  MISCELL ANEOUS OBSERVATIONS/FROSLEMS TO FUL  Tombourse in the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sample collection of the sa	mg/L  will + land vol= 11.12
LABOURDAY VA FED EX SOM BY KHG RB	CONGUERRO DO CO I CONGUERRO DO CONGUERRO SALVA SOLUCIONE SALVA SOLUCIONE SALVA SOLUCIONE SALVA SOLUCIONE SALVA SOLUCIONE SALVA SOLUCIONE SALVA SOLUCIONE SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SALVA SAL	mg/L  will + land vol= 11.12
R British ne	CONQUESTION FOR COMPACTERISTICS AFTER SAMPLE COLLECTED  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  TORSCORNATO  T	mg/L will + Land vol= 11.12
R British ne	CONQUESTION OF THE SAMPLE COLLECTED  TOROGOMENTO SOLUTION OF THE SAMPLE COLLECTED  TOROGOMENTO SOLUTION OF THE SAMPLE COLLECTED  TOROGOMENTO SOLUTION OF THE SAMPLE COLLECTED  TOROGOMENTO SOLUTION OF THE SAMPLE COLLECTED  TOROGOMENTO SOLUTION OF THE SAMPLE COLLECTED  SAMPLE ID SAMPLE SOLUTION OF THE SAMPLE SAMPLE SOLUTION OF THE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE S	mg/L  will + land vol= 11.12
	CONQUESTION FOR THE SAMPLE COLLECTED  TOROGOMENTO SOLO COLLECTED  TOROGOMENTO SOLO COLLECTED  TOROGOMENTO SOLO COLLECTED  TOROGOMENTO SOLO COLLECTED  TOROGOMENTO SOLO COLLECTED  SAMPLE ID SAMPLE SOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLECTED  TOLO COLLEC	will + land vol= 11.12 Lab 10 # 61
	CONQUESTINATION (AR TER SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (A	will + land vol= 11.12 Lab 10 # 61
	CONGUESTINATION (AR TER SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE COLLECTED SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (AR TER SAMPLE DESTINATION (A	will + land vol= 11.12 Lab 10 # 61

13-00-04

Well No. WW-17B	Som Name LWC Court St. Syracus &
Key No.	Sampling Personnel _ R B   C B T
r) B	2-1/1/97 0730 0-1/05
	Weather Over cast drizzle, humil
	Weather Out this F. Marie 110, Which is
Well Compound	
WELL INFORMATION	
TIC	тос
Reference Point Marked on Casing 985	
West Diameter 2 inch	
Well Death 25.29	
Water Table Depth 8 (8	
	· ·
Length of Casing Above Grade - 7 Feet	
<b>A</b> /	
Slug Test? (Y/N)	
Redevelop? (Y/N)	
WELL WATER INFORMATION	
Length of Water Column	
Volume of Water in Well 2.1 gals	
Pumping Rate of Pump	
Volume of Bailer : 0.25 9 of S	
Minutes of Pumping	
Number of Bails 2 4	
EVACUATION INFORMATION	
EVACUATION INFORMATION  Volume of Water Removed from Well 6 9 al Evacuation Method	: Ballet M. Pump ( )
Volume of Water Removed from Well 6 gal Evacuation Method	: Baller () Pump ( )
EVACUATION INFORMATION  Volume of Water Removed from Well 6 gal Evacuation Method  Did well go dry? Y N Evacuation flats	: Baller ( ) Pump ( )
EVACUATION INFORMATION  Volume of Water Removed from Well 6 9 al Evacuation Method  Did well go dry?   N  Evacuation Removed  Evacuation Removed	: Baller (1) Pump ( )
Volume of Water Removed from Well 6 90 Evacuation Method Did well go dry? (Y) N Evacuation Sets	· · · · · · · · · · · · · · · · · · ·
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuatio	s After 3 Volumes
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuatio	· · · · · · · · · · · · · · · · · · ·
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuatio	s After 3 Volumes
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuatio	s After 3 Volumes
Volume of Water Removed from Well 690 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation	s After 3 Volumes
Volume of Water Removed from Well 690 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation	Removed.
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuatio	Removed.
Volume of Water Removed from Well 690 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation	After 3 Volumes Removed.
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuatio	Removed.
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuatio	Removed.
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuatio	Removed.
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuatio	Removed.
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuatio	Removed.
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuation Method Evacuatio	Removed.
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? Y N Evacuation State  Parameter Indust Removed Removed  Temperature 10.0 10.1 10.1 10.1 10.1 10.1 10.1 10.	Removed.
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? Y N Evacuation State  Perameter Initiat Removed Removed  Temperature 10.0 10.7 1  Iph 5.57 6.47  Conductance 12200 2100  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Temperature 11.0 °C  Conductivity 2200  DM 6.03  Turbidity 155.2 NTM  Dissolved Oxygen 5.16 pp in  Reciline 7 Y N	Removed.
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? Y N Evacuation State  Parameter Index Removed Removed  Temperature 10.0 10.1  DH 5.57 6.47  Conductance 1200 2100  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Temperature 11.0 °C  Conductivity 200  DH 6.03  Turbidity 155.2 NIU  Dissolved Oxygen 5.16 pp.m  Redline Y N  Calibration Standard Readings 10; OK 4: OK 7	After 3 Volumes Removed.  4 + 08 55 set # 01
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? Y N Evacuation State  Parameter Index Removed Removed  Temperature 10.0 10.1  DH 5.57 6.47  Conductance 1200 2100  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Temperature 11.0 °C  Conductivity 200  DH 6.03  Turbidity 155.2 NIU  Dissolved Oxygen 5.16 pp.m  Redline Y N  Calibration Standard Readings 10; OK 4: OK 7	After 3 Volumes Removed.  4 + 08 55 set # 01
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? Y N Evacuation State  Parameter Index Removed Removed  Temperature 10.0 10.1  DH 5.57 6.47  Conductance 1200 2100  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Temperature 11.0 °C  Conductivity 200  DH 6.03  Turbidity 155.2 NIU  Dissolved Oxygen 5.16 pp.m  Redline Y N  Calibration Standard Readings 10; OK 4: OK 7	After 3 Volumes Removed.  4 + 08 55 set # 01
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? Y N Evacuation State  Parameter Index Removed Removed  Temperature 10.0 10.1  DH 5.57 6.47  Conductance 1200 2100  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Temperature 11.0 °C  Conductivity 200  DH 6.03  Turbidity 155.2 NIU  Dissolved Oxygen 5.16 pp.m  Redline Y N  Calibration Standard Readings 10; OK 4: OK 7	After 3 Volumes Removed.  4 + 08 55 set # 01
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? Y N Evacuation State  Parameter Index Removed Removed  Temperature 10.0 10.1  DH 5.57 6.47  Conductance 1200 2100  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Temperature 11.0 °C  Conductivity 200  DH 6.03  Turbidity 155.2 NIU  Dissolved Oxygen 5.16 pp.m  Redline Y N  Calibration Standard Readings 10; OK 4: OK 7	After 3 Volumes Removed.  4 + 08 55 set # 01
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? Y N Evacuation State  Parameter Index Removed Removed  Temperature 10.0 10.1  DH 5.57 6.47  Conductance 1200 2100  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Temperature 11.0 °C  Conductivity 200  DH 6.03  Turbidity 155.2 NIU  Dissolved Oxygen 5.16 pp.m  Redline Y N  Calibration Standard Readings 10; OK 4: OK 7	Removed.
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? (Y) N Evacuation Method Evacuation State  Perameter   After 1 Volume   After 2 Volume   Removed    Perameter   Indian   Removed   Removed    Temperature   10.0   10.7    Conductance   2700   2100    GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED    Temperature   11.0 ° C    Conductivity   2700    DH   6.03    Turbidity   155.2 N74    Dissolved Oxygen   5.16 ppm    Reciline   Y N    Calibration Standard Readings   10; 0K4: 0K7    MISCELLANEOUS OBSERVATIONS/PROBLEMS   MS    Sample Spirit with NYSUEC    INCLINATE SIXTH PACK	MSD performed #02/03  well where colculations  volume
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? Y N Evacuation State  Parameter Index Removed Removed  Temperature 10.0 10.1  DH 5.57 6.47  Conductance 1200 2100  GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED  Temperature 11.0 °C  Conductivity 200  DH 6.03  Turbidity 155.2 NIU  Dissolved Oxygen 5.16 pp.m  Redline Y N  Calibration Standard Readings 10; OK 4: OK 7	MSD performed #02/03  well where colculations  volume
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? (Y) N Evacuation Method Evacuation State  Perameter   Initiat Removed Removed Removed    Temperature   10.0   10.7    Conductance   2200 2100    GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED    Temperature   11.0 °C    Conductivity   2200    DH   6.03    Turbidity   155.2 NTU    Dissolved Oxygen   5.16 ppm    Reciline   Y N    Calibration Standard Readings   10; OK 4: OK 7    MISCELLANEOUS OBSERVATIONS/PROBLEMS   MS    Sample Spirit with NYSDEC    IN Clube Sixtd pack	MSD performed #02/03  well where colculations  volume
Volume of Water Removed from Well 6 90 Evacuation Method Evacuation State  Did well go dry? (Y) N Evacuation Method Evacuation State  Perameter   Initiat Removed Removed Removed    Temperature   10.0   10.7    Conductance   2200 2100    GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED    Temperature   11.0 °C    Conductivity   2200    DH   6.03    Turbidity   155.2 NTU    Dissolved Oxygen   5.16 ppm    Reciline   Y N    Calibration Standard Readings   10; OK 4: OK 7    MISCELLANEOUS OBSERVATIONS/PROBLEMS   MS    Sample Spirit with NYSDEC    IN Clube Sixtd pack	MSD performed #02/03  well where colculations  volume  Sem By  CBT  Butti

---

Well No WW - 195	Some Name LWC Court St. Syracus?  Semoning Personnel RB [CBT]  Date 6/17/97 Time in 0720 Time Cut 1/00  Weather Overcost Lurzla Gund
Key No.	Sampling Personnel RB CBT
PID Background O Well O	Cam 6/17/97 -main 0720 Brack 1/00
Oranger Tubes - Background	warmer Asserter St Surzzla les and
Well Compound	
WELL INFORMATION	
	oc
Reference Point Marked on Casing 925	
West Diameter 2 inch	
Well Depth	
Water Table Depth 2.17	
Langth of Casing Above Grade	
Slug Test? (Y/N) V	
WELL WATER INFORMATION	
Length of Weter Column 7, 83	-
Volume of Water in Well 1.25 gal + 6.6 gal	. h sandpack
Pumping Rate of Pump	•
Volume of Bailer 0.25 42	
Minutes of Purpoing	
Number of Bails 2 4	
Volume of Water Removed from Well 6 % Evacuation Method: Ba	<u>305</u>
After 1 Volume After 2 Volumes	After 3 Volumee
Perameter lartet Removed Removed	Removed
Temperature: (7.6: 14-7	
pH 16.53 7.16	
Conductance i 100 i 600	
GROUND-WATER CHARACTERISTICS AFTER SAMPLE COLLECTED	· ·
	t 0910 set #5
Temperature /4.2 *C	t one set 45
Temperature	t one set 45
Temperature /4.2 °C Conductivity / 000 pH 6.26	t one set 45
Temperature /4.2 °C  Conductivity / 1000  pH 6.26  Turbidity 67.2 NTQ	t 0910 se t 14 5
Temperature	
Temperature	
Temperature	
Temperature	
Temperature 14.2 °C  Conductivity 1000  pH 6.26  Turbidity 67.2 NT4  Dissorved Oxygen 7.47 pp.  Redline? (9) N  Calibration Standard Readings 10; 0K 4; 0K 7  MISCELLANEOUS OBSERVATIONS/PROBLEMS DUP per  Split with MYSDEC well volved Send pinch velver. FB -61	roral set # 66 sempla me colculations include # 04, TB:01 # 07
Temperature 14.2 °C  Conductivity 1000  pH 6.26  Turbidity 67.2 NT4  Dissorved Oxygen 7.47 pp.  Redline? (9) N  Calibration Standard Readings 10; 0K 4; 0K 7  MISCELLANEOUS OBSERVATIONS/PROBLEMS DUP per  Split with MYSDEC well volved Send pinch velver, FB -61	roral set # 66 sempla me colculations include # 04, TB:01 # 07
Temperature 14.2 °C  Conductivity 1000  DM 6.26  Turbidity 67.2 NT4  Dissorved Oxygen 7.47 pp.  Redline? (7) N  Calibration Standard Readings 10; DK 4: DK 7  MISCELLANEOUS OBSERVATIONS/PROBLEMS DUP per  Split with MYSDEC well volved Send perch velocity.	tornel set # 66 sample me colculations include # 04, TB-01 # 07  Sam By

*****

# SURFACE-WATER SAMPLING FIELD LOG-GRAB

Sample Deoth	Surface / out/all prize
Approximate Flow Rate	1 gpm
Volume of Sampling Device	
Total Water Depth	
Distance From Bank	
Depth Below Surface of Water Removed	/

Location	OFCOIS	Lab 10#18	SHNDERS
Weather	Sunny, 30's		CREEK
Air Temperature	Sic above		
Samplers	R. Brivestine	K Guernier / C. T.	aylor
Date	3/13/47	•	J
Time	12:30		

Temperature	4.4 °C
Conductivity	460 us
рН	6.42 (SU)
Dissolved Oxygen	10.08 mg/L
Turbidity	

Comments	collect	duplicak sa	miple here:	Lample	1D- OFCOID
Las 10#	F 22.	TCL VOAS	only	<i>y</i>	
	• · · · • • • · · ·		J		

# SURFACE-WATER SAMPLING FIELD LOG-GRAB

Sample Depth	surface
Approximate Flow Rate	
Volume of Sampling Device	
Total Water Depth	17"
Distance From Bank	mid-stream
Depth Below Surface of Water Removed	

Location	SWOCHS (MG/MGD)	SOUTH BRANCH
Weather	Sunny	OF Ley CK.
Air Temperature	30'S	
Samplers	RB/KG/CT	
Date	313197	
Time	13:10	

Temperature	3.9° C
Conductivity	1446 es
рН	7.14 (SU)
Dissolved Oxygen	> 20 mg/L
Turbidity	

Comments	Lab 10# 21	; TCL	VOAS	only	
-				J	

#### SURFACE-WATER SAMPLING FIELD LOG-GRAB

Sample Deoth	surface
Approximate Flow Rate	
Volume of Sampling Device	
Total Water Depth	6.5"
Distance From Bank	und-stream (30' South of
Depth Below Surface of Water Removed	

Location	SWOCUS	SOUTH BRANCHEF LEY CR,
Weather	Sunny	ley CR,
Air Temperature	30's	
Samplers	KG/RA/CT	
Date	3/13/97	
Time	14:20	

Temperature	49°C	
Conductivity	7.03 ( 1530 Lis	
рН	7.03 (50)	
Dissolved Oxygen	>00 mg/L	
Turbidity		

Comments	TCL	VOA	only	Lab	10#19	
		_	, ,			_
		-				_

#### SURFACE-WATER SAMPLING FIELD LOG-GRAB

Sample Depth Approximate Flow	Rate	5-10 Sp	ê
Approximate Flow	Rate	1 100	
		<u> </u>	N
Volume of Samolin	g Device		
Total Water Depth			
Distance From Bai	nk		
Depth Below Surfa	ce of Water Removed		
Location	OFCO.JS	(Lab 10#17)	OF LEY CR.
Weather	SUMMY		
Air Temperature	36'5		
Samplers	RB/KG/CT		
Date	3/13/97		
Time	14:05		
Temperature	4.3°C		
Conductivity	338 66		
ρΗ	7,59 (SU		
Dissolved Oxygen	14.54 mg	(L	
Turbidity			
Comments	DEC Split	TCL VOAS only	
		1 - VO/IS UNITY	

	Total Core Depth	Depth of Water	Sediment	Sediment Recovered
580108	,.Ae		.,9-0	<i>"</i> ×

Vienat Dasoriotion	gray/brown clayey silt		
Increment			
Sample ID	5 / Lab 10# 32.		-
	530055		

Weather	
	Sumy
Air Temperature	30.15
Samplers K.	KG / RB / CT
Date	2/12/97
Time	1:20

for TCL VORS and TOC ONDY Comments: Lab analytes

OF-OIA-SANDERS CK Orthall chownatheam ch

<del>13</del> 2 1a6 10# SSFBAR labilly 13 extrest Fired Blank *

QC .QI

	Location	Total Core Depth	Depth of Water	Sediment	Sediment
(j	\$5010S	". h<	* O. L I	" 9) ()	WHO REVENDED
( <u>G</u> )	11	11	77	20-0	11 Con alloward

	Sample ID	Ingramaioni	Visual Desoriotion	
Э	. the #01 gray/ S01055		cyay/brown clayer silt W/F-M. Crass	Card
$\odot$	6 8501010 / Lab 10#35		11	( ,
•				

Weather	5,001001
Air Temperature	5,0%
Samplers	28/CT/KG
Date	3/2/97
Time	17:10 (12:15 (dwp)

SANDERS CREEK For TCL VOMS UNDER dryslicak Comments: analyted 550100 upitram

Looation	Total Core Depth	Depth of Water	Sediment Penetraled	Sediment Recovered
SS02DS '	34 "	" >. F1	9-0	0/0001

Sample 1D	Increment	Visual Desoription
SSUFTOS / Lab 10#31 .		gray clarky sied

Weather	50nu
Air Temperature	20.2
Samplers	Rts / K6, (CT
Date	77/21/52
Time	12.40

0F OF - 02 - SOUTH 6K. 1ET 100 anal 122 COMMENTS: COLLECT INS/WISD OF THIS EXCEPTION DOWNS DEATING 101 USIM/SIM analyne for TCL VERS DEC Speit

	incl		
Sediment Recovered	25% J. Complexed		
Sediment Penetrated	0-6.		
Depth of Water	35.0*		
Total Core Depth	"he		
Location	, Sazass		

Cl elomes	looma or of	Wiscond Description
550205/ Lab 10#36		gray clay w/ some silt

Weather	Auuns
Air Temperature	25.'s
Samplers	ps/21/21
Date	2 3 9 9
Time	13:55

Comments: TCL VOAS Unly

SOUTH BY. LEY 2 401 Workraus

# APPENDIX C VALIDATED ANALYTICAL LABORATORY REPORTS



#### A FULL SERVICE ENVIRONMENTAL LABORATORY

July 1, 1997

Mr. Curtis Taylor
EMCON
Crossroads Corp. Center
1 International Blvd, Ste. 700
Mahwah, NJ 07495

PROJECT: LMC COURT STREET Submission #:9706000268

Dear Mr. Taylor:

Enclosed are the analytical results of the analyses requested. The analytical data was provided to you on 06/25/97 per a Facsimile transmittal. All data has been reviewed prior to report submission.

Should you have any questions please contact me at (716) 288-5380.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Mark Wilson

Client Service Manager

Enc.

This package has been reviewed by Columbia Analytical Services' OA Department/Laboratory Director prior to report submittal.



#### CASE NARRATIVE

COMPANY: EMCON Lockheed Martin Corp - Syracuse SUBMISSION #: 9706000268

EMCON water samples were collected on 06/17/97 and received at CAS on 06/18/97 in good condition at a temperature of 2.9 C. See the CAS Batching form to cross reference between Client ID and CAS sample numbers.

#### **VOLATILE ORGANICS**

Five water samples were analyzed for Target Compound List (TCL) of volatile organics by method 95-4 from the NYSASP 1995.

Sample MW17B was analyzed for site specific QC. All matrix spike recoveries and %RPD were within QC Limits. All Blank Spike recoveries were within QC limits.

All tuning criteria for BFB were met.

The initial and continuing calibration criteria were met for all analytes.

All surrogate standard recoveries were within acceptance limits.

All internal standard areas were within QC Limits.

All samples were analyzed within the holding time as specified in the method.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael K. Perry

Laboratory Director

Date

TCHING FORM CAS ASP/CLP

CLIENT RE DATE DUE:	DISKETTE REQUESTED: Y CLIENT REP: Mark Wilson DATE DUE: 07/01/97	X   Z	SDG #: MW-1/B SUBMISSION #:97-6-268 DATE: 06/19/97 DATE REVISED:	CLIENT: EMCON PROJECT: LMC PROTOCOL: ASPB	ICON MC ASPB		
CAS JOB	# CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	(SOLIDS)	\$ SOLIDS
114851	QC MW17B	water	95-4	6/11/97	6/18/97		
153412	FB01	water	95-4	6/11/97	6/18/97		
(57 413	WM19S	water	95-4	6/11/97	6/18/97		
414851	DUP	water	95-4	6/11/97	6/18/97		
514651	TB01	water	95-4	6/11/97	6/18/97		
,							
A 65							
FR00							
_							
0000 0000 0000 0000 0000	. XLS		6/19/97				

#### ORGANIC QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
- P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form I and flagged with a "P".
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and ALL concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X As specified in Case Narrative.

10/95

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

ustomer	Laboratory			lytical R			
ample	Sample		NYS	DEC 1995	CLP PROTO	OCOL	
ode	Code						
		*VOA	*BNA	*VOA	*PEST	*METALS	*OTHER
		GC/MS	GC/MS	GC	PCB		
W17B	153411	х					
301	153412	х					
W19S	153413	x					
JP	153414	x					
301	153415	Х					
-							
		1	J			1	l

Check Appropriate Boxes

C: Non-CLP

_.SL, Priority Pollutant

CF1

- 00004

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SAMPLE PREPARATION AND ANALYSIS SUMMARY VOA ANALYSES

LABORATORY	MATRIX	DATE	DATE REC'D	LOW LEVEL	1 I
LABORATORY SAMPLE ID		COLLECTED	AT LAB	MED LEVEL	ANALYZED
53411	WATER	06/17/97	06/18/97	LOW	06/24/97
53412	WATER	06/17/97	06/18/97	LOW	06/24/97
53413	WATER	06/17/97	06/18/97	LOW	06/24/97
53414	WATER	06/17/97	06/18/97	LOW	06/24/97
.53415	WATER	06/17/97	06/18/97	LOW	06/24/97
	~				
			<del></del>		<del> </del>
				<del> </del>	
					<del> </del>
					<del> </del>
					<del> </del>

5/91 00005

#### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

#### SAMPLE PREPARATION AND ANALYSIS SUMMARY

#### ORGANIC ANALYSES

SAMPLE ID	MATRIX	ANALYTICAL	EXTRACTION	AUXILARY	DIL/CONC
<del></del>		PROTOCOL	METHOD	CLEAN UP	FACTOR
153411	WATER	95-4			1.0
153412	WATER	95-4			1.0
153413	WATER	95-4			1.0
153414	WATER	95-4			1.0
153415	WATER	95-4			1.0
				-	
		<del>-</del>			
					1

NCF2

9/89

EPA SAMPLE NO.

Lab Name:	CAS\RO	Contrac	ct: EM	CON		DUP
		Case No.: 97-6-268 SAS			DG No :	M/A/17R
			_			
Matrix: (soil/			Lab Sar	mple ID:	DUP	
Sample wt/vo	ol:	25.0 (g/ml) <u>ML</u>	Lab File	D:	R4925.D	)
Level: (low/r	ned)	LOW	Date Re	eceived:		
% Moisture:	not dec.		Date Ar	nalyzed:	06/24/97	
GC Column:	RTX50	2. ID: 0.53 (mm)	Dilution	Factor:	1.0	
Soil Extract \	Volume					(uL)
	_	(02)	Oon And	quot Voic		(uL)
		CONCENT	RATION	UNITS:		
CAS NO	).	COMPOUND (ug/L or ug/l				Q
74-87		Chloromethane			1	U
75-01		Vinyl Chloride			1	U
74-83		Bromomethane			1	U
75-00		Chloroethane			1	U
67-64		Acetone			5	U #
75-35		1,1-Dichloroethene			1	U
75-09		Methylene Chloride			1	U
75-15		Carbon Disulfide			1	U
156-60		trans-1,2-Dichloroethene			1	U
75-35		1,1-Dichloroethane			1	l U
78-93		2-Butanone			5	UJ
156-5		cis-1,2-Dichloroethene			1_	U
67-66		Chloroform			1	U
107-0		1,2-Dichloroethane			1	U
71-55		1,1,1-Trichloroethane			1	U
56-23		Carbontetrachloride			1	U
71-43		Benzene			1	U
79-01		Trichloroethene			1	U
78-87		1,2-Dichloropropane			1	U
75-27		Bromodichloromethane			1	U
108-1		4-Methyl-2-Pentanone			5	U
10061	-02-6	trans-1,3-Dichloropropene			1	U
108-8		Toluene			1	U
	-01-5	cis-1,3-Dichloropropene			1	U
79-00		1,1,2-Trichloroethane			1	U
591-7		2-Hexanone			5	U
127-1		Tetrachloroethene			1	U
124-4		Dibromochloromethane			1	U
108-9		Chlorobenzene			1	U
100-4		Ethylbenzene			1	U
108-3		Xylenes (TOTAL)			1	U
100-4	2-5	Styrono			4	11

11-17

1,1,2,2-Tetrachloroethane

Bromoform

79-34-5

75-25-2

NYSDEC Sample No.: DUP

## 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: -Matrix: (soil/water) WATER
Sample wt/vol: 25 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 0

Contract: EMCON

SAS No.: -- SDG No.:MW17B

Lab Sample ID:DUP Lab File ID: R4925

Date Received: 06/18/97
Date Analyzed: 06/24/97
Dilution Factor: 1.0
Concentration Units:
(ug/L or ug/Kg) UG/L

CAS NUMBER COMPOUND NAME RTEST.CONC. ====== ======== 3. 4. 5. 6. 7. <u>8.</u> 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

> FORM I VOA-TIC B-103

EPA SAMPLE NO.

	F	B01	

			i	FB01
Lab Name: CAS\ROC		Contract: EMC		. 501
_ab Code: 10145	Case No.: 97-6-268	SAS No.:	SDG No.:	MW17B
Matrix: (soil/water) WATE			ple ID: FB01	
Sample wt/vol: 25.0			ID: R4918.0	
Level: (low/med) LOW			ceived:	
% Moisture: not dec.			alyzed: 06/24/97	
GC Column: RTX502. ID:	0.53 (mm)	Dilution I	Factor: 1.0	
Soil Extract Volume	(uL)	Soil Alig	uot Volume:	(uL)
		·		` `
	CON	ICENTRATION I	JNITS:	
CAS NO. CO	MPOUND (ug/L	orug/Kg) (	JG/L	Q
	hloromethane		1	U
	nyl Chloride		1	U
	romomethane		111	U
	nloroethane		1	U
	cetone		5	03
	1-Dichloroethene		1	U
	ethylene Chloride		1	U
	arbon Disulfide		1	U
	ans-1,2-Dichloroethene	9	1	U
	1-Dichloroethane		1	U
78-93-3 2-	Butanone		5	03
	s-1,2-Dichloroethene		1	U
	hloroform		1	U
	2-Dichloroethane		1	U
	1,1-Trichloroethane		111	U
	arbontetrachloride		1	U
	enzene		1	U
	richloroethene		11	U
78-87-5 1,	2-Dichloropropane		1	U
	romodichloromethane		1	U
	Methyl-2-Pentanone		5	U
	ans-1,3-Dichloroproper	ne	1	U
	oluene		1	U
	s-1,3-Dichloropropene		1	U
	1,2-Trichloroethane		1	U
	Hexanone		5	U
	etrachloroethene		1	U
	ibromochloromethane		1	U
	hlorobenzene		111	U
	thylbenzene		1	U
	ylenes (TOTAL)		1	U
	tyrene		11	U
1 /0.3/.5   1	1 7 7 Tatrachlaracthar	• •	4	

Cu/1/19

**Bromoform** 

75-25-2

NYSDEC Sample No.: FB01

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: --Matrix: (soil/water) WATER Sample wt/vol: 25 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 0

SAS No.: -- SDG No.:MW17B

Lab Sample ID:FB01 Lab File ID: R4918

Date Received: 06/18/97 Date Analyzed: 06/24/97 Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.				
2.		1		
3.				
4.				
5.				
6.				
7.				
8.				
8. 9.				
10.				
11.				
12.				
13.				
14.				
15. 16.				
16.				
17.				
18.				
19.				
20.		· · · · · · · · · · · · · · · · · · ·		
21.				
22.				
23.				
24.				-
25. 26.				-
27.				
28.		<del>                                     </del>		<del></del>
29.		ļ		
30.			<del> </del>	
30.			<del></del>	<del></del>

FORM I VOA-TIC B-103

EPA SAMPLE NO.

Lab Name:	CAS\ROC	>		_ Contract:	EMCON	_	MW17B	
Lab Code:	10145	Cas	se No.: 97-6-26	8 SAS No.	.: s	DG No.:	MW17B	
Matrix: (soil/	water) V	VATER		 Lab	Sample ID:	MW178	3	_
Sample wt/v	ol: 2	25.0	(g/ml) ML		File ID:			
Level: (low/r					e Received:			
% Moisture:	_							
	-				e Analyzed:			
GC Column:	RTX502	<u>.</u> ID: <u>0.5</u>	<u>3</u> (mm)	Dilu	ition Factor:	1.0		
Soil Extract \	Volume _		_ (uL)	Soil	l Aliquot Volu	ıme:		(uL)
			64		IONI LINUTO.			
0.4.0.1/0	_	00110		ONCENTRAT			_	
CAS NO	J.	COMPC	OUND (u	g/L or ug/Kg)	UG/L	·	Q	
74-87	·-3	Chlore	omethane		1	1	U	$\neg$
75-01			Chloride			1	U	-
74-83			omethane			1	U	$\dashv$
75-00			pethane			1	U	-
67-64		Acetor				5	<u> </u>	-
75-35			chloroethene		-	1	0.7	-
75-09			lene Chloride					$\dashv$
75-15			n Disulfide			1_	U	
156-60			1,2-Dichloroethe	200		<u>1</u>	U	
75-35			chloroethane	SIIC .		1	U	
78-93		2-Buta					U	
156-5			2-Dichloroethen	^		5_	U 3	1 3-4
67-66		Chlore		е			U	1151
107-0						1	U	<b>⊣</b> ′
			chloroethane			1	U	_
71-55			Trichloroethane			1	U	_
56-23			ntetrachloride		-	1_	U	_
71-43		Benze				1	U	$\sqcup$
79-01			oroethene			1_	U	
78-87			chloropropane			1	U	
75-27			odichloromethar			1	U	
108-1			hyl-2-Pentanone			5	U	
	1-02-6	trans-	1,3-Dichloroprop	pene		1	U	
108-8		Toluer				1_	U	
	1-01-5		3-Dichloroprope			1	U	
79-00			Trichloroethane			1	U	
591-7			anone			5	U	
127-1			hloroethene			1	U	
124-4		Dibror	nochloromethar	ne		1	U	7
108-9			benzene			1	U	7
100-4			enzene			1	U	
108-3		Xylene	es (TOTAL)			1	U	7
100-4		Styren				1	U	7
79-34	-5	1,1,2,2	2-Tetrachloroeth	nane		1	U	7
75-25-	-2	Bromo				1	U	٦

Bromoform

NYSDEC Sample No.: MW17B

## 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: -Matrix: (soil/water) WATER
Sample wt/vol: 25 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 0

Contract: EMCON

SAS No.: -- SDG No.:MW17B

Lab Sample ID: MW17B Lab File ID: R4920

Date Received: 06/18/97
Date Analyzed: 06/24/97
Dilution Factor: 1.0
Concentration Units:

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.				
2.	1717			
3.				
4.				
5.				
6.				
7.				
8.				
8. 9. 10.				
10.				
12.				
$\frac{12}{13}$ .		-		
14.				
15.				
16.				
17.		·		
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.	A 200 A 200 A 200 A 200 A 200 A 200 A 200 A 200 A 200 A 200 A 200 A 200 A 200 A 200 A 200 A 200 A 200 A 200 A			
26.				
27.				
28.				
29.				
30.				

FORM I VOA-TIC B-103

EPA SAMPLE NO.

Lab Name:	CASVRC	C			Contra	ct: E	MCON	M	1W19S	
Lab Code:	10145	Ca	se No.:	97-6-2		_		DG No.:	MW17B	
Matrix: (soil/v							Sample ID:			
	•		- (a/ml)	841			ile ID:			
Sample wt/vo			(g/iiii)	IVIL						
Level: (low/r	ned)	LOW	_			Date	Received:			
% Moisture:	not dec.					Date	Analyzed:	06/24/97	<u>'</u>	
GC Column:	RTX50	2. ID: 0.	53 (n	nm)		Diluti	on Factor:	1.0		
Soil Extract \	/olume		(uL)			Soil A	Aliquot Volu	ıme:		(uL)
	-		<del>-</del> ()							(42)
				C	ONCENT	RATIO	ON UNITS:			
CAS NO	)	COMP	OUND	(1	ug/L or ug/	Ka)	UG/I		Q	
0, 10 110	•	00	00110	,	agre or agr	. 197			•	
74-87	-3	Chlor	ometha	ne				1	U	$\neg$
75-01	-4	Vinyl	Chloride	е				1	U	
74-83	-9	Brom	ometha	ne				1	U	
75-00	-3	Chlor	oethane	)				1	U	
67-64	-1	Aceto	ne					5	UJ	
75-35	-4	1,1-D	ichloroe	thene				1	U	7
75-09	-2	Meth	ylene Cl	nloride				1	U	7
75-15	-0	Carbo	on Disul	fide				1	U	
156-60	)-5	trans	1,2-Dicl	hloroeth	ene			1	U	7
75-35	-3	1,1-D	ichloroe	thane				1	U	7
78-93	-3	2-But	anone					5	U 1	
156-5	9-4	cis-1,	2-Dichlo	roether	ne			1	U	٦
67-66	-3	Chlor	oform					1	U	7
107-0	6-2	1,2-D	ichloroe	thane				1	U	7
71-55	-6	1,1,1	Trichlor	oethan	е			1	U	7
56-23	-5	Carbo	ontetrac	hloride				1	U	7
71-43	-2	Benz	ene					1	U	7
79-01		Trich	oroethe	ne				1	U	7
78-87	-5	1,2-0	ichlorop	ropane				1	U	7
75-27	-4		odichlor					1	Ü	٦
108-1	0-1	4-Me	thyl-2-P	entanor	ne			5	U	7
10061	1-02-6		1,3-Dicl					1	U	7
108-8	8-3	Tolue	ne					1	U	7
10061	I-01-5	cis-1	3-Dichlo	roprop	ene			1	U	7
79-00	-5		Trichlor					1	U	7
591-7	8-6	2-He	kanone					5	U	7
127-1	8-4	Tetra	chloroet	hene				1	U	7
124-4	8-1	Dibro	mochlor	ometha	ne			1	U	7
108-9	0-7		obenzer					1	U	7
100-4	1-4	Ethyl	benzene	;				1	U	7
108-3	8-3	Xyler	es (TO)	ΓAL)				1	U	
100-4	2-5	Styre						1	11	7

1,1,2,2-Tetrachloroethane

Bromoform

79-34-5

75-25-2

RACER0057366

NYSDEC Sample No.: MW19S

## 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: -Matrix: (soil/water) WATER
Sample wt/vol: 25 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 0

Contract: EMCON

SAS No.: -- SDG No.:MW17B

Lab Sample ID: MW19S Lab File ID: R4921

Date Received: 06/18/97
Date Analyzed: 06/24/97
Dilution Factor: 1.0
Concentration Units:

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.				
2.				
3.				
4.				
5. 6.				
6.				
7.	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			·
8.				
9.				
10.			-	
11.				
12. 13. 14. 15.		<del></del>		
13.			<del> </del>	
15			<del>-  </del>	<del></del>
16.				
17.				
18.				
19.			<del> </del>	·····
20.			<u> </u>	
21.	MIN TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO T			
22.			<u> </u>	
22. 23.				
24.				
25.				
26.				
27.				
28.	200.20			
29.				
30.				

FORM I VOA-TIC B-103

EPA SAMPLE NO.

Lab Name: CAS\ROC		Contract: EMCON		TB01	<u>.</u>
Lab Code: 10145	Case No.: 97-6-268	SAS No.: SE	G No.:	MW17B	
Matrix: (soil/water) W		Lab Sample ID:			•
	***	-			
-	.0 (g/ml) ML	-			
Level: (low/med) LC	<u>W</u>	Date Received:			
% Moisture: not dec.		Date Analyzed:	06/24/97	•	
GC Column: RTX502.	ID: 0.53 (mm)	Dilution Factor:	1.0		
		•			
Soil Extract Volume	(uL)	Soil Aliquot Volu	me:	(u	iL)
	201	IOENTDATION LINUTO			
		ICENTRATION UNITS:			
CAS NO.	COMPOUND (ug/L	or ug/Kg) UG/L		Q	
74.07.0	Chlassmathasa			1	
74-87-3	Chloromethane		1	U	
75-01-4	Vinyl Chloride		1	U	
74-83-9	Bromomethane		1	U	
75-00-3	Chloroethane		1	U	
67-64-1	Acetone		5	U 3	
75-35-4	1,1-Dichloroethene		1	U	
75-09-2	Methylene Chloride		1	U	
75-15-0	Carbon Disulfide		1	U	
156-60-5	trans-1,2-Dichloroethene	е		U	
75-35-3	1,1-Dichloroethane		1	U	a. 6
78-93-3	2-Butanone		5	U 1	Crx 111
156-59-4	cis-1,2-Dichloroethene		1	U	11131
67-66-3	Chloroform		1	U	
107-06-2	1,2-Dichloroethane		1	U	
71-55-6	1,1,1-Trichloroethane		1	U	
56-23-5	Carbontetrachloride		1	U	
71-43-2	Benzene		1	U	
79-01-6	Trichloroethene		1	U	
78-87-5	1,2-Dichloropropane		1_	U	
75-27-4	Bromodichloromethane		1	U	
108-10-1	4-Methyl-2-Pentanone		5	U	
10061-02-6	trans-1,3-Dichloroprope	ne	11		
108-88-3	Toluene		1	U	٠
10061-01-5	cis-1,3-Dichloropropene		1	U	
79-00-5	1,1,2-Trichloroethane		1	U	
591-78-6	2-Hexanone		5	U	
127-18-4	Tetrachloroethene		1	U	
124-48-1	Dibromochloromethane		1	U	
108-90-7	Chlorobenzene		1	U	
100-41-4	Ethylbenzene		1	U	
108-38-3	Xylenes (TOTAL)		1	U	
100-42-5	Styrene		1	U	
79-34-5	1,1,2,2-Tetrachloroethan	ne	1	U	
75-25-2	Bromoform		1	U	

#### NYSDEC Sample No.: TB01

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: -Matrix: (soil/water) WATER
Sample wt/vol: 25 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 1

Contract: EMCON

SAS No.: -- SDG No.:MW17B

Lab Sample ID: TB01 Lab File ID: R4919

Date Received: 06/18/97
Date Analyzed: 06/24/97
Dilution Factor: 1.0
Concentration Units:

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.000110-00-9	Unknown Furan	5.70	1.1	JN
2.				
3.				
4.			~ (	
_5.			197	
_6.			111311	
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14. 15.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25. 26.				
26.				
27.				
28.				
29.				
30.				

FORM I VOA-TIC B-103

### 2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

 Lab Name:
 CAS\ROC
 Contract:
 EMCON

 Lab Code:
 10145
 Case No.:
 97-6-268
 SAS No.:
 SDG No.:
 MW17B

	EPA	SMC1	тот
	SAMPLE NO.	#	OUT
01	VBLK01	100	0
02	LCS	109	0
03	FB01	103	0
04	TB01	106	0
05	MW17B	111	0
06	MW19S	110	0
07	MW17BMS	108	0
08	MW17BMSD	111	0
09	DUP	113	0

SMC1 = SURR2,BFB

QC LIMITS (80-120)

# Column to be used to flag recovery values

* Values outside of contract required QC limits

D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

95-4

#### 3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

 Lab Name:
 CAS\ROC
 Contract:
 EMCON

 Lab Code:
 10145
 Case No.:
 97-6-268
 SAS No.:
 SDG No.:
 MW17B

Matrix Spike - EPA Sample No.: MW17B

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC.
1,1-Dichloroethene	5.0	0.0	4.7	94	61 - 145
Benzene	5.0	0.0	4.7	94	76 - 127
Trichloroethene	5.0	0.0	4.6	92	71 - 120
Toluene	5.0	0.0	4.6	92	76 - 125
Chlorobenzene	5.0	0.0	4.6	92	75 - 130

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%	QCI	LIMITS
COMPOUND	(ug/L)	(ug/L)	REC#	RPD#	RPD	REC.
1,1-Dichloroethene	5.0	4.7	94	0	14	61 - 145
Benzene	5.0	4.7	94	0	11	76 - 127
Trichloroethene	5.0	4.7	94	2	14	71 - 120
Toluene	5.0	4.9	98	6	13	76 - 125
Chlorobenzene	5.0	4.8	96	4	13	75 - 130

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

COMMENTS:

EPA SAMPLE NO.

									١.	A1A/47	вмѕ	
_ab	Name:	CASVRO	oc			Contract:	EM	ICON		10017	BIVIS	
_ab	Code:	10145	Ca:	se No.: 97-	6-268	SAS N	0.: _	s	DG No.	: <u>M\</u>	<b>№</b> 17B	
Mati	rix: (soil/	water)	WATER	_		La	b Sa	mple ID:	MW17	вмѕ		
Sam	nple wt/v	ol:	25.0	(g/ml) ML		La	b Fil	e ID:	R4923	.D		
_ev	el: (low/r	med)	LOW	_		Da	ate R	eceived:				
% N	loisture:	not dec.				Da	ate A	nalyzed:	06/24/	97		
GC	Column:	RTX5	02. ID: 0.	53 (mm)		Di	lutio	n Factor:	1.0			
Soil	Extract \	Volume		_ (uL)		Sc	il Ali	quot Vol	ıme: _			(uL)
						ICENTRA						
	CAS NO	<b>D</b> .	COMP	OUND	(ug/l	_ or ug/Kg	)	UG/L			Q	
	74-87	'-3	Chlor	omethane					1		U	
	75 04	4	Minut	Chicaida					4	1		1

onono.	COMIT COILD (agree of agricing	00/2	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	U
75-35-4	1,1-Dichloroethene	5	
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-35-3	1,1-Dichloroethane	1	U
78-93-3	2-Butanone	5	U
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	5	
79-01-6	Trichloroethene	5	
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	J
108-88-3	Toluene	5	
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	5	
100-41-4	Ethylbenzene	1	٦
108-38-3	Xylenes (TOTAL)	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U

EPA SAMPLE NO.

MW17BMSD

ab Name:	CASIRC			Contract: EMCON	
_ab Code:	10145	Cas	e No.: <u>97-6-268</u>	SAS No.:	SDG No.: MW17B
Matrix: (soil/v	water)	WATER		Lab Sample	ID: MW17BMSD
Sample wt/vo	ol:	25.0	(g/ml) ML	Lab File ID:	R4924.D
Level: (low/n	med)	LOW		Date Receive	ed:
% Moisture: r	not dec.			Date Analyze	ed: <u>06/24/97</u>
GC Column:	RTX50	02. ID: 0.5	3 (mm)	Dilution Fact	or: <u>1.0</u>
Soil Extract \	Volume		_ (uL)	Soil Aliquot	Volume: (uL

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/K	g) <u>UG/L</u>	_	Q
74-87-3	Chloromethane		1	U
75-01-4	Vinyl Chloride		11	U
74-83-9	Bromomethane		1	U
75-00-3	Chloroethane		1	U
67-64-1	Acetone		5	U
75-35-4	1,1-Dichloroethene		5	
75-09-2	Methylene Chloride		1	U
75-15-0	Carbon Disulfide		1	U
156-60-5	trans-1,2-Dichloroethene		1	U
75-35-3	1,1-Dichloroethane		1	U
78-93-3	2-Butanone		5	U
156-59-4	cis-1,2-Dichloroethene		1	U
67-66-3	Chloroform		1	U
107-06-2	1,2-Dichloroethane		1	U
71-55-6	1,1,1-Trichloroethane		1	U
56-23-5	Carbontetrachloride		1	U
71-43-2	Benzene		5	
79-01-6	Trichloroethene		5	
78-87-5	1,2-Dichloropropane		1	U
75-27-4	Bromodichloromethane		1	U
108-10-1	4-Methyl-2-Pentanone		5	U
10061-02-6	trans-1,3-Dichloropropene		1	U
108-88-3	Toluene		5	
10061-01-5	cis-1,3-Dichloropropene		1	U
79-00-5	1,1,2-Trichloroethane		1	U
591-78-6	2-Hexanone		5	U
127-18-4	Tetrachloroethene		1	U
124-48-1	Dibromochloromethane		1	U
108-90-7	Chlorobenzene		5	
100-41-4	Ethylbenzene		1	U
108-38-3	Xylenes (TOTAL)		11	U
100-42-5	Styrene		1	U
79-34-5	1,1,2,2-Tetrachloroethane		1	U
75-25-2	Bromoform		1	U

#### 4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK01

Lab Name:	CAS\ROC		Contract:	EMCON	V	BLRUI	
Lab Code:	10145	Case No.: 97-6-268	SAS No	o.: SI	DG No.:	MW17B	
Lab File ID:	R4916.D		- Lai	b Sample ID:	VBLK01		_
Date Analyze	ed: 06/24/97		Tin	ne Analyzed:	11:12		
GC Column:	RTX502 ID	· 0.53 (mm)	Н	eated Pume: (	Y/N)	N	

Instrument ID: GCMS#5

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS	LCS	R4917.D	11:52
02	FB01	FB01	R4918.D	12:56
03	TB01	TB01	R4919.D	13:37
04	MW17B	MW17B	R4920.D	14:26
05	MW19S	MW19S	R4921.D	15:06
06	MW17BMS	MW17BMS	R4923.D	16:53
07	MW17BMSD	MW17BMSD	R4924.D	17:33
80	DUP	DUP	R4925.D	18:13

COMMENTS		

page 1 of 1

FORM IV VOA

EPA SAMPLE NO.

VBLK01
--------

.ab Name:	CASIRC	) <u>C</u>		Contract:	EMCON		
Lab Code:	10145	Cas	e No.: <u>97-6-268</u>	SAS No	.: s	DG No.: MW1	7B
Matrix: (soil/v	vater)	WATER		Lab	Sample ID:	VBLK01	_
Sample wt/vo	ol:	25.0	(g/ml) ML	Lab	File ID:	R4916.D	_
Level: (low/n	ned)	LOW		Dat	te Received:		_
% Moisture: r	not dec.		<del></del>	Dat	te Analyzed:	06/24/97	_
GC Column:	RTX50	02. ID: <u>0.5</u>	3 (mm)	Dilu	ution Factor:	1.0	_
Soil Extract V	/olume	47	_ (uL)	Soi	il Aliquot Volu	ıme:	_ (uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	_	Q
74-87-3	Chloromethane			1	U
75-01-4	Vinyl Chloride			1	U
74-83-9	Bromomethane			1	U
75-00-3	Chloroethane			1	U
67-64-1	Acetone			5	U
75-35-4	1,1-Dichloroethene			1	U
75-09-2	Methylene Chloride			1	U
75-15-0	Carbon Disulfide			1	U
156-60-5	trans-1,2-Dichloroet	hene		1	Ū
75-35-3	1,1-Dichloroethane			1	Ū
78-93-3	2-Butanone	****		5	Ū
156-59-4	cis-1,2-Dichloroethe	ne		1	Ü
67-66-3	Chloroform			1	U
107-06-2	1,2-Dichloroethane			1	Ū
71-55-6	1,1,1-Trichtoroethan	е		1	Ü
56-23-5	Carbontetrachloride		•	1	Ū
71-43-2	Benzene			1	Ū
79-01-6	Trichloroethene			1	Ū
78-87-5	1,2-Dichloropropane	,		1	U
75-27-4	Bromodichlorometha			1	Ū
108-10-1	4-Methyl-2-Pentano			5	Ü
10061-02-6	trans-1,3-Dichloropr			1	Ü
108-88-3	Toluene			1	Ü
10061-01-5	cis-1,3-Dichloroprop	ene		1	Ū
79-00-5	1,1,2-Trichloroethan			1	Ū
591-78-6	2-Hexanone			5	Ü
127-18-4	Tetrachloroethene			1	Ū
124-48-1	Dibromochlorometh	ane		1	U
108-90-7	Chlorobenzene			1	Ū
100-41-4	Ethylbenzene			1	Ü
108-38-3	Xylenes (TOTAL)			1	U
100-42-5	Styrene			1	Ü
79-34-5	1,1,2,2-Tetrachloroe	thane		1	Ü
75-25-2	Bromoform			1	Ü

#### NYSDEC Sample No.: VBLK01

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: --SAS No.: -- SDG No.:MW17B

Matrix: (soil/water) WATER Lab Sample ID: VBLK01 Sample wt/vol: 25 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 0

Lab File ID: R4916 Date Received: --

Date Analyzed: 06/24/97 Dilution Factor: 1.0 Concentration Units: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
		======	======	=====
1.				
2.			<del></del>	
3. 4. 5.				
4.				
3.				<del></del>
6. 7.				
8				
8.				
10.				·
11.				
12.				
13.				
14.				
14.				
16.				
17.				
18.				
19.				
20.				
121.				
22. 23. 24.				
23.	790			
24.				
25.		ļ		L
26.				
27.				
28.				
29.				
30.				L

FORM I VOA-TIC B-103

EPA SAMPLE NO.

LCS

ab Name:	CASIRO	OC		Contract:	EMCON	_	
_ab Code:	10145	Cas	se No.: 97-6-268	SAS No	.: s	SDG No.: MW17B	
Matrix: (soil/v	water)	WATER		Lat	Sample ID:	LCS	
Sample wt/vo	ol:	25.0	(g/ml) ML	Lat	File ID:	R4917.D	
_evel: (low/r	ned)	LOW		Dat	te Received:		
% Moisture: r	not dec.			Dat	te Analyzed:	06/24/97	
GC Column:	RTX50	02. ID: <u>0.5</u>	3 (mm)	Dilu	ution Factor:	1.0	
Soil Extract \	/olume		_ (uL)	Soi	l Aliquot Vol	ume:	(uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	6	
75-01-4	Vinyl Chloride	6	
74-83-9	Bromomethane	6	
75-00-3	Chloroethane	6	
67-64-1	Acetone	5	U
75-35-4	1,1-Dichloroethene	6	
75-09-2	Methylene Chloride	5	
75-15-0	Carbon Disulfide	1	U
156-60-5	trans-1,2-Dichloroethene	6	
75-35-3	1,1-Dichloroethane	5	
78-93-3	2-Butanone	5	U
156-59-4	cis-1,2-Dichloroethene	6	
67-66-3	Chloroform	5	
107-06-2	1,2-Dichloroethane	5	
71-55-6	1,1,1-Trichloroethane	5	
56-23-5	Carbontetrachloride	5	
71-43-2	Benzene	5	
79-01-6	Trichloroethene	5	
78-87-5	1,2-Dichloropropane	5	
75-27-4	Bromodichloromethane	5	
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	5	
108-88-3	Toluene	5	
10061-01-5	cis-1,3-Dichloropropene	5	
79-00-5	1,1,2-Trichloroethane	5	
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	5	
124-48-1	Dibromochloromethane	5	
108-90-7	Chlorobenzene	5	
100-41-4	Ethylbenzene	5	
108-38-3	Xylenes (TOTAL)	6	
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	5	
75-25-2	Bromoform	5	

#### A8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CAS\ROC Contract: EMCON

10.61

10.61

10.59

10.63

10.63

10.62

Lab Code: 10145 Case No.: 97-6-268 SAS No.: SDG No.: MW17B

Date Analyzed: 06/24/97 Lab File ID (Standard): R4915.D

Instrument ID: GCMS#5 Time Analyzed: 09:08 GC Column: RTX502.2 ID: 0.53 (mm) Heated Purge (Y/N): Ν

IS2 IS3 IS1 AREA # AREA # RT # RT # AREA # RT # 12 HOUR STD 92524 10.58 134291 12.76 75819 19.72 UPPER LIMIT 185048 10.08 268582 12.26 151638 19.22 LOWER LIMIT 46262 11.08 67146 13.26 37910 20.22 EPA SAMPLE NO. 01 VBLK01 89307 10.59 129277 12.79 72373 19.71 02 LCS 89300 10.61 124831 12.77 74326 19.72 03 FB01 90748 10.59 128805 12.78 75306 19.74 04 TB01

125566

125499

117737

127079

128973

128208

12.78

12.79

12.79

12.79

12.79

12.78

75777

78003

73215

77432

77807

76812

19.73

19.72

19.72

19.72

19.73

19.73

IS1	=	Pentafluorobenzene
IS2	=	1,4-Difluorobenzene
IS3	=	d5-Chlorobenzene
IS4	=	d4-1,4-Dichlorobenzene

86304

89930

80485

87050

88155

86161

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

page 1 of 2

05 MW17B

06 MW19S

09 DUP

07 MW17BMS

08 MW17BMSD

FORM VIII VOA

95-4

^{*} Values outside of contract required QC limits

#### 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

ab Name:	CAS\ROC			Contract:	EMCON			
Lab Code:	10145	Case N	o.: <u>97-6-268</u>	_ SAS No	).:	SDG No	o.: <u>MW</u> 1	7B
Lab File ID (	Standard):	R4915.D			Date Ar	alyzed:	06/24/97	7
Instrument IC	C GCMS#5				Time A	nalyzed:	09:08	
GC Column:	RTX502.2	ID: 0.5	(mm)		Heated	Purne (Y	/N)·	N

		IS4 AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	26544	25.63				
	UPPER LIMIT	53088	25.13				
	LOWER LIMIT	13272	26.13				
[	EPA SAMPLE						
	NO.						
01	VBLK01	24455	25.61				
02	LCS	26606	25.61				
03	FB01	25397	25.63				
04	TB01	25671	25.62				
05	MW17B	26820	25.62				
06	MW19S	25501	25.63				
07	MW17BMS	26732	25.64				
80	MW17BMSD	27194	25.64				
09	DUP	27012	25.63				

IS1	=	Pentafluorobenzene
IS2	=	1,4-Difluorobenzene
IS3	=	d5-Chlorobenzene
154	=	d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

page 2 of 2

FORM VIII VOA

^{*} Values outside of contract required QC limits



#### **EMCON**

## LMC SYRACUSE

CAS Submission #:9703000158

SUMMARY PACKAGE

Columbia Analytical Services 700 Exchange Street Rochester, NY 14608



#### A FULL SERVICE ENVIRONMENTAL LABORATORY

April 17, 1997

Mr. Curtis Taylor EMCON Crossroads Corp. Center 1 International Blvd, Ste. 700 Mahwah, NJ 07495

PROJECT:LMC SYRACUSE
Submission #:9703000158

Dear Mr. Taylor

Enclosed are the analytical results of the analyses requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at (716) 454-6810.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Mark Wilson

Client Service Manager

Enc.

cc: Mr. Chris Taylor Environmental Quality Assoc. R.D. #5, Box 800 Middletown, NY 10940

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director prior to report submittal.

#### CASE NARRATIVE

COMPANY: EMCON Lockheed Martin Corp - Syracuse SUBMISSION #: 9703000158

EMCON water samples were collected on 03/11/97 through 03/14/97 and received at CAS on 03/12/97 through 03/15/97 in good condition. See the CAS Batching form to cross reference between Client ID and CAS sample numbers.

#### **VOLATILE ORGANICS**

Twenty water samples were analyzed for Target Compound List (TCL) of volatile organics by method 95-4 from the NYSASP 1995.

Target compounds were over the calibration range for sample GW011S and have been flagged "E". This sample was reanalyzed at a dilution as GW011SDL.

After screening, samples GW07SD, GW07SS and GW16SS were analyzed with smaller sample amounts to bring target analytes within the calibration range of the method.

Sample GW012S was analyzed for site specific QC. All matrix spike recoveries and %RPD were within QC Limits. All Blank Spike recoveries were within QC limits.

All tuning criteria for BFB were met.

The initial and continuing calibration criteria were met for all analytes.

All surrogate standard recoveries were within acceptance limits.

All internal standard areas were within QC Limits.

All samples were analyzed within the holding time as specified in the method.

No other analytical or QC problems were encountered.

#### **SEMIVOLATILES**

Four water samples were analyzed for the Target Compound List of Semivolatile Organics by Method 95-2 from the NYSASP 1995.

Sample GW012S was analyzed for site specific QC. All matrix spike recoveries and %RPD were within QC Limits except for the recovery of 4-Nitrophenol in the MS and MSD. All recoveries were within limits for the blank spike.

The initial and continuing calibration criteria were met for all analytes.

All surrogate standard recoveries were within QC limits.

00001

#### EMCON 9703000158 Page 2

All samples were extracted and analyzed within the specified holding times.

No other analytical or QC problems were encountered.

#### **METALS**

Six water samples were analyzed for the Target Analyte List (TAL) of metals by NYSASP 1995 Inorganic methods.

All Initial and Continuing calibrations were compliant.

Sample GW012SA was analyzed for site specific QC. All spike recoveries and %D were within QC Limits except for the recovery of Aluminum which was spiked at less than 25% of the sample concentration. All RPD were within limits.

The Sodium results were flagged with an "E" indicating the ICP Serial Dilution was outside of control limits.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael K. Perry

**Laboratory Director** 

Date

#### **INORGANIC QUALIFIERS**

C (Concentration) qualifier - Enter "B" if the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but was greater than or equal to the Instrument Detection Limit (IDL). If the analyte was analyzed for, but not detected, a "U" must be entered.

Q qualifier - Specified entries and their meanings are as follows:

- E The reported value is estimated because of the presence of interference.
- M Duplicate injection precision not met.
- N Spiked sample recovery not within control limits.
- S The reported value was determined by the Method of Standard Additions (MSA).
- W Post-digestion spike for Furnace AA Analysis is out of control limits (85-115), while sample absorbance is less than 50% of spike absorbance.
- * Duplicate analysis not within control limits.
- + Correlation coefficient for the MSA is less than 0.995.

M (Method) qualifier - Enter:

- "P" for ICP
- "A" for Flame AA
- "F" for Furnace AA
- "PM" for ICP when Microwave Digestion is used
- "AM" for Flame AA when Microwave Digestion is used
- "FM" for Furnace M when Microwave Digestion is used
- "CV" for Manual Cold Vapor AA
- "AV" for Automated Cold Vapor AA
- "CA" for Midi-Distillation Spectrophotometric
- "AS" for Semi-Automated Spectrophotometric
- "C" for Manual Spectrophotometric
- "T" for Titrimetric
- " " where no data has been entered
- "NR" if the analyte is not required to be analyzed

#### ORGANIC QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
- P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form I and flagged with a "P".
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and ALL concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X As specified in Case Narrative.

# CAS ASP/CLP BATCHING FORM

BATCH COMPLETE: DISKETTE REQUESTED:	LETE: Y EQUESTED: Y	×z	SDG #: MW2D SUBMISSION #:03-158	CLIENT: EMCON	CON		
CLIENT REP: Mark W	CLIENT REP: Mark Wilson		2 6	PROTOCOL:	ASPB		
	15/77/20		ייין ייין ייין ייין ייין ייין ייין ייי				
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE SAMPLED	DATE	PH (SOLIDS)	\$ SOLIDS
134564	GW16SS	water	95-4	3/11/97	3/12/97		
134565	GW16DS	water	95-4	3/11/97	3/12/97		
134567	GW03DS	water	95-4	3/11/97	3/12/97		
134568	GW03SS	water	95-4	3/11/97	3/12/97		
134569	GW02DS	water	62-4	3/11/97	3/12/97		
134570	GWTB1T	water	7-56	3/11/97	3/12/97		
134868	CM01DS	water	<b>7–</b> 56	3/12/97	3/13/97		
134869	SGSOMS	water	7-56	3/12/97	3/13/97		
134870	GW17S	water	<b>7</b> -56	3/12/97	3/13/97		
134871	GW015S	water	62-4	3/12/97	3/13/97		
134872	GW17DS	water	95-4	3/12/97	3/13/97		
134873	GW013S	water	95-4	3/12/97	3/13/97		
134874	SS80M5	water	95-4	3/12/97	3/13/97		
134875	CWTB2T	water	95-4	3/12/97	3/13/97		
134876-	GW010S	water	Metals,	3/12/97	3/13/97		
134877 -	SSLOM5	water	95-2,95-4,Metals	3/12/97	3/13/97		
134878 -	GW07SD	water	95-2,95-4,Metals	3/12/97	3/13/97		
134879 -	GWFB1R	water	95-2,95-4,Metals	3/12/97	3/13/97		
135108 ~	QC GW012S	water	95-2,95-4,Metals	3/13/97	3/14/97		
135425	GW011S	water	95-4,Metals	3/14/97	3/15/97		
135256	CBLK1	water	95-4				
			/ //	)			
0							
0 0							
0							
_	158.XLS		11/97				
							_

#### ENVIROFORMS/INORGANIC CLP

#### COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Sow No.: NYS ASP 12/91  Sample No.  GW010S  GW011S  GW012S  GW012SD  GW012SS  GW012SS  1351085	<b>1</b> 120
Sample No.     Lab Sample ID.       GW010S     134876       GW011S     135425       GW012S     135108       GW012SD     135108D	
GW010S 134876 GW011S 135425 GW012S 135108 GW012SD 135108D	
GW010S 134876 GW011S 135425 GW012S 135108 GW012SD 135108D	
GW011S 135425 GW012S 135108 GW012SD 135108D	
GW012S 135108 GW012SD 135108D	
GW012SD 135108D	
1371003	
GW07SD 134878	
GW07SS 134877	
GWFB1R 134879	
Were ICP interelement corrections applied?  Yes/No	YES
Were ICP background corrections applied? Yes/No	YES
If yes, were raw data generated before	
application of background corrections? Yes/No	NO
coments: See Case nurrative	
Les Cachanac.	
I certify that this data package is in compliance with the terms and	
conditions of the contract, both technically and for completeness, for	
other than the conditions detailed above. Release of the data contain	
in this hardcopy data package and in the computer-readable data submi	
on floppy diskette has been authorized by the Laboratory Manager or t	
Manager's designee, as verified by the following signature.	
m AOVE made of VI	)
mature: Mutual File Mame: Miller File	<u>w</u>
Date: 4/16/67 Title: Laboratory Di	ector

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Customer	Laboratory		Ana	lytical R	equiremen	nts*	
Sample	Sample		NYS	DEC 1995	CLP PROT	OCOL	
Code	Code						
		*VOA	*BNA	*VOA	*PEST	*METALS	*OTHER
		GC/MS	GC/MS	GC	PCB		
GW16SS	134564	x					
√ GW16DS	134565	x					
· GW03DS	134567	x					
GW03SS	134568	х					
GW02DS	134569	x					
√ GWTB1T	134570	x					
/GW01DS	134868	x					
√ GW05DS	134869	x					
√ GW17S	134870	х				-	
GW015S	134871	х					
GW17DS	134872	x					
√ GW013S	134873	х					
√GW08SS	134874	х					
√GWTB2T	134875	х					
√GW010S	134876					х	
√ GW07SS	134877	х	Х			х	
√ GW07SD	134878	x	х			х	
√GWFB1R	134879	x	х			х	
∨ GW012S	135108	х	Х			х	
$\sqrt{\mathtt{GW011S}}$	135425	х				х	
CBLK1	135256	х					
						1	

Check Appropriate Boxes

. 00007

[~]CLP, Non-CLP

^{*}HSL, Priority Pollutant

LABORATORY	MATRIX	DATE	DATE REC'D	LOW LEVEL	DAME
SAMPLE ID	MAIKIA	COLLECTED	AT LAB	MED LEVEL	DATE ANALYZED
134564	WATER				
134565	WATER	03/11/97	03/12/97	LOW	03/20/97
134567	WATER	03/11/97	03/12/97	LOW	03/20/97
134568		03/11/97	03/12/97	LOW	03/20/97
134569	WATER	03/11/97	03/12/97	LOW	03/20/97
	WATER	03/11/97	03/12/97	LOW	03/20/97
134570	WATER	03/11/97	03/12/97	LOW	03/20/97
134868	WATER	03/12/97	03/13/97	LOW	03/21/97
134869	WATER	03/12/97	03/13/97	LOW	03/21/97
134870	WATER	03/12/97	03/13/97	LOW	03/21/97
134871	WATER	03/12/97	03/13/97	LOW -	03/21/97
134872	WATER	03/12/97	03/13/97	LOW	03/21/97
134873	WATER	03/12/97	03/13/97	LOW	03/21/97
134874	WATER	03/12/97	03/13/97	LOW	03/21/97
134875	WATER	03/12/97	03/13/97	LOW	03/20/97
134877	WATER	03/12/97	03/13/97	LOW	03/21/97
134878	WATER	03/12/97	03/13/97	LOW	03/21/97
134879	WATER	03/12/97	03/13/97	LOW	03/20/97
135108	WATER	03/12/97	03/13/97	LOW	03/20/97
135425	WATER	03/13/97	03/14/97	LOW	03/21/97
135256	WATER	03/14/97	03/15/97	LOW	03/21/97
			,		
NCF5					

NCF5

#### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

#### SAMPLE PREPARATION AND ANALYSIS SUMMARY

#### ORGANIC ANALYSES

SAMPLE ID	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILARY CLEAN UP	DIL/CONC FACTOR
134564	WATER	95-4			50.0
134565	WATER	95-4			1.0
134567	WATER	95-4			1.0
134568	WATER	95-4			1.0
134569	WATER	95-4			1.0
134570	WATER	95-4			1.0
134868	WATER	95-4			1.0
134869	WATER	95-4			1.0
134870	WATER	95-4		_	1.0
134871	WATER	95-4			1.0
134872	WATER	95-4			1.0
134873	WATER	95-4			1.0
134874	WATER	95-4			1.0
134875	WATER	95-4			1.0
134877	WATER	95-4			50.0
134878	WATER	95-4			1.0
134879	WATER	95-4			1.0
135108	WATER	95-4			1.0
135425	WATER	95-4			1.0
135256	WATER	95-4			1.0

NCF2

9/89

▶ 00009

LABORATORY SAMPLE ID	MATRIX	DATE COLLECTED	DATE REC'D	DATE	DATE
			AT LAB	EXTRACTED	ANALYZED
134877	WATER	03/12/97	03/13/97	03/17/97	03/24/97
134878	WATER	03/12/97	03/13/97	03/17/97	03/24/97
134879	WATER	03/12/97	03/13/97	03/17/97	03/24/97
135108	WATER	03/13/97	03/14/97	03/17/97	03/24/97
				•	
1					
	-				
			17		
NCEA	L	L		L	L

NCF4

#### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

#### SAMPLE PREPARATION AND ANALYSIS SUMMARY

#### ORGANIC ANALYSES

SAMPLE ID	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILARY CLEAN UP	DIL/CONC FACTOR
134877	WATER	95-2	11211102	CLLPIN OI	1.0
134878	WATER	95-2			1.0
134879	WATER	95-2			1.0
135108	WATER	95-2			1.0

NCF2

SAMPLE ID	MATRIX	METALS	DATE	DATE
		REQUESTED	RECEIVED	ANALYZED
134876	WATER	AG, AL, AS, BA, BE, CA, CD, CO, CR, CU,	3/13/97	3/26/97
134070		FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN	3/13/3/	3/20/3/
134877	WATER	AG, AL, AS, BA, BE, CA, CD, CO, CR, CU,	3/13/97	3/26/97
	<u> </u>	FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN		, ,
134878	WATER	AG, AL, AS, BA, BE, CA, CD, CO, CR, CU,	3/13/97	3/26/97
	<del> </del>	FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN AG, AL, AS, BA, BE, CA, CD, CO, CR, CU,		
134879	WATER	FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN	3/13/97	3/26/97
		AG, AL, AS, BA, BE, CA, CD, CO, CR, CU,		
135108	WATER	FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN	3/14/97	3/26/97
125425	WATED	AG, AL, AS, BA, BE, CA, CD, CO, CR, CU,		2/26/07
135425	WATER	FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN	3/15/97	3/26/97
	1			•
	ļ			-
	l			
	<u> </u>			
	<del> </del>			
	ļ			
				· ·
	<u> </u>			

SAMPLE ID	MATRIX	METALS REQUESTED	DATE RECEIVED	DATE ANALYZED
124026	WAMED			
134876	WATER	NA	3/13/97	3/31/97
				-
				****
	<u> </u>			
	<del> </del>			

SAMPLE ID	MATRIX	METALS	DATE	DATE
		REQUESTED	RECEIVED	ANALYZED
134876	WATER	SE	3/13/97	4/3/97
134877	WATER	SE	3/13/97	4/3/97
134878	WATER	SE	3/13/97	4/3/97
134879	WATER	SE	3/13/97	4/3/97
135108	WATER	SE	3/14/97	4/3/97
135425	WATER	SE	3/15/97	4/3/97
	L	L	L	

SAMPLE ID	MATRIX	METALS	DATE	DATE
		REQUESTED	RECEIVED	ANALYZED
134876	WATER	HG	3/13/97	3/19/97
134877	WATER	Н <b>G</b>	3/13/97	3/19/97
134878	WATER	HG	3/13/97	3/19/97
134879	WATER	HG	3/13/97	3/19/97
135108	WATER	НG	3/14/97	3/19/97
135425	WATER	HG	3/15/97	3/19/97
				-
				·
		11,000		

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume _____ (uL)

EPA SAMPLE NO.

Soil Aliquot Volume: ____ (uL)

Lab Name:	CASVRC	×c			Contract:	EMCON	GWFB1R
Lab Code:	10145		ase No.:	97-3-158	SAS No	o.: SI	DG No.: MW2D
Matrix: (soil/	water)	WATER	·		Lai	Sample ID:	134879 1.0
Sample wt/vo	oi:	25.0	(g/ml)	ML	Lai	File ID:	R3480.D
Level: (low/r	ned)	LOW	_		Da	te Received:	
% Moisture:	not dec.				Da	te Analyzed:	03/20/97
GC Column:	RTX50	2. ID: (	0.53 (m	nm)	Dil	ution Factor:	1.0

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	_	Q
74-87-3	Chloromethane			1	U
75-01-4	Vinyl Chloride			1	U
74-83-9	Bromomethane			1	U
75-00-3	Chloroethane			1	U
67-64-1	Acetone			5	U 7
75-35-4	1,1-Dichloroethe	ene		1	U
75-09-2	Methylene Chlor	ride		1	U
75-15-0	Carbon Disulfide	9		1	U
75-35-3	1,1-Dichloroetha	ane		1	U
78-93-3	2-Butanone			5	UJ
156-59-4	cis-1,2-Dichloro	ethene		1	U
67-66-3	Chloroform			1	U
107-06-2	1,2-Dichloroetha	ane		1	U
71-55-6	1,1,1-Trichloroe	thane		1	U
56-23-5	Carbontetrachlo	ride		1	U
71-43-2	Benzene			1	UJ
79-01 <i>-</i> 6	Trichloroethene			1	U
78-87-5	1,2-Dichloroprop	oane		1	U
75-27-4	Bromodichlorom	nethane		1	U
108-10-1	4-Methyl-2-Pent	anone		5	U
10061-02-6	trans-1,3-Dichlo	ropropene		1	U
108-88-3	Toluene			1	UJ
10061-01-5	cis-1,3-Dichloro	propene		1	U
79-00-5	1,1,2-Trichloroe	thane		1	U
591-78-6	2-Hexanone			5	U
127-18-4	Tetrachloroethe	ne		1	U
124-48-1	Dibromochloron	nethane		1	U
108-90-7	Chlorobenzene			1	U 1
100-41-4	Ethylbenzene			1	U 5
108-38-3	Xylenes (TOTAL	_)		1	UJ
100-42-5	Styrene			1	UJ
79-34-5	1,1,2,2-Tetrachl	oroethane		1	U
75-25-2	Bromoform			1	U
156-60-5	trans-1,2-Dichlo	roethene		1	U

Cy72197

FORM I VOA

00016

#### NYSDEC Sample No.: GWFB1R

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --

Matrix: (soil/water) WATER
Sample wt/vol: 25.0 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap):CAP

Number TIC's found: 1

Contract: EMCON

SAS No.: -- SDG No.:MW2D

Lab Sample ID: 134879 Lab File ID: R3480 Date Received: 03/13/97

Date Analyzed: 03/20/97 Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME		RT	EST.CONC.	Q
1.	Unknown Aromatic		<del></del>	0.59	==== -J
2.					
3.	0				
4.	(/) 11 / 11				
5.	tache le Column-bla	ed			
6.	VI OCCUPANTO				
7.		$\mathcal{L}$			
	Cur				
9.					
.0.					
1.					
.2.					
.3.					
4.					
5.					
6.					
7.					
.8.					
9					
20.					
1					
22.					
23.					
24.					
25.					
26.					
27.					
28					
29					
30.					

FORM I VOA-TIC B-103

## **1A**

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET **GWTB1T** Lab Name: CAS\ROC Contract: EMCON Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: MW2D Matrix: (soil/water) WATER Lab Sample ID: 134570 1.0 25.0 (g/ml) ML Sample wt/vol: Lab File ID: R3477.D Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 03/20/97 GC Column: RTX502. ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume _____ (uL) Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 74-87-3 Chloromethane U 75-01-4 Vinyl Chloride 74-83-9 Bromomethane 75-00-3 Chloroethane U 67-64-1 Acetone UJ 75-35-4 1,1-Dichloroethene U 75-09-2 Methylene Chloride 1 75-15-0 Carbon Disulfide U 75-35-3 1,1-Dichloroethane 78-93-3 2-Butanone U J 156-59-4 cis-1,2-Dichloroethene Chloroform 67-66-3 107-06-2 1,2-Dichloroethane U 71-55-6 1,1,1-Trichloroethane 1 U 56-23-5 Carbontetrachloride U 71-43-2 Benzene 79-01-6 Trichloroethene 1 U 78-87-5 1.2-Dichloropropane 75-27-4 Bromodichloromethane U 108-10-1 4-Methyl-2-Pentanone 10061-02-6 trans-1,3-Dichloropropene U 108-88-3 Toluene UJ 1 10061-01-5 cis-1,3-Dichloropropene 1 Ū 79-00-5 1,1,2-Trichloroethane U 591-78-6 2-Hexanone 5 U 127-18-4 Tetrachloroethene 1 U 124-48-1 Dibromochloromethane U 1 108-90-7 Chlorobenzene U 100-41-4 Ethylbenzene 108-38-3 Xylenes (TOTAL) 100-42-5 Styrene 1 79-34-5 1,1,2,2-Tetrachloroethane 1 75-25-2 Bromoform 1 U

00018 95-4

trans-1,2-Dichloroethene

156-60-5

#### 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMP	LE N	0
----------	------	---

Lab Name:	CASVRO	С		Contrac	t: EMCO	N	GWTB	11
Lab Code:	10145	Cas	e No.: <u>97-3-158</u>	SAS	No.:	SDC	No.: MW	2D
Matrix: (soil/v	vater)	WATER		ı	ab Sample	e ID: 1	34570 1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML	_	ab File ID	: <u>R</u>	3477.D	
Level: (low/n	ned)	LOW	,	Į.	Date Recei	ved:		
% Moisture: r	not dec.			î	Date Analy	zed: <u>0</u> :	3/20/97	
GC Column:	RTX50	02. ID: 0.5	3 (mm)	ı	Dilution Fa	ctor: 1.	.0	
Soil Extract \	/olume		_ (uL)	:	Soil Aliquot	Volum	e:	(uL)
			CO	NCENTR	ATION UN	IITS:		
Number TICs	fou <b>nd</b> :	0	(ug/ -	L or ug/k	(g) <u>UG</u>	/L	_	
CAS NO.		COMPOU	ND		RT	EST.	CONC.	Q

## 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	CASVRC	oc			Contract: EMCON	1	GW1B2T	
Lab Code:	10145	C	ase No.:	97-3-158	SAS No.:	_ sc	DG No.: MW2D	
Matrix: (soil/v	vater)	WATER			Lab Sample	ID:	134875 1.0	
Sample wt/vo	ol:	25.0	_ (g/ml)	ML	Lab File ID:		R3479.D	
Level: (low/n	ned)	LOW			Date Receiv	/ed:		
% Moisture: r	not dec.				Date Analyz	ed:	03/20/97	
GC Column:	RTX50	02. ID: 0	.53 (n	nm)	Dilution Fac	tor:	1.0	
Soil Extract \	/olume		(uL)		Soil Aliquot	Volu	me:	(uL

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	UJ
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	1	U
78-93-3	2-Butanone	5	UI
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	U
108-88-3	Toluene	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
108-38-3	Xylenes (TOTAL)	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
156-60-5	trans-1,2-Dichloroethene	1	U

Rela

FORM I VOA

95-4

00020

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

1 ab Names C	CASVRO	_		Contra	٠.	EMCON		GWTB	21	i
Lab Name: C	ASIRO	<u> </u>	<del></del>	Contrac	Л.	ENICON				
Lab Code: 1	0145	Cas	e No.: 97-3-1	58 SAS	No	o.:	_ S	DG No.: MW	/2D	
Matrix: (soil/wa	iter)	WATER			Lai	b Sample	ID:	134875 1.0		
Sample wt/vol:	: 4	25.0	(g/ml) ML		La	b File ID:		R3479.D		
Level: (low/me	ed) <u>l</u>	LOW			Da	ite Receiv	ed:			
% Moisture: no	ot dec.				Da	ite Analyz	ed:	03/20/97		
GC Column:	RTX502	2. ID: <u>0.5</u>	3 (mm)		Dil	ution Fac	tor.	1.0	_	
Soil Extract Vo	lume _		_ (uL)		So	il Aliquot	Volu	ıme:		(uL)
				CONCENTE			•			
Number TICs f	ound:	0	_	(ug/L or ug/l	<b>(</b> g)	<u> UG/</u>	L			
CAS NO.		COMPOU	ND			RT	ES	ST. CONC.	Q	1

00022

#### 1A **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

GW01DS

Lab Name:	CASVRO	OC		Contract:	EMCON		
Lab Code:	10145	Cas	se No.: <u>97-3-158</u>	SAS No	o.:	SDG No.: MW2D	
Matrix: (soil/v	water)	WATER		Lal	Sample II	D: <u>134868 1.0</u>	
Sample wt/vo	ol:	25.0	(g/mi) ML	Lal	File ID:	R3499.D	
Level: (low/n	ned)	LOW		Da	te Received	d:	
% Moisture: r	not dec.	•	<del></del>	Da	te Analyzed	d: <u>03/21/97</u>	
GC Column:	RTX50	02. ID: <u>0.5</u>	53 (mm)	Dil	ution Facto	r. <u>1.0</u>	
Soil Extract \	/olume		_ (uL)	So	il Aliquot Vo	olume:	(uL

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	<del></del>	Q
74-87-3	Chloromethane			1	U 5
75-01-4	Vinyl Chloride			1	Ü
74-83-9	Bromomethane			1	U
75-00-3	Chloroethane			1	U
67-64-1	Acetone			5	UJ
75-35-4	1,1-Dichloroethe	ene		5	
75-09-2	Methylene Chlor	ride		1	U
75-15-0	Carbon Disulfide	9		1	Ü
75-35-3	1,1-Dichloroetha	ine		22	
78-93-3	2-Butanone			5	UJ
156-59-4	cis-1,2-Dichloroe	ethene		1	U
67-66-3	Chloroform			1	Ü
107-06-2	1,2-Dichloroetha	ine		1	U
71-55-6	1,1,1-Trichloroet			6	
56-23-5	Carbontetrachio	ride		1	U
71-43-2	Benzene			1	UJ
79-01-6	Trichloroethene			1	U
78-87-5	1,2-Dichloroprop	pane		1	Ü
75-27-4	Bromodichlorom			1	Ū
108-10-1	4-Methyl-2-Pent			5	Ü
10061-02-6	trans-1,3-Dichlor			1	Ü
108-88-3	Toluene			1	UJ
10061-01-5	cis-1,3-Dichloro	propene		1	Ü
79-00-5	1,1,2-Trichloroet			1	Ū
591-78-6	2-Hexanone			5	U
127-18-4	Tetrachloroether	ne		1	Ü
124-48-1	Dibromochlorom	nethane		1	Ü
108-90-7	Chlorobenzene			1	
100-41-4	Ethylbenzene			1	U J
108-38-3	Xylenes (TOTAL	)		1	UJ
100-42-5	Styrene			1	UJ
79-34-5	1,1,2,2-Tetrachie	oroethane		1	U
75-25-2	Bromoform			1	Ü
156-60-5	trans-1,2-Dichlor	roethene		1	Ü

#### NYSDEC Sample No.: GW01DS

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --

Matrix: (soil/water) WATER
Sample wt/vol: 25.0 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap):CAP

Number TIC's found: 1

Contract: EMCON

SAS No.: -- SDG No.: MW2D

Lab Sample ID: 134868

Lab File ID: R3499

Date Received: 03/12/97

Date Analyzed: 03/20/97

Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.	Unknown	9.63	0.85	JK
2.				
3.				Rn
_4				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

FORM I VOA-TIC B-103

## VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

GW011S

Lab Name:	CASIRC			Contract:	EMCON	_	
Lab Code:	10145	Cas	se No.: <u>97-3-158</u>	SAS No	o.: s	DG No.: MW2D	
Matrix: (soil/w	vater)	WATER		Lat	b Sample ID:	135425 1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML	Lat	b File ID:	R3503.D	
Level: (low/m	ned)	LOW		Da	te Received:		
% Moisture: n	not dec.			Da	te Analyzed:	03/21/97	
GC Column:	RTX50	02. ID: 0.5	53_ (mm)	Dile	ution Factor:	1.0	
Soil Extract V	olume .		_ (uL)	So	il Aliquot Volu	ıme:	(uL

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	UJ
75-01-4	Vinyl Chloride	4	
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	88 -71	<del></del>
67-64-1	Acetone	5	UJ
75-35-4	1,1-Dichloroethene	4	
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	880 <del>650</del>	<u> </u>
78-93-3	2-Butanone	5	UJ
156-59-4	cis-1,2-Dichloroethene	47 41	モゴ
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	10	
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	U
108-88-3	Toluene	1	Ū
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
108-38-3	Xylenes (TOTAL)	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
156-60-5	trans-1,2-Dichloroethene	1	U

C 57 M97 84/9

### VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS

				i GW01	1 21
Lab Name: CAS	SVROC	Contract	: EMCO		
Lab Code: 101	45 Case No.: <u>97-</u>	3-158 SAS I	No.:	SDG No.: MV	/2D
Matrix: (soil/water	) WATER_	ŧ	ab Sampl	e ID: 135425 1.0	
Sample wt/vol:	25.0 (g/ml) ML	<u>.                                    </u>	ab File ID	: R3503.D	
Level: (low/med)	LOW	[	ate Recei	ved:	
% Moisture: not d	ec		ate Analy	zed: 03/21/97	
GC Column: R1	TX502. ID: <u>0.53</u> (mm)		Dilution Fa	ctor: 1.0	
Soil Extract Volun	ne (uL)	5	oupilA lio	Volume:	(uL)
		CONCENTR	ATION UN	IITS:	
Number TICs four	nd: 0	(ug/L or ug/K	g) <u>UG</u>	6/L	
CAS NO.	COMPOUND		RT	EST. CONC.	Q

## 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: CAS\ROC		Contract: EMC	ON GW	011SDL	
Lab Code: 10145	Case No.: 97-3-158	SAS No.:	SDG No.:	MW2D	
Matrix: (soil/water) W		_	nple ID: 135425 5		
Sample wt/vol: 25			ID: R3511.D		
Level: (low/med) LC		_			
			ceived:		
% Moisture: not dec.		Date An	alyzed: 03/21/97		
GC Column: RTX502.	ID: <u>0.53</u> (mm)	Dilution	Factor: 50.0		
Soil Extract Volume	(uL)	Soil Alia	uot Volume:	 (uL	_)
	()				- <b>,</b>
	CO	NCENTRATION	UNITS:		
CAS NO		'L or ug/Kg)		Q,	
	(19.	_ 0. 099/	-	/	,
74-87-3	Chloromethane		50	U/	Resulte from This pur  have been  tronscribed  unknited r
75-01-4	Vinyl Chloride		50	//	1 1to from
74-83-9	Bromomethane		50	U	Kesulli
75-00-3	Chloroethane		88	D	This fur
67-64-1	Acetone		250	U	1
75-35-4	1,1 Dichloroethene		50	U	lasse been
75-09-2	Methylene Chloride		50	U	Just - Land
75-15-0	Carbon Disulfide		50	U	La luser 1000
75-35-3	1,1-Dichlorgethane		880	D	ted!
78-93-3	2-Butanone		250	U	confinate and s
156-59-4 67-66-3	cis-1,2-Dichloroathene Chloroform		47	JD	C.m It
107-06-2	1,2-Dichloroethane		50	U	00
71-55-6	1,1,1-Trichloroethane		50	U	comparate and
56-23-5	Carbontetrachloride	<del>\</del>	50 50	Ü	La Care
71-43-2	Benzene	<del></del>	50	U	white come
79-01-6	Trichloroethene //	/	50	U	cal. 120
78-87-5	1,2-Dichloropropana	$\overline{}$	50	U	
75-27-4	Bromodichloromethane		50	Ü	any
108-10-1	4-Methyl-2-Pentanone		250	U	1/2/12
10061-02-6	trans-1,3-Dienloroprope	ene	50	Ü	<b>&gt;</b> / <b>*</b> ( <b>*</b> ( <b>*</b> (
108-88-3	Toluene /		50	Ü	
10061-01-5	cis-1,3 Dichloropropend	e	50	U	
79-00-5	1,1,2-Trichloroethane		50	U	
591-78-6	2-Hexanone		250	U	
127-18-4	Tetrachloroethene		50	U	
124-48-1	Dibromochloromethane	)	50	U	
108-90-7	Chlorobenzene		50	U	
100-41-4	Ethylbenzene		50	N.	
108-38-3	Xylenes (TOTAL)		50	U	
100-42-5	Styrene		50	U	\
79-34-5	1,1,2,2-Tetrachloroetha	ine	50	U	], /
75-25-2 456-60-5	trans-1 2-Dichloroether		50	U	18999

#### NYSDEC Sample No.: GW011SDL

## 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --Matrix: (soil/water) WATER

Sample wt/vol: 25.0 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap):CAP

Number TIC's found: 2

Contract: EMCON

SAS No.: -- SDG No.:MW2D

Lab Sample ID: 135425 Lab File ID: R3511

Date Received: 03/15/97

Date Analyzed: 03/21/97 Dilution Factor: 50.0 Concentration Units: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.	Unknown	9.67	28	JD
2.	Unknown Hydrocarbon	26.49	26	JD
_3.				
4.	1.0			
5.	de to			
6.	hose composited (a)			
_7	1			
8.	afect in the w			
9.	- Ale			
10.	1 10 Gille Frank			
11.	13 11 Cc 4008			
12.	125011 Car			
13.				
14. 15.				
16.				
17.				
18.				
19.				<b></b>
20				
21				
20. 21. 22.				<u> </u>
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

FORM I VOA-TIC B-103

## VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

GW012S

Lab Name:	CASVRO	oc		Contract:	EMCON		
Lab Code:	10145	Ca	se No.: <u>97-3-158</u>	SAS No	o.:	SDG No.: MW2D	
Matrix: (soil/	water)	WATER	_	La	b Sample I	D: 135108 1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML	_ La	b File ID:	R3487.D	
Level: (low/r	ned)	LOW	_	Da	te Receive	ed:	
% Moisture:	not dec.			Da	ite Analyze	d: 03/20/97	
GC Column:	RTX50	02. ID: 0.	53 (mm)	Dil	ution Facto	or: <u>1.0</u>	
Soil Extract \	√olume		_ (uL)	So	il Aliquot V	olume:	(uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg	) UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	US
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	1	U
78-93-3	2-Butanone	5	UJ
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	U
108-88-3	Toluene	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
108-38-3	Xylenes (TOTAL)	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
156-60-5	trans-1,2-Dichloroethene	1	Ū

Ad/q

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	CASVRO	oc		Contrac	t: EMCO	N GW01.	25
Lab Code:	10145	Cas	e No.: 97-3-	158 SAS	No.:	SDG No.: MW	2D
Matrix: (soil/	water)	WATER		ι	_ab Sampl	le ID: 135108 1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML		_ab File ID	): R3487.D	
Level: (low/r	med)	LOW		ſ	Date Rece	ived:	
% Moisture:	not dec.			1	Date Analy	/zed: 03/20/97	
GC Column:	RTX5	02. ID: 0.5	3 (mm)	1	Dilution Fa	ictor: 1.0	
Soil Extract \	Volume	-	_ (uL)	;	Soil Aliquo	t Volume:	(uL)
				CONCENTR	ATION UI	NITS:	
Number TIC:	s found:	0	_	(ug/L or ug/K	(g) <u>U(</u>	G/L	
CAS NO.		COMPOU	ND		RT	EST. CONC.	Q

954 00030

#### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

ab Name:	CASVRO	С		Contract:	EMCON	GW013S	
ab Code:	10145	Cas	se No.: 97-3-	158 SAS No	o.: S	DG No.: MW2D	
/latrix: (soil/	water)	WATER		Lat	Sample ID:	134873 1.0	
Sample wt/v	ol:	25.0	(g/ml) ML	Lat	b File ID:	R3508.D	
evel: (low/	med)	LOW		Da	te Received:		
6 Moisture:	not dec.			Da	te Analyzed:	03/21/97	
GC Column:	RTX5	02. ID: 0.5	3 (mm)	Dil	ution Factor:	1.0	
Soil Extract	Volume		_ (uL)	So	il Aliquot Vol	ume:	(uL)
				CONCENTRAT	TION UNITS:		
CAS NO	Ο.	COMPO	DUND	(ug/L or ug/Kg)	UG/L	Q	

74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U 5
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	UJ
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	2	
78-93-3	2-Butanone	5	UJ
156-59-4	cis-1,2-Dichloroethene	0.8	J
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	UJ
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	Ū
75-27-4	Bromodichloromethane	1	Ū
108-10-1	4-Methyl-2-Pentanone	5	Ū
10061-02-6	trans-1,3-Dichloropropene	1	Ū
108-88-3	Toluene	1	UJ
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	Ū
108-90-7	Chlorobenzene	1	U 3
100-41-4	Ethylbenzene	1	UJ
108-38-3	Xylenes (TOTAL)	1	UJ
100-42-5	Styrene	1	<del>ŭ3</del>
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	Ü
156-60-5	trans-1,2-Dichloroethene	1	Ü

ि ः ज्युःसन

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GW013S Lab Name: CAS\ROC Contract: EMCON SAS No.: SDG No.: MW2D Lab Code: 10145 Case No.: 97-3-158 Lab Sample ID: 134873 1.0 Matrix: (soil/water) WATER Sample wt/vol: 25.0 Lab File ID: R3508.D (g/ml) ML Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 03/21/97 GC Column: RTX502. ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume ____ (uL) Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: CAS NO. COMPOUND RT EST. CONC. Q

EPA SAMPLE NO.

							1	- 1
Lab Name:	CASVRO	C			Contract:	EMCON	GW015S	
Lab Code:	10145	Cas	se No.:	97-3-158	SAS No	.: 8	SDG No.: MW2D	
Matrix: (soil/w	vater)	WATER			Lat	Sample ID:	134871 1.0	
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lat	File ID:	R3502.D	
Level: (low/m	ned)	LOW			Dat	te Received:		
% Moisture: n	not dec.				Da	te Analyzed:	03/21/97	
GC Column:	RTX50	2. ID: 0.5	<u>3</u> (m	nm)	Dile	ution Factor:	1.0	
Soil Extract V	/olume		_ (uL)		Soi	l Aliquot Vol	ume:	(uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	US
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	US
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	1	U
78-93-3	2-Butanone	5	UJ
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	UJ
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	U
108-88-3	Toluene	1	UJ
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	Ū
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	Ū
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	1	US
100-41-4	Ethylbenzene	1	UJ
108-38-3	Xylenes (TOTAL)	1	UJ
100-42-5	Styrene	1	UJ
79-34-5	1,1,2,2-Tetrachioroethane	1	U
75-25-2	Bromoform	1	Ü
156-60-5	trans-1,2-Dichloroethene	1	U

B4/9

95-4 00033

#### NYSDEC Sample No.: GW015S

# 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: -- Matrix: (soil/water) WATER

Sample wt/vol: 25.0 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap):CAP

Number TIC's found: 4

Contract: EMCON

SAS No.: -- SDG No.:MW2D

Lab Sample ID: 134871 Lab File ID: R3502

Date Received: 03/13/97

Date Analyzed: 03/21/97 Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
	Dimethyl, Sulfide	7.16	0.58	===== J N
2.	Unknown Hydrocarbon	26.38		J
3.	Unknown Hydrocarbon			J
4.	Unknown Hydrocarbon	29.15		J
5.	Official Hydrocarbon	31.72	0.50	J
6.				
$\frac{6}{7}$ .				and
				5/1/97
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

FORM I VOA-TIC B-103

EPA SAMPLE NO.

MW 2-2 GW02D6

Lab Name:	CASVR	oc	Contract: EMCON	CW02D6	St 18/97
Lab Code:	10145	Case No.: 97-3-158	SAS No.:	SDG No.: MW2D	
Matrix: (soil/	water)	WATER	Lab Sample I	ID: 134569 1.0	
Sample wt/v	ol:	25.0 (g/ml) ML	Lab File ID:	R3492.D	
Level: (low/	med)	LOW	Date Receive	ed:	
% Moisture:	not dec.		Date Analyze	ed: 03/20/97	
GC Column:	RTX5	02. ID: 0.53 (mm)	Dilution Facto	or: <u>1.0</u>	
Soil Extract	Volume	(uL)	Soil Aliquot V	/olume:	(uL)

# **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	_	Q
74-87-3	Chloromethane		1	U
75-01-4	Vinyl Chloride		1	U
74-83-9	Bromomethane		1	U
75-00-3	Chloroethane		1	U
67-64-1	Acetone		5	UJ
75-35-4	1,1-Dichloroethene		1	U
75-09-2	Methylene Chloride		1	U
75-15-0	Carbon Disulfide		1	U
75-35-3	1,1-Dichloroethane		1	U
78-93-3	2-Butanone		5	U5
156-59-4	cis-1,2-Dichloroethene		1	U
67-66-3	Chloroform		1	U
107-06-2	1,2-Dichloroethane		1	U
71-55-6	1,1,1-Trichloroethane		1	U
56-23-5	Carbontetrachloride	1	U	
71-43-2	Benzene		1	UJ
79-01-6	Trichloroethene		1	U
78-87-5	1,2-Dichloropropane		1	U
75-27-4	Bromodichloromethane		1	U
108-10-1	4-Methyl-2-Pentanone		5	U
10061-02-6	trans-1,3-Dichloropropene		1	U
108-88-3	Toluene		1	UJ
10061-01-5	cis-1,3-Dichloropropene		1	U
79-00-5	1,1,2-Trichloroethane		1	U
591-78-6	2-Hexanone		5	U
127-18-4	Tetrachloroethene		1	U
124-48-1	Dibromochloromethane		1	U
108-90-7	Chlorobenzene		1	UJ
100-41-4	Ethylbenzene		1	UJ
108-38-3	Xylenes (TOTAL)		1	UJ
100-42-5	Styrene		1	υσ
79-34-5	1,1,2,2-Tetrachloroethane		1	U
75-25-2	Bromoform		1	Ü
156-60-5	trans-1,2-Dichloroethene		1	U

J and

8499 57477

MW2D

Lab Name:	CASVRC	c		Contract	t: <b>E</b>	MCON	GW02D	75
Lab Code:	10145	Cas	e No.: <u>97-3-1</u>	58 SAS N	ov	s	DG No.: MW2	2D
Matrix: (soil/w	vater)	WATER		ι	.ab S	Sample ID:	134569 1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML	L	.ab F	File ID:	R3492.D	
Level: (low/m	ned)	LOW			)ate	Received:		
% Moisture: n	not dec.			C	ate	Analyzed:	03/20/97	
GC Column:	RTX50	)2. ID: 0.5	3 (mm)	C	Diluti	ion Factor:	1.0	
Soil Extract V	/olume		(uL)	S	Soil /	Aliquot Volu	ıme:	(uL)
				CONCENTRA				
Number TICs	found:	0		ug/L or ug/K	g)	UG/L		
CAS NO.		COMPOU	ND			RT ES	ST. CONC.	Q

EPA SAMPLE NO.

-CM03D8

_ab Name:	CASTRO	)C		Contract:	EMCON		,
ab Code:	10145	Cas	se No.: 97-3-158	SAS No.:	: s	DG No.: MW2D	
Matrix: (soil/	water)	WATER		Lab	Sample ID:	134567 1.0	
Sample <b>w</b> t/vo	ol:	25.0	(g/ml) ML	Lab	File ID:	R3490.D	
_evel: (low/r	med)	LOW		Date	Received:		
% Moisture:	not dec.		<u>.</u>	Date	Analyzed:	03/20/97	
GC Column:	RTX50	02. ID: 0.5	3 (mm)	Dilut	tion Factor:	1.0	
Soil Extract \	Volume		_ (uL)	Soil	Aliquot Volu	ıme:	(uL

# **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	_	Q
74-87-3	Chloromethane			1	U
75-01-4	Vinyl Chloride			1	Ū
74-83-9	Bromomethane			1	U
75-00-3	Chloroethane			1	U
67-64-1	Acetone			5	UJ
75-35-4	1,1-Dichloroethe	ene		1	U
75-09-2	Methylene Chlor	ride		1	U
75-15-0	Carbon Disulfide	9		1	U
75-35-3	1,1-Dichloroetha	ine		1	Ü
78-93-3	2-Butanone			5	U 5
156-59-4	cis-1,2-Dichloro	ethene		1	U
67-66-3	Chloroform			1	Ü
107-06-2	1,2-Dichloroetha	ine		1	Ü
71-55-6	1,1,1-Trichloroet			1	Ü
56-23-5		Carbontetrachloride			
71-43-2	Benzene			1	U U J
79-01-6	Trichloroethene			1	U
78-87-5	1,2-Dichloroprop	pane		1	Ū
75-27-4	Bromodichlorom			1	Ü
108-10-1	4-Methyl-2-Pent			5	Ū
10061-02-6	trans-1,3-Dichlo			1	Ū
108-88-3	Toluene			1	UJ
10061-01-5	cis-1,3-Dichloro	propene		1	U
79-00-5	1,1,2-Trichloroet			1	Ü
591-78-6	2-Hexanone			5	Ü
127-18-4	Tetrachloroether	ne		1	Ū
124-48-1	Dibromochlorom	nethane		1	Ū
108-90-7	Chlorobenzene			1	UIT
100-41-4	Ethylbenzene			1	UJ
108-38-3	Xylenes (TOTAL	.)		1	UJ
100-42-5	Styrene			1	UJ
79-34-5	1,1,2,2-Tetrachie	oroethane		1	U
75-25-2	Bromoform			1	<del>- ŭ</del>
156-60-5	trans-1,2-Dichlor	roethene		1	U

J and 8/1/27

angitor Byla

#### NYSDEC Sample No.: GWOSDS

#1547

# 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: -- Matrix: (soil/water) WATER

Sample wt/vol: 25.0 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap):CAP

Number TIC's found: 1

Contract: EMCON

SAS No.: -- SDG No.:MW2D

Lab Sample ID: 134567 Lab File ID: R3490

Date Received: 03/12/97

Date Analyzed: 03/20/97 Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	
==========			========	=====
_1	Unknown K	26.50	0.71	J
2.				
3.	and while bear			
4.	acountre la les			
5.	production with			
6.	1 0.			
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
16.			-	
17.				
18.				
19.				
20.				
21.				
22.				-
23.				
24.		· · · · · · · · · · · · · · · · · · ·		
25.				
26.				
27.				
28.				
29.				
30.				

FORM I VOA-TIC B-103

EPA SAMPLE NO.

GW0388

						ری ا	Moses—		
Lab Name:	CASVR	<u> </u>		Contract:	EMCON	_		1 000	
Lab Code:	10145	Cas	se No.: <u>97-3-</u>	158 SAS N	o.: S	DG No.:	MW2D	5/1/9	7
Matrix: (soil/	water)	WATER		La	b Sample ID:	134568	1.0		
Sample wt/v	ol:	25.0	(g/ml) ML	La	b File ID:	R3491.D	)		
Level: (low/r	med)	LOW		Da	ite Received:				
% Moisture:	not dec.				ite Analyzed:				
			3 (mm)	Dii	lution Factor:	1.0			
Soil Extract \					oil Aliquot Volu			ıl \	
- Dail 200	·		_ (uL)	00	III Allquot Volt			iL)	
				CONCENTRA	TION UNITS:				
CAS NO	<b>)</b> .	COMPO		(ug/L or ug/Kg)			Q		
74-87			omethane			1	U		
75-01			Chloride			111	U		
74-83			omethane			1_	U		
75-00		Chlore	oethane			1	U		
67-64		Aceto	ne			5	U 3		
75-35		1,1-Di	chloroethene			1	U		
75-09			lene Chloride	)		1	U		
75-15		Carbo	n Disulfide			1	U		
75-35	-3	1,1-Di	chloroethane			8		i	
78-93	-3	2-Buta	anone			5	U.5	•	
156-5	9-4	cis-1,2	2-Dichloroeth	ene		7			
67-66	-3	Chlore	oform			1	U	İ	
107-0	6-2	1,2-Di	chloroethane			1	U		
71-55	-6	1,1,1-	Trichloroetha	ne		1	U		
56-23	-5	Carbo	ntetrachloride	)		1	U		
71-43	-2	Benze	ene			1	US		
79-01	-6	Trichle	oroethene			1	U		
78-87	-5	1,2-Di	chloropropan	е		1	U	> 1	5
75-27	-4	Bromo	odichlorometh	ane		1	U		الإرار
108-1	0-1	4-Met	hyl-2-Pentano	ne		5	U		X
10061	1-02-6		1,3-Dichlorop			1	U		
108-8	8-3	Toluer	ne			1	US		
10061	1-01-5	cis-1,3	3-Dichloropro	pene		1	U		
79-00	-5	1,1,2-	Trichloroetha	ne		1	U		
591-7	8-6	2-Hex	anone			5	U		
127-1	8-4	Tetrac	chloroethene			1	U		
124-4	8-1		nochlorometh	nane		1	U		
108-9	0-7		benzene			1	US		
100-4	1-4		enzene			1	US		
108-3	8-3		es (TOTAL)			1	UJ		
100-4	2-5	Styrer				1	US	_	
79-34	-5		2-Tetrachloro	ethane		1	U	5/2/97	
75-25-	2	Bromo				1	U	5/497	
156-60	)-5		1,2-Dichloroe	thene		1			

Py4

NYSDEC Sample No.: GV

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Contract: EMCON

SAS No.: -- SDG No.:MW2D

Colostes

Lab Sample ID: 134568 Lab File ID: R3491

Date Received: 03/12/97 Date Analyzed: 03/20/97

Dilution Factor: 1.0 Concentration Units: (ug/L or ug/Kg) UG/L

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --Matrix: (soil/water) WATER

Sample wt/vol: 25.0 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap):CAP

Number TIC's found: 3

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q	Ī
_1	-Unknown Hydrocarbon prob, when bleed	<del>- 26.47</del>	0.85		64
2.	Unknown Hydrocarbon	29.23	0.74	J	2
3. 32357838	Ether, hexyl pentyl	31.80		JN	1
_4					
5.					
6.					
_7.					
8.					
9.					
10.					
11.					
12.					
13.					
14.					
15.					
16.					
17.					
18.					
19.					
20.					
21.					
22.					
23.					
24.					
12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.					
26. 27. 28. 29.					
27.					
28.					
29.				<del></del>	
30.					

FORM I VOA-TIC B-103

***** 00040

EPA SAMPLE NO.

_ab Name:	CASVR	oc			Contract:	EMCON	GW05DS
.ab Code:	10145	Cas	e No.:	97-3-158	SAS No	o.: s	DG No.: MW2D
Matrix: (soil/	water)	WATER			Lai	Sample ID:	134869 1.0
Sample wt/v	oi:	25.0	(g/ml)	ML	. Lal	File ID:	R3500.D
_evel: (low/i	med)	LOW			Da	te Received:	

% Moisture: not dec. Date Analyzed: 03/21/97 GC Column: RTX502. ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume _____ (uL)

CAS NO. COMPOUND

Soil Aliquot Volume: (uL)

# **CONCENTRATION UNITS:**

(ug/L or ug/Kg) UG/L

	(ug/2 or ug/1(g)		•
74-87-3	Chloromethane	1	UJ
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	Ū
67-64-1	Acetone	5	UJ
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	Ū
75-35-3	1,1-Dichloroethane	1	Ū
78-93-3	2-Butanone	5	U.S
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	Ū
107-06-2	1,2-Dichloroethane	1	Ū
71-55-6	1,1,1-Trichloroethane	1	Ū
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	U S
79-01-6	Trichloroethene	1	Ū
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	Ü
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	Ū
108-88-3	Toluene	1	UJ
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	Ü
591-78-6	2-Hexanone	5	Ū
127-18-4	Tetrachloroethene	1	Ū
124-48-1	Dibromochloromethane	1	Ū
108-90-7	Chlorobenzene	1	UJ
100-41-4	Ethylbenzene	1	UŠ
108-38-3	Xylenes (TOTAL)	1	<u> </u>
100-42-5	Styrene	1	U 5
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	Ü
156-60-5	trans-1,2-Dichloroethene	1	Ü

EPA SAMPLE NO.

Lab Name:	CASVR	oc			Contract:	EMCO	<u> </u>	GWUS	05
Lab Code:	10145	Cas	e No.:	97-3-158	SAS N	o.:	_ sd	G No.: MV	/2D
Matrix: (soil/	water)	WATER			La	ab Sample	e ID: 1	34869 1.0	
Sample wt/ve	ol:	25.0	(g/ml)	ML	La	b File ID:	: <u>F</u>	R3500.D	
Level: (low/r	med)	LOW			D	ate Recei	ved: _		
% Moisture:	not dec.				D	ate Analy:	zed: 0	3/21/97	
GC Column:	RTX5	02. ID: 0.5	3_ (n	nm)	D	ilution Fac	ctor: 1	.0	
Soil Extract \	Volume		_ (uL)		S	oil Aliquot	Volun	ne:	(uL)
				COI	NCENTRA	TION UN	IITS:		
Number TIC:	s found:	0	-	(ug/	L or ug/Kg	) <u>UG</u>	/L	<del></del>	
CAS NO.		COMPOU	ND			RT	EST	CONC.	Q

EPA SAMPLE NO.

GW07SD Lab Name: CASVROC Contract: EMCON Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: MW2D Lab Sample ID: 134878 50 Matrix: (soil/water) WATER Sample wt/vol: 0.5 ___ (g/ml) **M**L Lab File ID: R3510.D LOW Level: (low/med) Date Received: % Moisture: not dec. Date Analyzed: 03/21/97 GC Column: RTX502. ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume _____ (uL)

COMPOUND

CAS NO.

CONCENTRATION UNITS:

(ug/L or ug/Kg)	UG/L	Q

Soil Aliquot Volume:

74-87-3	Chloromethane	50	U
75-01-4	Vinyl Chloride	370	0
74-83-9	Bromomethane	50	U 7
75-00-3	Chloroethane	50	U
67-64-1	Acetone	250	U <b>5</b>
75-35-4	1,1-Dichloroethene	50	U
75-09-2	Methylene Chloride	50	Ü
75-15-0	Carbon Disulfide	50	Ü
75-35-3	1,1-Dichloroethane	770	
78-93-3	2-Butanone	250	U 5
156-59-4	cis-1,2-Dichloroethene	140	0 4
67-66-3	Chloroform	50	U
107-06-2	1,2-Dichloroethane	50	Ü
71-55-6	1,1,1-Trichloroethane	44	J
56-23-5	Carbontetrachloride	50	Ü
71-43-2	Benzene	50	US
79-01-6	Trichloroethene	50	U
78-87-5	1,2-Dichloropropane	50	U
75-27-4	Bromodichloromethane	50	Ü
108-10-1	4-Methyl-2-Pentanone	250	Ü
10061-02-6	trans-1,3-Dichloropropene	50	Ü
108-88-3	Toluene	50	U.S
10061-01-5	cis-1,3-Dichloropropene	50	U
79-00-5	1,1,2-Trichloroethane	50	Ü
591-78-6	2-Hexanone	250	Ü
127-18-4	Tetrachloroethene	50	Ū
124-48-1	Dibromochloromethane	50	Ü
108-90-7	Chlorobenzene	50	UJ
100-41-4	Ethylbenzene	50	UJ
108-38-3	Xylenes (TOTAL)	50	UJ
100-42-5	Styrene	50	υ <b>Δ</b>
79-34-5	1,1,2,2-Tetrachloroethane	50	U
75-25-2	Bromoform	50	Ü
156-60-5	trans-1,2-Dichloroethene	50	Ü

· J : 25/2/97

84/9 5/141

EPA SAMPLE NO.

Lab Name:	CASVRO	oc			Contract	t:	EMCON		GWU	1750	
Lab Code:	10145	Cas	e No.: <u>97-</u> 3	3-158	SAS	No.	.:	_ S	DG No.: M	W2D	
Matrix: (soil/	water)	WATER			L	.at	Sample	ID:	134878 50		
Sample wt/vo	ol:	0.5	(g/ml) ML			.ab	File ID:		R3510.D		
Level: (low/r	ned)	LOW			C	at	e Receiv	ed:			
% Moisture: I	not dec.				C	Dat	e Analyz	ed:	03/21/97		
GC Column:	RTX50	02. ID: 0.5	3 (mm)			Dik	ution Fac	tor:	1.0		
Soil Extract \	√olume		_ (uL)		8	Soi	l Aliquot	Volu	me:		(uL)
				CON	NCENTR	ΑT	ION UNI	TS:			
Number TICs	s found:	0	-	(ug/l	L or ug/K	g)	UG/	L			
CAS NO.		COMPOU	ND				RT	ES	ST. CONC.		2

EPA SAMPLE NO.

GW07SS

Lab Name:	CASVRO	oc			Contract:	EMCON			
Lab Code:	10145	Cas	e No.: <u>9</u>	7-3-158	SAS No	.:	SDG No.:	MW2D	
Matrix: (soil/	water)	WATER			Lab	Sample II	D: <u>134877</u>	50	
Sample wt/vo	ol:	0.5	(g/ml) <u>l</u>	ML	Lab	File ID:	R3498.	)	
Level: (low/r	ned)	LOW			Dat	e Receive	d:		
% Moisture:	not dec.				Dat	e Analyze	d: <u>03/21/9</u> 7	7	
GC Column:	RTX50	02. ID: 0.5	<u>3</u> (mr	n)	Dilu	ution Facto	r. <u>1.0</u> /	X56	)
Soil Extract \	√olume _.		(uL)		Soi	l Aliquot V	olume:		(uL)

# **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	50	U <b>J</b>
75-01-4	Vinyl Chloride	360	
74-83-9	Bromomethane	50	U
75-00-3	Chloroethane	50	U
67-64-1	Acetone	250	UJ
75-35-4	1,1-Dichloroethene	50	U
75-09-2	Methylene Chloride	50	U
75-15-0	Carbon Disulfide	50	U
75-35-3	1,1-Dichloroethane	730	
78-93-3	2-Butanone	250	UJ
156-59-4	cis-1,2-Dichloroethene	140	
67-66-3	Chloroform	50	U
107-06-2	1,2-Dichloroethane	50	U
71-55-6	1,1,1-Trichloroethane	48	J
56-23-5	Carbontetrachloride	50	U
71-43-2	Benzene	50	UJ
79-01-6	Trichloroethene	50	U
78-87-5	1,2-Dichloropropane	50	U
75-27-4	Bromodichloromethane	50	Ü
108-10-1	4-Methyl-2-Pentanone	250	U
10061-02-6	trans-1,3-Dichloropropene	50	Ü
108-88-3	Toluene	50	ŪJ
10061-01-5	cis-1,3-Dichloropropene	50	U
79-00-5	1,1,2-Trichloroethane	50	U
591-78-6	2-Hexanone	250	Ū
127-18-4	Tetrachloroethene	50	Ü
124-48-1	Dibromochloromethane	50	Ü
108-90-7	Chlorobenzene	50	UJ
100-41-4	Ethylbenzene	50	US
108-38-3	Xylenes (TOTAL)	50	UJ
100-42-5	Styrene	50	<u> </u>
79-34-5	1,1,2,2-Tetrachloroethane	50	U
75-25-2	Bromoform	50	Ü
156-60-5	trans-1,2-Dichloroethene	50	Ü

EPA SAMPLE NO.

Lab Name:	CASVRO	С		Contract:	EMCON		GW0788	
Lab Code:	10145	Cas	se No.: <u>97-3-158</u>	SAS No	o.:	SDG No.	: <u>MW2D</u>	)
Matrix: (soil/	water)	WATER		La	b Sample	D: 13487	7 50	
Sample wt/vo	ol:	0.5	(g/ml) ML	_ La	b File ID:	R3498	.D	-
Level: (low/r	ned)	LOW		Da	te Recei	ved:		_
% Moisture:	not dec.			Da	te Analyz	zed: <u>03/21/</u>	97	_
GC Column:	RTX50	02. ID: 0.5	3 (mm)	Dil	ution Fac	tor. 1.0		_
Soil Extract \	√olume		_ (uL)	So	il Aliquot	Volume: _		(uL)
			co	NCENTRA	TION UN	ITS:		
Number TICs	s found:	0	(ug 	/L or ug/Kg)	<u>ug</u>	<u>/L</u>		
CAS NO.		COMPOU	ND		RT	EST. CO	NC.	Q

EPA SAMPLE NO.

Lab Name:	CASVROC	<b>:</b>	Contract: E	MCON	GW	)8SS		
•		Case No.: 97-3-158	· —		G No · M	W2D	1	
Matrix: (soil/w								
	_			Sample ID: 1		· <del></del>		
		25.0 (g/ml) ML	_ Lab F	ile ID: R	3509.D			
Level: (low/m	ned) <u>L</u>	.ow	Date	Received: _			•	
% Moisture: n	ot dec.		Date	Analyzed: 0	3/21/97			
GC Column:	RTX502	. ID: 0.53 (mm)	Dilutio	on Factor: 1	.0			
Soil Extract V	olume _	(uL)					-)	
		COL	NCENTRATIO	N UNITS:				
CAS NO			L or ug/Kg)			Q		
0/10/110	•	(ug/	L or ug/r(g)	OG/L		Q		
74-87-	3	Chloromethane			1	U	1	
75-01-	4	Vinyl Chloride			1	U	1	
74-83-	9	Bromomethane			1	UJ		
75-00-	3	Chloroethane			1	U		
67-64-	1	Acetone			5	UJ		
75-35-	4	1,1-Dichloroethene			1	U	*	
75-09-	2	Methylene Chlonde			1	Ū	1	
75-15-	0	Carbon Disulfide			1	U	i	
75-35-	3	1,1-Dichloroethane			1	Ū		
78-93-	3	2-Butanone			5	UJ		
156-59	)-4	cis-1,2-Dichloroethene			1	U		
67-66-	3	Chloroform			1	Ŭ		
107-06	5-2	1,2-Dichloroethane			1	Ŭ		
71-55-		1,1,1-Trichloroethane			1	Ü		
56-23-		Carbontetrachloride			1	Ŭ		
71-43-		Benzene			1	UJ	1	
79-01-		Trichloroethene			1	U	7 -	
78-87-		1,2-Dichloropropane			1	U		(
75-27-		Bromodichloromethane			1	U		5/5
108-10		4-Methyl-2-Pentanone			5	Ü	•	V/19
10061-		trans-1,3-Dichloroprope	ne		1	U		/
108-88		Toluene			1	05		
10061-		cis-1,3-Dichloropropene			1	U		
79-00-		1,1,2-Trichloroethane			1	U		
591-78		2-Hexanone			5	U		
127-18		Tetrachloroethene			1	U		
124-48		Dibromochloromethane			1	Ü		
108-90		Chlorobenzene			1	UJ		
100-41		Ethylbenzene			1	UJ		
108-38		Xylenes (TOTAL)			1	UJ		
100-42		Styrene			1	<del>U.Y</del>	10.5	

FORM I VOA

1,1,2,2-Tetrachloroethane

trans-1,2-Dichloroethene

**Bromoform** 

79-34-5

75-25-2

156-60-5

EPA SAMPLE NO.

Lab Name: CAS\R	oc	Contract: EMCON	GW08SS
Lab Code: 10145	Case No.: 97-3-158	SAS No.: SD0	G No.: <u>MW2D</u>
Matrix: (soil/water)	WATER	Lab Sample ID: 1	34874 1.0
Sample wt/vol:	25.0 (g/ml) ML	Lab File ID: R	R3509.D
Level: (low/med)	LOW	Date Received:	
% Moisture: not dec.		Date Analyzed: 0	3/21/97
GC Column: RTX5	02. ID: 0.53 (mm)	Dilution Factor: 1	.0
Soil Extract Volume	(uL)	Soil Aliquot Volum	ne: (uL)
	cc	NCENTRATION UNITS:	
Number TICs found:	0 (ug	r/L or ug/Kg) UG/L	
CAS NO.	COMPOUND	RT EST	. CONC. Q

EPA SAMPLE NO.

MWIGD

Lab Name:	CASVRO	OC	Contract: EMCON	11003 in .8/1
Lab Code:	10145	Case No.: 97-3-158	SAS No.: SDG No.:	
Matrix: (soil/	water)	WATER	Lab Sample ID: 134565 1	.0
Sample wt/ve	ol:	25.0 (g/ml) ML	Lab File ID: R3493.D	
Level: (low/r	med)	LOW	Date Received:	
% Moisture:	not dec.		Date Analyzed: 03/20/97	
GC Column:	RTX5	02. ID: 0.53 (mm)	Dilution Factor: 1.0	
Soil Extract \	Volume	(uL)	Soil Aliquot Volume:	(uL)

# **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	Ū
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	Ū
67-64-1	Acetone	5	UJ
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	Ū
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	1	U
78-93-3	2-Butanone	5	Ū J
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	Ū
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	UJ
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	Ū
108-10-1	4-Methyl-2-Pentanone	5	Ü
10061-02-6	trans-1,3-Dichloropropene	1	U
108-88-3	Toluene	1	UJ
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	1	UJ
100-41-4	Ethylbenzene	1	UJ
108-38-3	Xylenes (TOTAL)	1	UI
100-42-5	Styrene	1	UJ
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	Ü
156-60-5	trans-1,2-Dichloroethene	1 .	Ü

EPA SAMPLE NO.

GW16DS

cherg

Lab Name:	CASVRO	oc			Contract:	EMCON			
Lab Code:	10145	Cas	e No.: <u>97</u>	7-3-158	SAS No	).:	SDG No.: MW	2D	
Matrix: (soil/	water)	WATER			Lai	o Sample	ID: <u>134565 1.0</u>		
Sample wt/v	ol:	25.0	(g/ml) <u>N</u>	1L	Lai	File ID:	R3493.D	_	
Level: (low/s	med)	LOW			Da	te Receiv	red:		
% Moisture:	not dec.				Da	te Analyz	ed: 03/20/97		
GC Column:	RTX5	02. ID: 0.5	3_ (mm	)	Dil	ution Fac	tor: 1.0		
Soil Extract	Volume		_ (uL)		Soil Aliquot Volume: (ul				
				CON	ICENTRAT	TION UNI	TS:		
Number TIC:	s found:	0	_	(ug/l	_ or ug/Kg)	UG/	<u>L</u>		
CAS NO.		COMPOU	ND			RT	EST. CONC.	Q	

0005

EPA SAMPLE NO.

CW1655

Lab Name:	CASVRO	oc	Contract: EMCON	GWT655	(/15/97)
Lab Code:	10145	Case No.: 97-3-158	SAS No.: SE	G No.: MW2D	<u> </u>
Matrix: (soil/w	vater)	WATER	Lab Sample ID:	134564 50	
Sample wt/vo	ol:	0.5 (g/ml) ML	Lab File ID:	R3481.D	
Level: (low/n	ned)	LOW	Date Received:		
% Moisture: r	not dec.		Date Analyzed:	03/20/97	
GC Column:	RTX50	02. ID: 0.53 (mm)	Dilution Factor:	1.0	
Soil Extract V	/olume	(uL)	Soil Aliquot Volur	me:	(uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane		50	U
75-01-4	Vinyl Chloride		390	
74-83-9	Bromomethane		50	U
75-00-3	Chloroethane		50	U
67-64-1	Acetone		250	UJ
75-35-4	1,1-Dichloroethe	ne	50	U
75-09-2	Methylene Chlori	ide	92	
75-15-0	Carbon Disulfide		50	U
75-35-3	1,1-Dichloroetha	ne	590	
78-93-3	2-Butanone		250	U5
156-59-4	cis-1,2-Dichloroe	thene	310	
67-66-3	Chloroform		50	U
107-06-2	1,2-Dichloroetha	ne	50	U
71-55-6	1,1,1-Trichloroet		50	U
56-23-5	Carbontetrachlor	ide	50	U
71-43-2	Benzene		50	U.J
79-01-6	Trichloroethene		50	U
78-87-5	1,2-Dichloroprop	ane	50	U
75-27-4	Bromodichlorom		50	U
108-10-1	4-Methyl-2-Penta	anone	45	J
10061-02-6	trans-1,3-Dichlor		50	U
108-88-3	Toluene		50	UJ
10061-01-5	cis-1,3-Dichlorop	ropene	50	U
79-00-5	1,1,2-Trichloroet		50	U
591-78-6	2-Hexanone		250	U
127-18-4	Tetrachloroether	ne	50	U
124-48-1	Dibromochlorom	ethane	50	U
108-90-7	Chlorobenzene		50	UJ
100-41-4	Ethylbenzene		50	0.7
108-38-3	Xylenes (TOTAL	)	50	UJ
100-42-5	Styrene		50	05
79-34-5	1,1,2,2-Tetrachic	proethane	50	U
75-25-2	Bromoform		50	U
156-60-5	trans-1,2-Dichlor	oethene	50	U

- J ast 1.7

5/497

034/9

Lab Name:	CASVRO	oc			Contract	: EMCO	N	_		
Lab Code:	10145	Cas	e No.:	97-3-158	SAS	No.:	_ s	DG No.:	MW2	<u>D</u>
Matrix: (soil/	water)	WATER			L	ab Sampl	e ID:	134564	50	
Sample wt/v	ol:	0.5	(g/ml)	ML	L	ab File ID	:	R3481.D	)	_
Level: (low/i	med)	LOW			0	ate Recei	ved:			_
% Moisture:	not dec.				0	ate Analy	zed:	03/20/97	,	_
GC Column:	RTX5	02. ID: 0.5	3 (m	nm)		ilution Fa	ctor:	1.0		_
Soil Extract '	Volume		_ (uL)		S	oupilA lio	t Volu	ıme:		_ (uL)
				CO	NCENTRA	ATION UN	IITS:			
Number TIC	s found:	0	_	(ug/	L or ug/K	g) <u>UG</u>	S/L			
CAS NO.		COMPOU	ND			RT	ES	ST. CON	s.	Q

95-4' 00052

EPA SAMPLE NO.

Lab Name:	CASVRO	nc.			Contract:	EMCON	GW17DS	
Lab Code:	10145	Cas	Se No.:	97-3-158	SAS No	o.: S	DG No.: MW2D	
Matrix: (soil/	water)	WATER			Lal	b Sample ID:	134872 1.0	
Sample wt/v	ol:	25.0	(g/ml)	ML	Lal	b File ID:	R3507.D	
Level: (low/r	med)	LOW			Da	te Received:		
% Moisture:	not dec.		-		Da	te Analyzed:	03/21/97	
GC Column:	RTX50	02. ID: 0.5	3 (m	nm)	Dil	ution Factor:	1.0	
Soil Extract \	Volume		(uL)		So	il Aliquot Volu	ume:	(uL)

# **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	UJ
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	UJ
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	Ü
75-35-3	1,1-Dichloroethane	1	Ū
78-93-3	2-Butanone	5	ŪJ
156-59-4	cis-1,2-Dichloroethene	1	Ü
67-66-3	Chloroform	1	Ū
107-06-2	1,2-Dichloroethane	1	Ū
71-55-6	1,1,1-Trichloroethane	1	Ü
56-23-5	Carbontetrachloride	1	Ū
71-43-2	Benzene	1	U 5
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	Ü
75-27-4	Bromodichloromethane	1	Ū
108-10-1	4-Methyl-2-Pentanone	5	Ū
10061-02-6	trans-1,3-Dichloropropene	1	Ū
108-88-3	Toluene	1	UJ
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	Ü
591-78-6	2-Hexanone	5	Ū
127-18-4	Tetrachloroethene	1	Ū
124-48-1	Dibromochloromethane	1	Ü
108-90-7	Chlorobenzene	1	Ū.J
100-41-4	Ethylbenzene	1	03
108-38-3	Xylenes (TOTAL)	1	UJ
100-42-5	Styrene	1	<u> </u>
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	Ü
156-60-5	trans-1,2-Dichloroethene	1	Ü

# VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: (	CASVROC			Contract:	EMCON		V17US	
Lab Code: 1	10145	Case	No.: 97-3-158	SAS N	o.:	SDG No.:	MW2D	
Matrix: (soil/wa	ater) <u>W</u>	ATER		Lá	ab Sample	ID: <u>134872</u> 1	0.1	
Sample wt/vol	: <u>25</u>	5.0	(g/ml) ML	_ اذ	ab File ID:	R3507.D		
Level: (low/me	ed) <u>L</u> C	ow		D	ate Receiv	/ed:		
% Moisture: no	ot dec.			D	ate Analyz	ed: 03/21/97		
GC Column:	RTX502.	ID: 0.53	(mm)	D	ilution Fac	tor: 1.0		
Soil Extract Vo	olume		(uL)	S	oil Aliquot	Volume:		(uL)
			COI	NCENTRA	TION UN	ITS:		
Number TICs	found:	0	(ug/	L or ug/Kç	) <u>UG</u>	/L		
CAS NO.	C	OMPOUN	ID		RT	EST. CONC	;. (	Q

95-4 00054

EPA SAMPLE NO.

Lab Name:	CASVRC	С		Contract: EN	MCON		W17S >	i	118/90
Lab Code:	10145	Cas	se No.: 97-3-158	SAS No.:	sı	DG No.:	MW2D		J18197
Matrix: (soil/	water)	WATER		Lab Sa	ample ID:	134870	1.0		
Sample wt/vo	ol:	25.0	(g/ml) ML	_ Lab Fi	le ID:	R3501.D	)		
Level: (low/n	ned)	LOW		Date F	Received:				
% Moisture: r	not dec.			Date A	Analyzed:	03/21/97	·		
GC Column:	RTX50	2. ID: <u>0.5</u>	3 (mm)	Dilutio	n Factor:	1.0			
Soil Extract \	Volume _		_ (uL)	Soil Al	liquot Volu	me:		(uL)	

# **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L		Q
74-87-3	Chloromethane		1	UJ
75-01-4	Vinyl Chloride		1	U
74-83-9	Bromomethane		1	U
75-00-3	Chloroethane		1	U
67-64-1	Acetone		5	UJ
75-35-4	1,1-Dichloroethene		1	U
75-09-2	Methylene Chloride		1	U
75-15-0	Carbon Disulfide		1	U
75-35-3	1,1-Dichloroethane		3	
78-93-3	2-Butanone		5	U 7
156-59-4	cis-1,2-Dichloroethene		1	U
67-66-3	Chloroform		1	U
107-06-2	1,2-Dichloroethane		1	U
71-55-6	1,1,1-Trichloroethane		1	U
56-23-5	Carbontetrachloride		1	U
71-43-2	Benzene		1	U 3
79-01-6	Trichloroethene		1	U
78-87-5	1,2-Dichloropropane		1	U
75-27-4	Bromodichloromethane		1	U
108-10-1	4-Methyl-2-Pentanone		5	U
10061-02-6	trans-1,3-Dichloropropene		1	U
108-88-3	Toluene		1	UJ
10061-01-5	cis-1,3-Dichloropropene		1	U
79-00-5	1,1,2-Trichloroethane		1	U
591-78-6	2-Hexanone		5	U
127-18-4	Tetrachloroethene		1	U
124-48-1	Dibromochloromethane		1	U
108-90-7	Chlorobenzene		1	UJ
100-41-4	Ethylbenzene		1	UJ
108-38-3	Xylenes (TOTAL)		1	US
100-42-5	Styrene		1	US
79-34-5	1,1,2,2-Tetrachloroethane		1	U
75-25-2	Bromoform		1	U
156-60-5	trans-1,2-Dichloroethene		1	U

84/97 Bell9

EPA SAMPLE NO.

		TENTATIVEET IDENTITY	ILD COM COME		
Lab Name:	CASVR	oc	Contract: EMCON	<b>GW17S</b> S	Khyh?
Lab Code:	10145	Case No.: 97-3-1	58 SAS No.: SD	G No.: MW2D	——————————————————————————————————————
Matrix: (soil/	water)	WATER	Lab Sample ID:	134870 1.0	
Sample wt/v	ol:	25.0 (g/ml) ML	Lab File ID:	R3501.D	
Level: (low/	med)	LOW	Date Received:		
% Moisture:	not dec.		Date Analyzed:	03/21/97	
GC Column:	RTX5	02. ID: 0.53 (mm)	Dilution Factor:	1.0	
Soil Extract	Volume	(uL)	Soil Aliquot Volur	ne:	(uL)
			CONCENTRATION UNITS:		
Number TIC	s found:	0			
CAS NO.		COMPOUND	RT ES	T. CONC.	Q

EPA SAMPLE NO.

l ah Name: Columbia /	Analytical Services Co	ontract: EMC	:ON	GW	/FB1R
				. No · ·	AVAZO
Lab Code: 10145	Case No.: 9703-158				
Matrix: (soil/water) W	ATER	Lab Sam	ple ID: 13	34879	
Sample wt/vol: 10	00 (g/ml) ML	Lab File	ID: <u>D</u>	L452.D	
Level: (low/med) LC	ow	Date Red	ceived: 0	3/12/97	
% Moisture:	decanted:(Y/N) N	Date Ext	racted: 0	3/17/97	
Concentrated Extract Vol	ume: 1000 (uL)	Date Ana	alyzed: 0	3/24/97	
Injection Volume: 2.0	(uL)	Dilution F	Factor: 1.	.0	
GPC Cleanup: (Y/N)	N pH:				
		CONCENTR	ATION UI	VITS:	
CAS NO.	COMPOUND	(ug/L or ug/K	(g) UG/L		Q
108-95-2	Phenol			10	U
111-44-4	bis(-2-Chloroethyl)Ether			10	U
95-57- <b>8</b>	2-Chlorophenol			10	U
541-73-1	1,3-Dichlorobenzene			10	U
106-46-7	1,4-Dichlorobenzene			10	U
95-50-1	1,2-Dichlorobenzene			10	U
108-60-1	2,2'-oxybis(1-Chloropropan	ie)		10	U
95-48-7	2-Methylphenol			10	U
621-64-7	N-Nitroso-Di-n-propylamine	9		10	U
67-72-1	Hexachloroethane			10	U
106-44-5	4-Methylphenol			10	U
98-95-3	Nitrobenzene			10	U
78-59-1	Isophorone			10	U
88-75-5	2-Nitrophenol			10	U
105-67-9	2,4-Dimethylphenol			10	U
111-91-1	bis(-2-Chloroethoxy)Metha	ne		10	U
120-83-2	2,4-Dichlorophenol			10	U
120-82-1	1,2,4-Trichlorobenzene			10	U
91-20-3	Naphthalene			10	U
106-47-8	4-Chloroaniline			10	U
87-68-3	Hexachlorobutadiene			10	U
59-50-7	4-Chloro-3-methylphenol			10	U
91-57-6	2-Methylnaphthalene			10	U
77-47-4	Hexachlorocyclopentadien	е		10	U
88-06-2	2,4,6-Trichlorophenol			10	U
95-95-4	2,4,5-Trichlorophenol			25	U
91-58-7	2-Chloronaphthalene			10	U
88-74-4	2-Nitroaniline			25	U
208-96-8	Acenaphthylene	-		10	U
131-11-3	Dimethyl Phthalate			10	Ū
606-20-2	2,6-Dinitrotoluene			10	Ü
83-32-9	Acenaphthene			10	Ü
99-09-2	3-Nitroaniline			25	Ü
51-28-5	2,4-Dinitrophenol			25	Ū
132-64-9	Dibenzofuran			10	Ū

3/90' 00057

2,4-Dinitrotoluene

4-Nitrophenol

121-14-2

100-02-7

10

25

Ū

<b>EPA</b>	SAMPL	E NO.
------------	-------	-------

Lab Name: Columbia Analytical Services Contract:	EMCON	GWFB1R	•
Lab Code: 10145 Case No.: 9703-158 SAS No.	o.: SDG	No.: MW2D	)
	b Sample ID: 13		
	b File ID: D		•
			•
Level: (low/med) LOW Da	te Received: 03	3/12/97	
% Moisture: decanted:(Y/N) N Da	te Extracted: 03	3/17/97	
Concentrated Extract Volume: 1000 (uL) Da	ite Analyzed: 03	3/24/97	
Injection Volume: 2.0 (uL) Dil	ution Factor: 1.	0	
GPC Cleanup: (Y/N) N pH:	_		
Gre cleanup. (1714)			
CONC	ENTRATION UN	NITS:	
	or ug/Kg) UG/L		)
(49/20	. ug/(g) <u>00/2</u>		
86-73-7 Fluorene		10 U	
7005-72-3 4-Chlorophenyl-phenylether		10 U	
84-66-2 Diethylphthalate		10 U	
100-01-6 4-Nitroaniline		25 U	
534-52-1 4,6-Dinitro-2-methylphenol		25 U	
86-30-6 N-Nitrosodiphenylamine		10 U	
101-55-3 4-Bromophenyl-phenylether		10 U	
118-74-1 Hexachlorobenzene		10 U	
87-86-5 Pentachlorophenol		25 U	
85-01-8 Phenanthrene		10 U	
120-12-7 Anthracene		10 U	
86-74-8 Carbazole		10 U	
84-74-2 Di-n-Butylphthalate		10 U	
206-44-0 Fluoranthene		10 U	
129-00-0 Pyrene		10 U	
85-68-7 Butyl benzyl phthalate		10 U	
91-94-1 3,3'-Dichlorobenzidine		10 U	
56-55-3 Benzo(a)Anthracene		10 U	
218-01-9 Chrysene		10 U	
117-81-7 Bis(2-Ethylhexyl)Phthalate		1 JB	
117-84-0 Di-n-octyl phthalate		10 U	
205-99-2 Benzo(b)fluoranthene		10 U	
207-08-9 Benzo(k)Fluoranthene		10 U	
50-32-8 Benzo(a)Pyrene		10 U	
193-39-5 Indeno(1,2,3-cd)Pyrene		10 U	
53-70-3 Dibenz(a,h)anthracene		10 U	
191-24-2 Benzo(g,h,i)Perylene		10 U	

NYSDEC Sample No: GWFB1R

#### 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: -- SAS No.: -- SDG No.:MW2D Matrix: (soil/water) WATER Lab Sample ID: 134879

Matrix: (soil/water) WATER

Sample wt/vol: 1000 (g/mL) ML

Lab Sample ID: 134879

Lab File ID: DL452

Date Received: 03/12/97

% Moisture:

GPC Cleanup (Y/N) pH

Number TIC's found: 1

Date Extracted: 03/17/97

Extraction: (SepF/Cont/Sonc)SEPF Date Analyzed: 03/24/97

Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg)UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1. 931179	1,2-Cyclohexanediol	11.47	17	JN
2.				
_3.				
4.				
5.				
6.				
7.				
8.				
9.				<u> </u>
10.				
11.				
12.				
13.				
14. 15. 16.				
15.				
16.				
17.				
18.				
19. 20.				
20.				
21.				
22. 23. 24. 25.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.	FORM I SV-TIC			

FORM I SV-TIC NYSDEC B-78

EPA SAMPLE NO.

Lab Name:	Columbia	Analytical Services	Contract: EMC		W07SD
		Case No.: 9703-158	· · · · · · · · · · · · · · · · · · ·	·	MW2D
Matrix: (soil/v				npie ID: 134878	
Sample wt/vo	ol: 1	1000 (g/ml) ML	Lab File	ID: <u>DL451.0</u>	)
Level: (low/n	ned) l	_OW	Date Re	ceived: 03/12/97	7
% Moisture:		decanted:(Y/N) N	Date Ext	tracted: 03/17/97	7
Concentrated	Extract V	olume: <u>1000</u> (uL)	Date An	alyzed: <u>03/24/9</u> 7	7
Injection Volu	ıme: 2.0	(uL)	Dilution	Factor: 1.0	
GPC Cleanus	p: (Y/N)	N pH:			
·	` ′ -	'			
				PATION UNITS:	
CAS NO	).	COMPOUND	(ug/L or ug/K	(g) <u>UG/L</u>	_ Q
108-95	-2	Phenol		10	U
111-44		bis(-2-Chloroethyl)Ether		10	U
95-57-		2-Chlorophenol		10	U
541-73		1,3-Dichlorobenzene		10	U
106-46		1,4-Dichlorobenzene		10	U
95-50-		1,2-Dichlorobenzene		10	· U
108-60		2,2'-oxybis(1-Chloroprop	pane)	10	U
95-48-	7	2-Methylphenol		10	U
621-64	-7	N-Nitroso-Di-n-propylam	nine	10	U
67-72-	1	Hexachloroethane		10	U
106-44	-5	4-Methylphenol		10	U
98-95-	3	Nitrobenzene		10	U
78-59-	1	Isophorone		10	U
88-75-	5	2-Nitrophenol		10	U
105-67	·-9	2,4-Dimethylphenol		10	U
111-91	-1	bis(-2-Chloroethoxy)Met	thane	10	U
120-83		2,4-Dichlorophenol		· 10	U
120-82	:-1	1,2,4-Trichlorobenzene		10	U
91-20-	3	Naphthalene		10	U
106-47		4-Chloroaniline		10	U
87-68-		Hexachlorobutadiene		10	U
59-50-		4-Chloro-3-methylpheno	)l	10	U
91-57-		2-Methylnaphthalene		10	U
77-47-		Hexachlorocyclopentadi	ene	10	U
88-06-		2,4,6-Trichlorophenol		10	U
95-95-		2,4,5-Trichlorophenol		25	U
91-58-		2-Chloronaphthalene		10	
88-74-		2-Nitroaniline		25 10	U
208-96 131-11		Acenaphthylene Dimethyl Phthalate		10	U
606-20		2,6-Dinitrotoluene		10	Ü
83-32-		Acenaphthene		10	U
99-09-		3-Nitroaniline		25	Ü
51-28-		2,4-Dinitrophenol		25	Ū
132-64		Dibenzofuran		10	U
121-14		2,4-Dinitrotoluene		10	Ü

4-Nitrophenol

100-02-7

25

EPA SAMPLE NO.

Lab Namo	Calumbia	Analytical Canvis		antra at:	EMCON	,	GV	V07SD
		Analytical Service						
Lab Code:	10145	Case No.:	9703-158	SAS No	o.:	_ SD	G No.:	MW2D
Matrix: (soil/	/water) \	NATER		La	b Sample	ID: <u>1</u>	34878	
Sample wt/v	ol:	1000 (g/ml)	ML	La	b File ID:	<u></u>	L451.D	
Level: (low/	med) l			Da	ate Receiv	/ed: 0	3/12/97	
% Moisture:	, <u>-</u>	decanted:	Y/N) N	Da	ite Extrac	ted: 0	3/17/97	
Concentrate					ate Analyz	_		
			(42)		-			<del></del>
Injection Vol	lume: <u>2.0</u>	(uL)		ווט	lution Fac	tor: <u> </u>	.0	
GPC Cleanu	.p: (Y/N) _	<u>N</u> pH:	·					
				CONC	ENTRAT		NITC:	
CAS N	^	COMPOUND			_			Q
CASIN	<b>O</b> .	CONFOUND		(ug/L C	or ug/Kg)	00/	<u> </u>	. ~
86-73	-7	Fluorene			-		10	U
7005-		4-Chlorophen	yl-phenyleth	er	1		10	U
84-66		Diethylphthala			1		10	U
100-0	1-6	4-Nitroaniline					25	U
534-5	2-1	4,6-Dinitro-2-I		ol .	1		25	U
86-30	-6	N-Nitrosodiph	enylamine		i		10	U
101-5	5-3	4-Bromophen		er			10	U
118-7	4-1	Hexachlorobe	enzene	•	ĺ		10	U
87-86	-5	Pentachloropi			1		25	U
85-01	-8	Phenanthrene	<del></del>				10	U
120-1	2-7	Anthracene					10	U
86-74	-8	Carbazole					10	U
84-74	-2	Di-n-Butylphti	nalate				10	U
206-4	4-0	Fluoranthene					10	U
129-0	0-0	Pyrene			ļ		10	U
85-68	-7	Butyl benzyl p	ohthalate				10	U
91-94	-1	3,3'-Dichlorob	enzidine				10	U
56-55		Benzo(a)Anth					10	U
218-0	1-9	Chrysene					10	U
117-8	1-7	Bis(2-Ethylhe	xyl)Phthalate	9		10	25	u JB
117-8		Di-n-octyl pht					10	U
205-9	9-2	Benzo(b)fluor	anthene				10	U
207-0	8-9	Benzo(k)Fluo					10	U
50-32	-8	Benzo(a)Pyre					10	U
193-3	9-5	Indeno(1,2,3-			1	-	10	U

Dibenz(a,h)anthracene

Benzo(g,h,i)Perylene

53-70-3

191-24-2

10

10

NYSDEC Sample No: GW07SD

## 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

SAS No.: -- SDG No.:MW2D Lab Code: 10145 Case No.: --

Matrix: (soil/water) WATER

Sample wt/vol: 1000 (g/mL) ML

Level (low/med): LOW

% Moisture:

Extraction: (SepF/Cont/Sonc)SEPF

GPC Cleanup (Y/N) p Number TIC's found: 11 pH

Lab Sample ID: 134878 Lab File ID: DL451 Date Received: 03/12/97

Date Extracted: 03/17/97 Date Analyzed: 03/24/97

Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg)UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q =====
1.	Unknown	7.25	3.3	J
2.	Unknown	10.71	4.5	J
3. <del>1792810</del>	cis-1,2-Cyclohexanodiol R —	11.47	15	JB∦
4.	Unknown Acid	12.85	2.5	J
5.	Unknown Acid	14.16	2.3	J
6.	Unknown Acid	17.31	2.8	J
7. 1610180	Prometon	19.00	4.6	JN
8.	Unknown Hydrocarbon	21.41	2.3	J
9.	Unknown Hydrocarbon	21.49	2.2	J
10.	Unknown Hydrocarbon	26.36	2.4	J
11.	Unknown Hydrocarbon	27.27	2.7	J
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

FORM I SV-TIC NYSDEC B-78

1 3	AMP	NO.

GW07SS Lab Name: Columbia Analytical Services Contract: EMCON SAS No.: SDG No.: MW2D Lab Code: 10145 Case No.: 9703-158 Lab Sample ID: 134877 WATER Matrix: (soil/water) DL450.D Lab File ID: Sample wt/vol: 1000 (g/ml) ML Level: (low/med) LOW Date Received: 03/12/97 Date Extracted: 03/17/97 % Moisture: decanted:(Y/N) Concentrated Extract Volume: 1000 (uL) Date Analyzed: 03/24/97 Dilution Factor: 1.0 Injection Volume: 2.0 (uL) GPC Cleanup: (Y/N) N pH:

## CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-95-2	Phenol		10	U
111-44-4	bis(-2-Chloroethyl)Et	her	10	U
95-57-8	2-Chlorophenol		10	U
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		10	U
95-50-1	1,2-Dichlorobenzene		10	U
108-60-1	2,2'-oxybis(1-Chlorop	propane)	10	U
95-48-7	2-Methylphenol		10	U
621-64-7	N-Nitroso-Di-n-propy	lamine	10	U
67-72-1	Hexachloroethane		10	U
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	U
111-91-1	bis(-2-Chloroethoxy)	Methane	10	Ū
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenze	ne	10	U
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene		10	U
59-50-7	4-Chloro-3-methylph	enol	10	U
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopent	adiene	10	U
88-06-2	2,4,6-Trichloropheno		10	U
95-95-4	2,4,5-Trichloropheno	1	25	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		25	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethyl Phthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline	1	25	U
51-28-5	2,4-Dinitrophenol		25	U
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinitrotoluene		10	U
100-02-7	4-Nitrophenol		25	U

EPA SAMPLE NO.

**GW07SS** Lab Name: Columbia Analytical Services Contract: EMCON Lab Code: 10145 Case No.: 9703-158 SAS No.: SDG No.: MW2D Matrix: (soil/water) WATER Lab Sample ID: 134877 1000 (g/ml) ML Sample wt/vol: Lab File ID: DL450.D Level: (low/med) LOW Date Received: 03/12/97 % Moisture: decanted:(Y/N) Date Extracted: 03/17/97 Ν Concentrated Extract Volume: 1000 (uL) Date Analyzed: 03/24/97 Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:

# CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or t	ug/Kg) UG/L	Q
86-73-7	Fluorene	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
84-66-2	Diethylphthalate	10	U
100-01-6	4-Nitroaniline	25	U
534-52-1	4,6-Dinitro-2-methylphenol	25	U
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	25	U
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	Ū
86-74-8	Carbazole	10	U
84-74-2	Di-n-Butylphthalate	10	U
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	U
85-68-7	Butyl benzyl phthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	Ū
56-55-3	Benzo(a)Anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	Bis(2-Ethylhexyl)Phthalate	10.8	WJB
117-84-0	Di-n-octyl phthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)Fluoranthene	10	U
50-32-8	Benzo(a)Pyrene	10	U
193-39-5	Indeno(1,2,3-cd)Pyrene	10	U
53-70-3	Dibenz(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)Perylene	10	U

0~(

00064

NYSDEC Sample No: GW07SS

#### 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: -- SAS No.: -- SDG No.: MW2D

Matrix: (soil/water) WATER

Sample wt/vol: 1000 (g/mL) ML

Level (low/med): LOW

% Moisture:

Extraction: (SepF/Cont/Sonc)SEPF

GPC Cleanup (Y/N) pH Number TIC's found: 24

SAS No.: -- SDG No.: Lab Sample ID: 134877

Lab File ID: DL450
Date Received: 03/12/97
Date Extracted: 03/17/97
Date Analyzed: 03/24/97

Dilution Factor: 1.0 Concentration Units: (ug/L or ug/Kg)UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
_=========		10.70		=====
1.	Unknown	10.70		J
2. <del>1792810</del>	cis-1,2-Cyclohexanediol	11.47	13	J DN
3.	Unknown Acid	12.85		J
4.	Unknown Acid	14.16		J
5.	Unknown Acid	17.31	2.2	J
6. 1610180	Prometon	19.00	4.9	JN
7.	Unknown	19.69		J
8.	Unknown	19.99	2.8	J_
9.	Unknown Hydrocarbon	20.09		J
10.	Unknown	20.50		J
11.	Unknown	20.71	2.2	J
12.	Unknown Hydrocarbon	21.01	3.2	J
13.	Unknown Hydrocarbon	21.41	4.4	J
14.	Unknown Hydrocarbon	21.48		J
15.	Unknown Hydrocarbon	21.69		J
16.	Unknown Hydrocarbon	21.79	2.4	J
17.	Unknown Hydrocarbon	22.03	2.2	J
18.	Unknown Hydrocarbon	22.10	2.1	J
19.	Unknown Hydrocarbon	22.74	2.2	J
20.	Unknown Hydrocarbon	23.11	2.6	J
21.	Unknown Hydrocarbon	24.13	2.2	J_
22.	Unknown	24.31	3.0	J
23.	Unknown Hydrocarbon	26.35	3.0	J
24.	Unknown Hydrocarbon	27.27	2.8	J
25.				
26.				
27.				
28.				
29.				
30.				

FORM I SV-TIC NYSDEC B-78

EPA SAMPLE NO.

Lab Name:	Columbi	ia Analy	tical Servic	ces	Contract:	EMCON	GW012S
Lab Code:	10145		Case No.:	9703-158	SASN	o.:	SDG No.: MW2D
Matrix: (soil/w	vater)	WATE	2		- La	ab Sample ID	D: <u>135108</u>
Sample wt/vo	ol:	1000	(g/ml)	ML	_ La	ab File ID:	DL453.D
Level: (low/n	ned)	LOW			D	ate Received	i: <u>03/12/97</u>
% Moisture:			decanted:(	Y/N)1	<u>v</u> D	ate Extracted	d: <u>03/17/97</u>
Concentrated	Extract	Volume	1000	(uL)	D	ate Analyzed	I: <u>03/24/97</u>
Injection Volu	ıme: <u>2.</u>	<u>0</u> (uL	.)		D	ilution Factor	r: <u>1.0</u>
GPC Cleanup	o: (Y/N)	N	pH: _				
				•	CONC	CENTRATIO	N UNITS:
CACNO		001	MOOLIND		/a/l	on un/Ma) I	10/1

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-95-2	Phenol		10	U
111-44-4	bis(-2-Chloroethyl)Eth	er	10	U
95-57-8	2-Chlorophenol		10	U
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		10	U
95-50-1	1,2-Dichlorobenzene		10	Ū
108-60-1	2,2'-oxybis(1-Chloropi	ropane)	10	U
95-48-7	2-Methylphenol		10	U
621-64-7	N-Nitroso-Di-n-propyla	amine	10	U
67-72-1	Hexachloroethane		10	U
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol	i	10	U
105-67-9	2,4-Dimethylphenol		10	U
111-91-1	bis(-2-Chloroethoxy)N	lethane	10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenzen	е	10	U
91-20-3	Naphthalene	İ	10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene		10	U
59-50-7	4-Chloro-3-methylphe	nol	10	U
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopenta	ndiene	10	U
88-06-2	2,4,6-Trichlorophenol		10	U
95-95-4	2,4,5-Trichlorophenol		25	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		25	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethyl Phthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		25	U
51-28-5	2,4-Dinitrophenol		25	U
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinitrotoluene		10	U
100-02-7	4-Nitrophenol		25	U

00066

## 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Columbia Analytical Services Cor	tract: EMCON		V012S	
Lab Code: 10145	AS No.: SD	G No.:	MW2D	
Matrix: (soil/water) WATER	Lab Sample ID: 1	35108		
Sample wt/voi: 1000 (g/ml) ML	_	L453.D		
	_		<del></del>	
Level: (low/med) LOW	Date Received: 0	3/12/97		
% Moisture: decanted:(Y/N) N	Date Extracted: 0	3/17/97		
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 0	3/24/97		
Injection Volume: 2.0 (uL)	Dilution Factor: 1	.0		
GPC Cleanup: (Y/N) N pH:				
	CONCENTRATION U			
CAS NO. COMPOUND	(ug/L or ug/Kg) <u>UG/I</u>		. Q	
86-73-7 Fluorene		10	U	1
7005-72-3 4-Chlorophenyl-phenylether	ı	10	U	1
84-66-2 Diethylphthalate		10	U	1
100-01-6 4-Nitroaniline		25	U	1
534-52-1 4,6-Dinitro-2-methylphenol	!	25	U	•
86-30-6 N-Nitrosodiphenylamine		10	U	
101-55-3 4-Bromophenyl-phenylether		10	U	1
118-74-1 Hexachlorobenzene		10	U	•
87-86-5 Pentachlorophenol		25	U	
85-01-8 Phenanthrene	1	10	U	
120-12-7 Anthracene		10	U	]
86-74-8 Carbazole	1	10	U	İ
84-74-2 Di-n-Butylphthalate		10	U	
206-44-0 Fluoranthene		10	U	
129-00-0 Pyrene		10	U	
85-68-7 Butyl benzyl phthalate		10	U	
91-94-1 3,3'-Dichlorobenzidine		10	U	į
56-55-3 Benzo(a)Anthracene	i	10	U	i
218-01-9 Chrysene	i	10	U	ļ
117-81-7 Bis(2-Ethylhexyl)Phthalate		10 1	N JB	!
117-84-0 Di-n-octyl phthalate		10	U	25
205-99-2 Benzo(b)fluoranthene		10	U	, 0, 1
207-08-9 Benzo(k)Fluoranthene		10	U	i
50-32-8 Benzo(a)Pyrene		10	U	
193-39-5 Indeno(1,2,3-cd)Pyrene		10	U	
53-70-3 Dibenz(a,h)anthracene		10	U	
191-24-2 Benzo(g,h,i)Perylene		10	U	

° 00067

NYSDEC Sample No: GW012S

## 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: -- SAS No.: -- SDG No.: MW2D

Matrix: (soil/water) WATER

Sample wt/vol: 1000 (g/mL) ML Lab File ID:

Level (low/med): LOW

% Moisture:

Extraction: (SepF/Cont/Sonc) SEPF

GPC Cleanup (Y/N) pH Number TIC's found: 5

Lab Sample ID: 135108

Lab File ID: DL453
Date Received: 03/12/97
Date Extracted: 03/17/97
Date Analyzed: 03/24/97

Dilution Factor: 1.0 Concentration Units: (ug/L or ug/Kg)UG/L

	**==*==================================		========	
CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
			=======	=====
1.	Unknown	7.25	2.3	J
2. <del>1792810</del>	cis-1,2-Cyclohexanediol_	11.47	14	JBN
_3.	Unknown	22.17	2.3	J
4.	Unknown	23.43	2.1	J
5.	Unknown	24.31	2.2	J
6.				
7.				
8.				
9.				
10.				
11.				
12.				
13.			7-1	
14.				
14. 15.				
16.				
16. 17.		<del></del>		
18.				
19.				
20				
20. 21.				
22.				
23.			· · · · · · · · · · · · · · · · · · ·	
23.				
24. 25.				
25.				
26. 27.				
21.				
28.				
29.				
30.				1

FORM I SV-TIC NYSDEC B-78

#### INORGANIC ANALYSIS DATA SHEET

GW010\$

tab Name: COLUMBIA ANALYTICAL

Contract: EMCON

SAMPLE NO.

Lab Code: 10145 Case No.:

SAS No.:

SDG No.: MW2D

Matrix (soil/water): WATER

Lab Sample ID: 134876

Level (low/med): LOW

Date Received: 03/13/97

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	  Concentration C	   •	-    M
<b> </b>	l	l	l	_
7429-90-5	Aluminum	3660	İ	P
7440-36-0	Antimony	1.2   U	<b></b>	P_
7440-38-2	Arsenic	4.7 B	1_5	P
7440-39-3	Barium	134 B	İ	<u> P_ </u>
7440-41-7	Beryllium	0.14 B	l	P
7440-43-9	Cadmium	0.30   U	İ	P
7440-70-2	Calcium	444000	<b></b>	<u>  P   </u>
7440-47-3	Chromium	4.8 B	l	P
7440-48-4	Cobalt	1.3 B	l	P
7440-50-8	Copper	5.9 B	l	<u> P  </u>
7439-89-6	1 ron	4180	l	P
7439-92-1	Lead	2.4 B	l	<u> P  </u>
7439-95-4	Magnes i um	130000	l	P
7439-96-5	Manganese	60.5	l	P
7439-97-6	Mercury	0.20   U	<u> </u>	<u>  CV</u>
7440-02-0	Nickel	3.5 B	<b>!</b>	P
7440-09-7	Potassium	5650	<b>!</b>	P
7782-49-2	Selenium	1.1 8	N J	E
7440-22-4	Silver	1.6   8		<u> P  </u>
7440-23-5	Sodium	112000	EJ	P
7440-28-0	Thallium	2.1   U	I	P
7440-62-2	Vanadium	6.3 B	l	P
7440-66-6	Zinc	14.6 B	I	P
l	Cyanide	ll_	I	<u> _</u>

Color Before: YELLOW

Clarity Before: CLOUDY

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

ents:

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

GW011S

Lab Name: COLUMBIA ANALYTICAL

Contract: EMCON

130 Code: 10145 Case No.: SAS No.:

SOG No.: MW2D

Matrix (soil/water): WATER

Lab Sample ID: 135425

tevel (low/med): LOW

Date Received: 03/15/97

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

			_		
  CAS No.	Analyte	  Concentration 	C	Q	M
7429-90-5	Aluminum	673	-  	 	<u>—</u>   P
7440-36-0	:	1.2	-		iP
7440-38-2		16.3	:-:	5	iP
7440-39-3		44.7	В		P
7440-41-7	Beryllium	0.10	υ	i	P
7440-43-9	:	0.30	-		IP
7440-70-2	:	165000	i -		P
7440-47-3	!		В		IP.
7440-48-4	!	0.70	-		iP.
7440-50-8		1.7	-		IP
	Iron	3550	-		IP
7439-92-1		1.2	В		P
7439-95-4		47300	i -		IP
7439-96-5		67.9	-		ļ _P
7439-97-6	:	0.20	υ	i	CV
7440-02-0	Nickel	2.0	U		P
7440-09-7	Potassium	2670	В		P
7782-49-2	Selenium	1.1	В	WJ	F
7440-22-4			U		P
7440-23-5	Sodium	16700		EJ	P
7440-28-0	Thallium	3.3	В	<u>了</u>	<u>P</u>
7440-62-2	:	1.4	В		P
7440-66-6	!		В		P
	Cyanide		1	1	i_

Color Before: COLORLESS Clarity Before: CLEAR

Texture:

Color After: COLORLESS Clarity After: CLEAR

Artifacts:

its:

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

tab Name: COLUMBIA ANALYTICAL

Contract: EMCON

Lab Code: 10145 Case No.:

SAS No.:

SDG No.: MW2D

Matrix (soil/water): WATER

Lab Sample ID: 135108

Level (low/med): LOW

Date Received: 03/14/97

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

1	I		ī	1	_
CAS No.	Analyte	Concentration	C	•	M
i	İ		i_	i	i_
7429-90-5	Aluminum	10400	i_		P
7440-36-0	Antimony	1.2	ļυ	l	P
7440-38-2	Arsenic	4.7	B	5	P
7440-39-3	Barium	111	B	l	P
7440-41-7	Beryllium	0.46	<u>B</u>	<b>!</b>	P
7440-43-9	Cadmium	0.30	υ	l	<u> P</u>
7440-70-2	Calcium	218000	1_		P
7440-47-3	Chromium	16.0	L	l	<u>P</u>
7440-48-4	Cobalt	4.7	<u>  B</u>		P
7440-50-8	Copper	12.7	В	l	P
7439-89-6	Iron	12500	L		P
7439-92-1	Lead	21.8	L		P
7439-95-4	Magnesium	50400	Ĺ	i	P
7439-96-5	Manganese	214	l_		P
7439-97-6	Mercury	0.20	Įυ		CV
7440-02-0	Nickel	12.0	B		P
7440-09-7	Potassium	5330	l_		P
7782-49-2	Selenium	1.0	В	WJ	F
7440-22-4	Silver	0.70	Įυ		P
7440-23-5	Sodium	11100	L	EJ	P
7440-28-0	Thallium	2.1	Įυ	J	P
7440-62-2	Vanadium	18.4	B		P
7440-66-6	Zinc	42.6	L		IP.
	Cyanide		L		<u> </u>

Color Before: YELLOW

Clarity Before: CLOUDY

Texture:

Color After: COLORLESS Clarity After: CLEAR

Artifacts:

ents:

ENVIROFORMS/INORGANIC CLP SAMPLE NO. INORGANIC ANALYSIS DATA SHEET GW077S No 500/ C 147 Lab Name: COLUMBIA ANALYTICAL Contract: EMCON Lab Code: 10145 SAS No.: SDG No. & MW2D Case No.: Matrix (soil/water): Lab Sample ID:/0 Level (low/med): Date Received: % Solids: 0.0 Concentration Units (ug/L or mg/kg dry weight/): UG/L CAS No. Analyte |Concentration|C) 7429-90-5 | Aluminum 7440-36-0 Antimony 7440-38-2 | Arsenic 7440-39-3 | Barium 7440-41-7 | Beryllium 7440-43-9 | Cadmium 7440-70-2 | Calcium 7440-47-3 | Chromium 7440-48-4 | Cobalt 7440-50-8 Copper 7439-89-6 | Iron 7439-92-1 | Lead 7439-95-4 | Magnes i um 7439-96-5 | Manganese 7439-97-6 Mercury |7440-02-0 | Mickel 7440-09-7 Potassium 7782-49-2/|Selenium 7440-22/4 |Silver 7440-28-5 | Sodium 7440/28-0 | Thallium 7440-62-2 | Vanadium 7#40-66-6 Zinc Cyanide Color Before: Clarity Before: Texture: Color After: Clarity After: Artifacts:

nts:

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

GW07SD

L TO Name: COLUMBIA ANALYTICAL

Contract: EMCON

L-10 Code: 10145

Case No.:

SAS No.:

SDG No.: MW2D

Matrix (soil/water): WATER

Lab Sample ID: 134878

Level (low/med): LOW

Date Received: 03/13/97

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

	ı	1			_
CAS No.	Analyte	  Concentration 	C	9	Ħ
7429-90-5	Aluminum	4760	- 		P
7440-36-0	Antimony	1.2	_		IP.
7440-38-2	Arsenic	7.2	В		P
7440-39-3	Barium	120	В		힏
7440-41-7	Beryllium	0.22	В		<u> </u>
7440-43-9	Cadmium	0.30	Įυ		IP.
7440-70-2	Calcium	157000	_	i	P
7440-47-3	Chromium	6.6	В		P
7440-48-4	Cobelt	2.6	<u> B</u>		IP.
7440-50-8	Copper	10.8	<u>B</u>		P_
7439-89-6	Iron	8700	L		P
7439-92-1	Lead	2.6	B	l	P
7439-95-4	<u>Hagnesium</u>	52800	<b>I</b> _	l	P
7439-96-5	Manganese	335	L	l	P
7439-97-6	Mercury	0.20	Ū		CV
7440-02-0	Nickel	5.3	B	l	P
7440-09-7	Potassium	2410	В		P
7782-49-2	Selenium	1.2	В	W J	F
7440-22-4	Silver	0.70	U		P
7440-23-5	Sodium	18200	L	EJ	P
7440-28-0	Thallium	2.1	ļυ	1	P
7440-62-2	Vanadium	9.6	<u> B</u>		P
7440-66-6	Zinc	17.5	B		P
1	Cyanide	l	_	1	<b>_</b>

Color Before: YELLOW

Clarity Before: CLOUDY

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

ints:

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

GW07SS

L 10 Name: COLUMBIA ANALYTICAL

Contract: EMCON

Lab Code: 10145 Case No.:

SAS No.:

SOG No.: MW2D

Matrix (soil/water): WATER

Lab Sample ID: 134877

tevel (low/med): LOW

Date Received: 03/13/97

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

					_
CAS No.	   Analyte	  Concentration	  c	   •	  #
7429-90-5	Aluminum	5560	_ 	l	I_
			!-		-
	Antimony	1.2	:-		<u>P</u>
	Arsenic		B		<u> </u>
7440-39-3	Barium	122	B		<u>P</u>
7440-41-7	Beryllium	0.25	<u>B</u>		P
7440-43-9	Cadmium	0.30	ļυ		P
7440-70-2	Calcium	155000	L		<u>P</u>
7440-47-3	Chromium	7.9	<u>B</u>		<u>P</u>
7440-48-4	Cobalt	2.8	B		P
7440-50-8	Copper	11.7	В		P
7439-89-6	Iron	9090	L		P
7439-92-1	Lead	3.0	L		P
7439-95-4	Magnesium	52500	Ĺ		P
7439-96-5	Manganese	332	1_	l	P_
7439-97-6	Mercury	0.20	ļυ	l	CV
7440-02-0	Nickel	5.6	В		P
7440-09-7	Potassium	2660	B	l	P
7782-49-2	Selenium	1.0	Įυ	l	F
7440-22-4	Silver	0.70	Įυ	i	P
7440-23-5	Sodium	18300	L	E 3	I <u>P</u>
7440-28-0	Thallium	2.9	<u> </u> <u>B</u>	1_5	P
7440-62-2	Vanadium	10.9	18		IP.
7440-66-6	Zinc	22.6	L		힏
	Cyanide		Ĺ		<u></u>
			_		

Color Before: YELLOW Clarity Before: CLOUDY Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

nts:

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

L3D Name: COLUMBIA ANALYTICAL

Contract: EMCON

SAS No.:

Lab Code: 10145

Case No.:

SDG No.: MW2D

Matrix (soil/water): WATER

Lab Sample ID: 134879

Level (low/med):

Date Received: 03/13/97

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	  Concentration	  C	   •	H
7429-90-5	Aluminum	66.9	_   <u>B</u>	l 	   <u>P</u>
7440-36-0	Antimony	1.2	ļυ	l	IP_
7440-38-2	Arsenic	2.7	Įψ	<u>  [</u>	IP.
7440-39-3	Barium	86.7	<u>B</u>	l	P
7440-41-7	Beryllium	0.10	ļψ	l	P
7440-43-9	Cadmium	0.30	ĮΨ	l	P
7440-70-2	Calcium	229	₿	l	P
7440-47-3	Chromium	0.63	<u>B</u>	<b> </b>	P
7440-48-4	Cobalt	0.70	ĮΨ	I	P
7440-50-8	Copper	4.7	<u>B</u>	l	P
7439-89-6	Iron	31.1	<u>B</u>	I	P
7439-92-1	Lead	1.1	ū	1	P
7439-95-4	Magnesium	44.0	ĮΫ	l	<u> P</u>
7439-96-5	Manganese	0.90	<u>B</u>	l	P
7439-97-6	Mercury	0.20	ū	l	CV
7440-02-0	Nickel	2.0	ū	l	P
7440-09-7	Potassium	361	Įυ	l	P
7782-49-2	Selenium	1.0	וַעַ		F
7440-22-4	Silver	0.70	<u>U</u>	l	P
7440-23-5	Sodium	1710	В		P
7440-28-0	Thallium	2.1	Įυ	<u> </u>	P
7440-62-2	Vanadium	0.40	<u>u</u>	l	P
7440-66-6	Zinc	11.8	<u>B</u>		P
l	Cyanide		<b> </b> _		. _

Color Before: COLORLESS

Clarity Before: CLEAR

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

ents:

## WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

CASVROC Contract: EMCON Lab Name:

SAS No.: SDG No.: MW2D Lab Code: 10145 Case No.: 97-3-158

	EPA	SMC1	TOT
	SAMPLE NO.	#	OUT
01	VBLK01	104	0
02	LCS	98	0
03	GWTB1T	91	0
04	GWTB2T	94	0
05	GWFB1R	99	0
06	GW16SS	106	0

QC LIMITS

SMC1

SURR2,BFB

(80-120)

# Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

95-4

00076

## 2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

 Lab Name:
 CAS\ROC
 Contract:
 EMCON

 Lab Code:
 10145
 Case No.:
 97-3-158
 SAS No.:
 SDG No.:
 MW2D

	EPA	SMC1	TOT
	SAMPLE NO.	#	OUT
01	VBLK02	100	0
02	VBLK02MS	104	0
03	GW012S	94	0
04	GW012SMS	107	0
05	GW012SMSD	107	0
06	GW03DS	109	0
07	GW03SS	107	0
80	GW02DS	109	0
09	GW16DS	109	0

SMC1

= SURR2,BFB

QC LIMITS (80-120)

# Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

95-4

00077

# 2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: CAS\ROC Contract: EMCON

	EPA	SMC1	тот
	SAMPLE NO.	#	OUT
01	VBLK03	103	0
02	GW07SS	93	0
03	GW01DS	98	0
04	GW05DS	104	0
05	GW17S	110	0
06	GW015S	108	0
07	GW011S	105	0

SMC1

= SURR2,BFB

QC LIMITS (80-120)

# Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

## 2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

 Lab Name:
 CAS\ROC
 Contract:
 EMCON

 Lab Code:
 10145
 Case No.:
 97-3-158
 SAS No.:
 SDG No.:
 MW2D

l	EPA	SMC1	TOT
	SAMPLE NO.	#	OUT
01	VBLK04	118	0
02	GW17DS	112	0
03	GW013S	114	0
04	GW08SS	117	0
05	GW07SD	117	0
06	GW011SDL	119	0
07	CBLK1	116	0

SMC1

SURR2,BFB

QC LIMITS (80-120)

# Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

AH

95-4

∩ 0079

# 2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Columbia Analytical Services Contract: EMCON

	EPA	S1	S2	S3	S4	S5	S6	S7	S8	ТОТ
	SAMPLE NO.	(2FP) #	[PHL] #	#	#	(NBZ) #	(FBP) #	#	(TPH) #	OUT
01	SBLK1	65	69	71	65	76	75	82	80	0
02	SBLK1MS	70	74	74	69	80	79	88	81	0
03	GW07SS	67	75	73	63	78	75	91	74	0
04	GW07SD	67	76	75	67	80	78	93	78	0
05	GWFB1R	57	68	68	62	75	75	85	84	0
06	GW012S	58	69	68	65	76	76	87	72	0
07	GW012SMS	58	67	69	67	80	76	88	76	0
08	GW012SMSD	65	75	74	74	87	80	89	79	0

				QC LIMITS
S1	(2FP)	=	2-Fluorophenol	(21-110)
S2	[PHL]	=	Phenol-d6	(10-110)
S3		=	2-Chlorophenol-d4	(33-110)
S4		=	1,2-Dichlorobenzene-d4	(16-110)
S5	(NBZ)	=	Nitrobenzene-d5	(35-114)
S6	(FBP)	=	2-Fluorobiphenyl	(43-116)
S7		=	2,4,6-Tribromophenol	(10-123)
S8	(TPH)	=	Terphenyl-d14	(33-141)

# Column to be used to flag recovery values

D Surrogate diluted out

^{*} Values outside of contract required QC limits

## 3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CAS\ROC Contract: EMCON

Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: MW2D

Matrix Spike - EPA Sample No.: GW012S

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC.
1,1-Diclethene	5.0	0.0	5.4	108	61 - 145
Benzene	5.0	0.0	4.7	94	76 - 127
Trichloroethene	5.0	0.0	5.0	100	71 - 120
Toluene	5.0	0.0	5.0	100	76 - 125
Chlorobenzene	5.0	. 0.0	5.0	100	75 - 130

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%	QCI	LIMITS
COMPOUND	(ug/L)	(ug/L) (ug/L) F		RPD#	RPD	REC.
1,1-Diclethene	5.0	5.2	104	4	14	61 - 145
Benzene	5.0	4.7	94	0	11	76 - 127
Trichloroethene	5.0	4.7	94	6	14	71 - 120
Toluene	5.0	5.1	102	2	13	76 - 125
Chlorobenzene	5.0	5.1	102	2	13	75 - 130

Column to be used to f	lag recovery and F	₹PD values with an	asterisk
------------------------	--------------------	--------------------	----------

RPD: 0 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

COMMENTS:

ath

00081

^{*} Values outside of QC limits

#### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

GW012SMS

Lab Name:	CASTRO	OC		Contract:	EMCON	. L	
Lab Code:	10145	Cas	se No.: <u>97-3-158</u>	SAS No	.: s	DG No.: MW2D	
Matrix: (soil/	water)	WATER		Lat	Sample ID:	135108 1.0MS	
Sample wt/vo	ol:	25.0	(g/ml) ML	Lat	File ID:	R3488.D	
Level: (low/r	med)	LOW		Dat	te Received:		
% Moisture:	not dec.			Dat	te Analyzed:	03/20/97	
GC Column:	RTX50	02. ID: 0.5	53 (mm)	Dile	ution Factor:	1.0	
Soil Extract \	Volume		_ (uL)	Soi	l Aliquot Vol	ume:	(uL)

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	J
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	U
75-35-4	1,1-Dichloroethene	5	
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	1	U
78-93-3	2-Butanone	5	U
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	5	
79-01-6	Trichloroethene	5	
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	Ü
10061-02-6	trans-1,3-Dichloropropene	1	Ü
108-88-3	Toluene	5	
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	Ü
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	5	
100-41-4	Ethylbenzene	1	U
108-38-3	Xylenes (TOTAL)	1	Ü
100-42-5	Styrene	1	Ū
79-34-5	1,1,2,2-Tetrachloroethane	1	Ŭ
75-25-2	Bromoform	1	Ū
156-60-5	trans-1,2-Dichloroethene	1	U

Polla

## 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: CAS\ROC Contract: EMCON GW012SMSD

Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: MW2D Matrix: (soil/water) WATER Lab Sample ID: 135108 1.0MS Sample wt/vol: 25.0 (g/ml) ML Lab File ID: R3489.D LOW Level: (low/med) Date Received: % Moisture: not dec. Date Analyzed: 03/20/97 GC Column: RTX502. ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume _____ (uL) Soil Aliquot Volume: _____ (uL)

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	<del></del>	Q
74-87-3	Chloromethane			1	U
75-01-4	Vinyl Chloride			1	U
74-83-9	Bromomethane			1	U
75-00-3	Chloroethane			1	U
67-64-1	Acetone	Acetone			U
75-35-4	1,1-Dichloroethen	е		5	
75-09-2	Methylene Chlorid				U
75-15-0	Carbon Disulfide			1	U
75-35-3	1,1-Dichloroethan	е		1	U
78-93-3	2-Butanone			5	U
156-59-4	cis-1,2-Dichloroet	hene		1	U
67-66-3	Chloroform			1	U
107-06-2	1,2-Dichloroethan	е		1	U
71-55-6	1,1,1-Trichloroeth	ane		1	U
56-23-5	Carbontetrachlorio	de		1	U
71-43-2	Benzene			5	
79-01-6	Trichloroethene			5	
78-87-5	1,2-Dichloropropa	ne		1	U
75-27-4	Bromodichlorome			1	U
108-10-1	4-Methyl-2-Pentar	none		5	U
10061-02-6	trans-1,3-Dichloro			1	Ū
108-88-3	Toluene	· • • · · · · · · · · · · · · · · · · ·		5	
10061-01-5	cis-1,3-Dichloropr	opene		1	U
79-00-5	1,1,2-Trichloroeth			1	U
591-78-6	2-Hexanone			5	U
127-18-4	Tetrachloroethene	)		1	Ü
124-48-1	Dibromochlorome	thane		1	Ū
108-90-7	Chlorobenzene			5	
100-41-4	Ethylbenzene			1	U
108-38-3	Xylenes (TOTAL)			1	Ū
100-42-5	Styrene			1	U
79-34-5	1,1,2,2-Tetrachlor	oethane		1	U
75-25-2	Bromoform			1	U
156-60-5	trans-1,2-Dichloro	ethene		1	U

P4/9

#### 3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CAS\ROC Contract: EMCON

Matrix Spike - EPA Sample No.: VBLK02

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC.
1,1-Diclethene	5.0	0.0	5.3	106	61 - 145
Benzene	5.0	0.0	5.0	100	76 - 127
Trichloroethene	5.0	0.0	4.6	92	71 - 120
Toluene	5.0	0.0	5.2	104	76 - 125
Chlorobenzene	5.0	0.0	5.1	102	75 - 130

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 5 out of 5 outside limits

Spike Recovery: 5 out of 10 outside limits

COMMENTS:

01/9

00084

## 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	CASVRC	С		c	ontract:	EMCON	L	VBLK02M	S
Lab Code:	10145	Са	se No.: <u>97-3</u>	-158	SAS No	.:	SDG N	o.: <u>MW2D</u>	ı
Matrix: (soil/	water)	WATER	_		Lat	Sample II	D: VBL	K02MS	
Sample wt/vo	ol:	25.0	(g/ml) ML		Lat	File ID:	R348	86.D	
Level: (low/r	ned)	LOW	_		Da	te Receive	d:		
% Moisture:	not dec.	******			Da	te Analyzed	d: <u>03/2</u> 0	0/97	
GC Column:	RTX50	<u>)2.</u> ID: <u>0.</u>	53 (mm)		Dil	ution Facto	r. <u>1.0</u>		•
Soil Extract \	/olume _	<b></b>	_ (uL)		Soi	il Aliquot Ve	olume:		(uL)
				CONC	ENTRAT	TION UNITS	S:		
CAS NO	<b>)</b> .	COMP	OUND	(ug/L d	or ug/Kg)	UG/L		Q	

R410

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	Ū
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	U
75-35-4	1,1-Dichloroethene	5	
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	1	U
78-93-3	2-Butanone	5	U
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	5	
79-01-6	Trichloroethene	5	1
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	U
108-88-3	Toluene	5	
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	5	1
100-41-4	Ethylbenzene	1	U
108-38-3	Xylenes (TOTAL)	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	Ū
156-60-5	trans-1,2-Dichloroethene	1	Ū

### 3C WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Columbia Analytical Services Contract: EMCON

Case No.: 9703-158 SAS No.: SDG No.: MW2D Lab Code: 10145

Matrix Spike - EPA Sample No.: GW012S

	SPIKE	SAMPLE	MS	MS	QC	;
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMI	rs
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC	<b>)</b> .
Phenol	75	0.0	49	65	12-	110
2-Chlorophenol	75	0.0	48	64	27 -	123
1,4-Dichlorobenzene	50	0.0	32	64	36 -	97
N-Nitroso-Di-n-propylamine	50	0.0	46	92	41 -	116
1,2,4-Trichlorobenzene	50	0.0	36	72	39 -	98
4-Chloro-3-methylphenol	75	0.0	57	76	23 -	97
Acenaphthene	50	0.0	38	76	46 -	118
2,4-Dinitrotoluene	50	0.0	42	84	24 -	96
4-Nitrophenol	75	0.0	87	116 *	10 -	80
Pentachlorophenol	75	0.0	73	97	9-	103
Pyrene	50	0.0	37	74	26 -	127

	SPIKE	MSD	MSD				
	ADDED	CONCENTRATION	%	%	QCL	LIMITS	
COMPOUND	(ug/L)	(ug/L)	REC#	RPD#	RPD	REC	;. 
Phenol	75	53	71	9	42	12-	110
2-Chlorophenol	75	52	69	8	40	27 -	123
1,4-Dichlorobenzene	50	36	72	12	28	36-	97
N-Nitroso-Di-n-propylamine	50	52	104	12	38	41 -	116
1,2,4-Trichlorobenzene	50	39	78	8	28	39 -	98
4-Chloro-3-methylphenol	75	59	79	4	42	23 -	97
Acenaphthene	50	39	78	3	31	46 -	118
2,4-Dinitrotoluene	50	43	86	2	38	24 -	96
4-Nitrophenol	75	85	113 *	3	50	10-	80
Pentachlorophenol	75	71	95	2	50	9-	103
Pyrene	50	38	76	3	31	26 -	127

# (	Column	to be	used to	flag	recovery	and RPD	values with	i an aste	eri 9	٠k
TT 1	Column	נט טכ	useu to	nay	1600061	y and RED	values will	ı alı asıt		31 I S

RPD: 0 out of 11 outside limits

Spike Recovery	: 2 out of 22 outside limits	
COMMENTS:		00086
_		

3/90

^{*} Values outside of QC limits

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

GW012SMS

Lab Name:	Columbia	Analytical	Services	Contrac	t: EMCON		
Lab Code:	10145	Case	No.: 9703-15	- 8 SASI	No.:	SDG No.:	MW2D
Matrix: (soil/w	ater) <u>W</u>	ATER			ab Sample	ID: <u>135108N</u>	18
Sample wt/vo	l: <u>10</u>	000	(g/ml) ML	[	ab File ID:	DL454.D	
Level: (low/m	ed) <u>L</u> C	DW			Date Receive	ed: 03/12/97	
% Moisture:		deca	nted:(Y/N)	<u>N</u> [	Date Extracte	ed: <u>03/17/97</u>	
Concentrated	Extract Vo	lume: <u>10</u>	000 (uL)	[	Date Analyze	ed: <u>03/24/97</u>	
Injection Volui	me: <u>2.0</u>	_ (uL)		[	Dilution Facto	or: <u>1.0</u>	<del></del>
GPC Cleanup	: (Y/N)	N t	oH:				

## CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-95-2	Phenol		49	
111-44-4	bis(-2-Chloroethyl)Eth	ner	10	U
95-57-8	2-Chlorophenol		48	
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		32	
95-50-1	1,2-Dichlorobenzene		10	U
108-60-1	2,2'-oxybis(1-Chlorop	ropane)	10	U
95-48-7	2-Methylphenol		10	U
621-64-7	N-Nitroso-Di-n-propyl	amine	46	
67-72-1	Hexachloroethane		10	U .
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	Ū
88-75-5	2-Nitrophenol		10	Ū
105-67-9	2,4-Dimethylphenol		10	Ū
111-91-1	bis(-2-Chloroethoxy)N	Methane	10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenzer	ne	36	
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	Ü
87-68-3	Hexachlorobutadiene		10	Ū
59-50-7	4-Chloro-3-methylphe	nol	57	
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopenta	adiene	10	U
88-06-2	2,4,6-Trichlorophenol		10	U
95-95-4	2,4,5-Trichlorophenol		25	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		25	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethyl Phthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		38	
99-09-2	3-Nitroaniline		25	U
51-28-5	2,4-Dinitrophenol		25	U
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinitrotoluene		42	
100-02-7	4-Nitrophenol		87	E

## 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

GW012SMS

Lab Name:	Columb	ia Analytic	al Services	С	ontract:	<b>EMCON</b>	31101.	201110
Lab Code:	10145	Ca	se No.: 9703-	158	SAS No	.:	SDG No.: M\	N2D
Matrix: (soil/v	water)	WATER	_		Lat	Sample ID	: 135108MS	
Sample wt/vo	ol:	1000	(g/ml) ML		Lat	File ID:	DL454.D	
Level: (low/n	ned)	LOW	_		Da	te Received	: 03/12/97	
% Moisture:		de	canted:(Y/N)	N	Da	te Extracted	: 03/17/97	
Concentrated	Extract	Volume:	1000 (uL)		Da	te Analyzed	: 03/24/97	
njection Volu	ıme: <u>2</u>	.0 (uL)			Dil	ution Factor	: 1.0	
GPC Cleanu	p: <b>(Y/N)</b>	N	pH:	_				
					CONO		LINITO:	

### CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Ko	g) <u>UG/L</u>	Q
86-73-7	Fluorene	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	U
84-66-2	Diethylphthalate	10	U
100-01-6	4-Nitroaniline	25	U
534-52-1	4,6-Dinitro-2-methylphenol	25	U
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	73	
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-Butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	37	
85-68-7	Butyl benzyl phthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)Anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	Bis(2-Ethylhexyl)Phthalate	1	JB
117-84-0	Di-n-octyl phthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)Fluoranthene	10	U
50-32-8	Benzo(a)Pyrene	10	U
193-39-5	Indeno(1,2,3-cd)Pyrene	10	U
53-70-3	Dibenz(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)Perylene	10	U

## 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

GW012SMSD

Lab Name:	Columb	ia Analytic	al Services	Contract:	<b>EMCON</b>	GIVOTZOMOB
Lab Code:	10145	Ca	se No.: 9703-158	SAS No	o.: SI	DG No.: MW2D
Matrix: (soil/v	vater)	WATER	_	_ Lai	b Sample ID:	135108MSD
Sample wt/vo	ol:	1000	(g/ml) ML	_ Lal	b File ID:	DL455.D
Level: (low/n	ned)	LOW	_	Da	te Received:	03/12/97
% Moisture:		de	canted:(Y/N)	N Da	te Extracted:	03/17/97
Concentrated	Extract	Volume:	1000 (uL)	Da	te Analyzed:	03/24/97
njection Volu	ıme: <u>2.</u>	.0 (uL)		Dil	ution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH:			

## **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-95-2	Phenol		53	
111-44-4	bis(-2-Chloroethyl)Et	her	10	U
95-57-8	2-Chlorophenol		52	
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		36	
95-50-1	1,2-Dichlorobenzene		10	U
108-60-1	2,2'-oxybis(1-Chlorop		10	Ū
95-48-7	2-Methylphenol		10	Ū
621-64-7	N-Nitroso-Di-n-propy	lamine	52	
67-72-1	Hexachloroethane		10	U
106-44-5	4-Methylphenol		10	Ū
98-95-3	Nitrobenzene		10	Ū
78-59-1	Isophorone		10	Ū
88-75-5	2-Nitrophenol		10	Ü
105-67-9	2,4-Dimethylphenol		10	Ü
111-91-1	bis(-2-Chloroethoxy)	Methane	10	Ū
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenze	ne	39	
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	Ü
87-68-3	Hexachlorobutadiene		10	Ū
59-50-7	4-Chloro-3-methylphe		59	
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopent		10	Ū
88-06-2	2,4,6-Trichloropheno		10	U
95-95-4	2,4,5-Trichlorophenol		25	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		25	U
208-96-8	Acenaphthylene		10	Ü
131-11-3	Dimethyl Phthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		39	
99-09-2	3-Nitroaniline		25	U
51-28-5	2,4-Dinitrophenol		25	Ū
132-64-9	Dibenzofuran		10	Ü
121-14-2	2,4-Dinitrotoluene		43	-
100-02-7	4-Nitrophenol		85	E

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	Columbia	Analytical Services	Contract: EM	CON	GW0	12SMSD
Lab Code:	10145	Case No.: 9703-1	58 SAS No.:	SDG	3 No.: ]	MW2D
Matrix: (soil/	water) V	VATER	Lab Sai	mple ID: 13	35108M	SD
Sample wt/vo	ol: 1	000 (g/ml) ML	Lab File	e ID: Di	 L455.D	
Level: (low/r	med) L	.ow	Date Re	eceived: 03	3/12/97	
% Moisture:	_	decanted:(Y/N)	N Date Ex	 dracted: 03	 3/17/97	
Concentrated		olume: 1000 (uL)		 nalyzed: 03		·····
Injection Volu				Factor: 1.		
GPC Cleanu		<del></del>				
	_					
			CONCENT			
CAS NO	<b>)</b> .	COMPOUND	(ug/L or ug/	Kg) <u>UG/L</u>		Q
86-73-	7	Fluorene			10	U
7005-7	72-3	4-Chlorophenyl-pheny	ylether		10	U
84-66-	2	Diethylphthalate			10	U
100-01	I-6	4-Nitroaniline			25	U
534-52	2-1	4,6-Dinitro-2-methylp	henol		25	U
86-30-	6	N-Nitrosodiphenylami			10	U
101-55	5-3	4-Bromophenyl-pheny			10	Ū
118-74	I-1	Hexachlorobenzene			10	U
87-86-	5	Pentachlorophenol			71	
85-01-	8	Phenanthrene	· · · · · · · · · · · · · · · · · · ·		10	U
120-12		Anthracene			10	U
86-74-	8	Carbazole			10	U
84-74-	2	Di-n-Butylphthalate			10	U
206-44	l-0	Fluoranthene			10	U
129-00	)-0	Pyrene			38	
85-68-	7	Butyl benzyl phthalate	9		10	U
91-94-	1	3,3'-Dichlorobenzidine	9		10	U
56-55-	3	Benzo(a)Anthracene			10	U
218-01	-9	Chrysene		1	10	U
117-81	-7	Bis(2-Ethylhexyl)Phth	alate		1	JB
117-84	l-0	Di-n-octyl phthalate			10	U
205-99	)-2	Benzo(b)fluoranthene			10	U
207-08	3-9	Benzo(k)Fluoranthene	9		10	U
50-32-		Benzo(a)Pyrene			10	U
193-39	-5	Indeno(1,2,3-cd)Pyrei	ne	1	10	U

00090

Dibenz(a,h)anthracene

Benzo(g,h,i)Perylene

53-70-3

191-24-2

10

## 3C WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Columbia Analytical Services Contract: EMCON

Matrix Spike - EPA Sample No.: SBLK1

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC.
Phenol	75	0.0	52	69	12- 110
2-Chlorophenol	75	0.0	52	69	27 - 123
1,4-Dichlorobenzene	50	0.0	34	68	36 - 97
N-Nitroso-Di-n-propylamine	50	0.0	47	94	41 - 116
1,2,4-Trichlorobenzene	50	0.0	39	78	39 - 98
4-Chloro-3-methylphenol	75	0.0	56	75	23- 97
Acenaphthene	50	0.0	38	76	46- 118
2,4-Dinitrotoluene	50	0.0	42	84	24 - 96
4-Nitrophenol	75	0.0	60	80	10 - 80
Pentachlorophenol	75	0.0	72	96	9- 103
Pyrene	50	0.0	38	76	26- 127

COMMENTS:	•	00091

### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLK1MS

Lab Name:	Columbi	a Analytic	al Services	Contract:	EMCON		
Lab Code:	10145	Ca	se No.: 9703-15	B SAS No	o.: s	DG No.: MW2D	
Matrix: (soil/v	vater)	WATER	_	Lal	b Sample ID:	SBLK1MS	
Sample wt/vo	oi:	1000	(g/ml) ML	Lal	b File ID:	DL449.D	
Level: (low/n	ned)	LOW	_	Da	te Received:	03/12/97	
% Moisture:		de	canted:(Y/N)	N Da	te Extracted:	03/17/97	
Concentrated	Extract	Volume:	1000 (uL)	Da	te Analyzed:	03/24/97	
Injection Volu	ıme: <u>2.</u>	0 (uL)		Dil	ution Factor:	1.0	
GPC Cleanur	p: (Y/N)	N	pH:				
				CONC	ENTRATION	LIMITO	

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-95-2	Phenoi		52	
111-44-4	bis(-2-Chloroethyl)Et	her	10	U
95-57-8	2-Chlorophenol		52	
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		34	
95-50-1	1,2-Dichlorobenzene		10	U
108-60-1	2,2'-oxybis(1-Chlorop		10	U
95-48-7	2-Methylphenol		10	U
621-64-7	N-Nitroso-Di-n-propy	lamine	47	
67-72-1	Hexachloroethane		10	U
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	U
111-91-1	bis(-2-Chloroethoxy)	Methane	10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenze	ne	39	
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene		10	U
59-50-7	4-Chloro-3-methylph	enot	56	
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopent	adiene	10	U
88-06-2	2,4,6-Trichloropheno		10	U
95-95-4	2,4,5-Trichloropheno	!	25	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		25	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethyl Phthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		38	
99-09-2	3-Nitroaniline		25	U
51-28-5	2,4-Dinitrophenol		25	U
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinitrotoluene		42	
100-02-7	4-Nitrophenol		60	

#### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

U

U

U

U

U

U

Ū

U

U

U

U

Ü

U

U

10

10

10

38

10

10

10

10

10

10

10

10

10

10

10

10

	SEIVIIV	OLATILE	ORGANICS A	NAL 1 313	DAIA	ושחב		
ab Name: Columbia Analytical Services					ct: <u>EM</u>	CON	SBI	_K1MS
		145 Case No.: 9703-158					G No.: 1	MW2D
Matrix: (soil/v						mple ID: S		
Sample wt/vo	ol: <u>10</u>	00	(g/ml) ML		Lab File	ID: [	DL449.D	
Level: (low/r					Date Re	ceived:	3/12/97	·
% Moisture:		deca	anted:(Y/N)	N	Date Ex	tracted: 0	3/17/97	
			000 (uL)			alyzed: _0		
Injection Volu	ıme: <u>2.0</u>	(uL)			Dilution	Factor: 1	1.0	
GPC Cleanu	p: (Y/N)	N	pH:			_		
					ICENITE	RATION U	INITC:	
CAS NO	).	СОМРО	UND	(ug/	L or ug/l	(g) <u>UG/</u>	<u>L</u>	Q
86-73-	7	Fluore	ne				10	U
7005-7	'2-3	4-Chlo	rophenyl-pheny	lether			10	U
84-66-	2	Diethyl	phthalate				10	U
100-01	-6	4-Nitro	aniline				25	U
534-52	2-1	4,6-Dir	itro-2-methylph	enoi			25	U
86-30-	6	N-Nitro	sodiphenylamir	ne			10	U
101-55	-3		ophenyl-pheny				10	U
118-74	-1		nlorobenzene				10	U
87-86-	5	Pentac	hlorophenol				72	
85-01-	8	Phenai	nthrene				10	U
120-12	:-7	Anthra	cene				10	

86-74-8

84-74-2

206-44-0

129-00-0

85-68-7

91-94-1

56-55-3

218-01-9

117-81-7

117-84-0

205-99-2

207-08-9

50-32-8

193-39-5

53-70-3

191-24-2

Carbazole

Pyrene

Chrysene

Fluoranthene

Di-n-Butylphthalate

Butyl benzyl phthalate

3,3'-Dichlorobenzidine

Bis(2-Ethylhexyl)Phthalate

Benzo(a)Anthracene

Di-n-octyl phthalate

Benzo(a)Pyrene

Benzo(b)fluoranthene

Benzo(k)Fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)Perylene

**00093** 

6

DUPLICATES

SAMPLE NO.

GW012SD

Lab Name: COLUMBIA ANALYTICAL

Contract: EMCON

Lab Code: 10145

Case No.:

SAS No.:

SDG No.: MW2D

Matrix (soil/water): WATER

Level (low/med): LOW

% Solids for Sample: 0.0

% Solids for Duplicate: 0.0

#### Concentration Units (ug/L or mg/kg dry weight): UG/L

	1 1	i		,	1	1		$\overline{}$
		 		 		!		
Analyte	Limit    -	Sample (S)	C	Duplicate ([	) c  	RPD	0 	H 
Aluminum	i <u> </u>	10366.6300	<u>.</u>	9635.6	220	7.3	ii_	
Antimony	11	1.2000	101	1.20	000 U	I	11_	<u>P</u>
Arsenic	<u> </u>	4.7390	<u> B </u>	2.70	000 U	200.0	11_	P
Barium	<b>  </b>	110.5960	В	110.5	180 B	0.1	11_	P
Beryllium		0.4580	<u> B </u>	0.40	020 B	13.0	11_	P
Cadmium	<b>  </b>	0.3000	<u> u </u>	0.30	<u> 000  u </u>	l <u></u>	11_	<u>  P</u>
Calcium	<b> </b>	217765.1000	1_1	220810.00	000	1.4	11_	<u> P</u>
Chromium	10.0	16.0330	1_1	13.9	100	14.2	11_	<u>P</u>
obalt_		4.6970	B	4.6	000 B	2.1	11_	P
pper	11	12.6760	<u> B </u>	12.7	500 B	0.6	11_	P
Iron		12539.8800	1_1	12013.9	000  _	4.3	11_	<u>  P_</u>
Lead	.	21.8460	.1_1	20.8	<u>440    </u>	4.7	.11_	<u> P</u>
Magnes i um	.ll	50448.5500	. _	51388.1	300	1.8	11_	<u>P</u>
Manganese	.	214.1340	. _	213.0	590	0.5	.11_	<u>IP</u>
Mercury		0.2000	빈비	0.20	000 U	l <b>I</b>	11_	<u> cv</u>
Nickel		12.0300	<u> B </u>	11.10	690 B	7.4	.11_	P
Potassium	5000.0	5326.8670	. _	4927.8	040 B	7.8	.11_	<u> P</u>
Selenium		1.0350	<u> B </u>	2.1	800 B	71.2	.11_	<u> F</u>
Silver	.	0.7000	lul	0.7	300 B	200.0	.11_	P
Sodium	5000.0	11080.7400	. _	11311.4	000	2.1	.11_	<u> P</u>
Thallium	. 1	2.1000	151	2.1	<u>000   U</u>	l I	.11_	<u> P</u>
<u>Vanadium</u>	.	18.4480	<u> B </u>	16.8	120   B	9.3	.11_	<u> P</u>
Zinc	20.0	42.6170	. _	38.7	640	9.5	.11_	<u>P</u>
Cyanide	.	<u> </u>	. _	1	_	[]	.11_	. _

5A SPIKE SAMPLE RECOVERY SAMPLE NO.

GW012SS

Lab Name: COLUMBIA ANALYTICAL

Contract: EMCON

Lab Code: 10145

Case No.:

SAS No.:

SOG No.: MW20

Matrix (soil/water): WATER

Level (low/med): LOW

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

	!  Control	<b> </b> 		1		:	l I	 
	Limit	  Spiked Sample	Sample	i	Spike		l	i
Analyte	XR	Result (SSR) C		c į	Added (SA)	XR	a	M
Aluminum	 	10465.51001	10366.6300	-!. 	2000.00	4.9	_ 	1  P
Antimony	75-125	472.5050	1.2000	υÏ	500.00	94.5		IP
Arsenic	75-125	40.0890	4.7390	В	40.00	88.4	_	P
Barium	75-125	2145.9070	110.5960	В	2000.00	101.8	_	P
Beryllium	75-125	51.0290	0.4580	В	50.00	101.1	i_	P
Cadmium	75-125	43.6120	0.3000	υl	50.00	87.2	i_	P
Calcium	İ	ii_		_1			Ĺ	NR
Chromium	75-125	205.2780	16.0330	_	200.00	94.6	L	P
Cobalt	75-125	494.9240	4.6970	<u>B</u>	500.00	98.0	L	<u>P</u>
opper	75-125	270.0950	12.6760	<u>B</u>	250.00	103.0	l_	P
1 ron	<u> </u>	ll_		_1			<b> </b> _	NR.
Lead	75-125	509.3920	21.8460	_1	500.00	97.5	l_	<u>P</u>
Magnesium	l	_	ll	_1			<u> </u>	NR
Manganese	75-125	705.9860	214.1340	_1	500.00	98.4	<u> </u>	P
Mercury	75-125	1.1560	0.2000	ᄞ	1.00	115.6	l_	CV
Nickel	75-125	502.6770	12.0300	則	500.00	98.1	L	P
Potassium	1	<u> </u>	.	_1			L	NR
Selenium	75-125	10.4250	1.0350	Βĺ	10.00	93.9	Ĺ	F
Silver	75-125	52.1880	0.7000	빈	50.00	104.4	L	P
Sodium	!	ll_	ll	_ĺ			۔ ا	NR
Thallium	75-125	1875.3600	2.1000	ŭΪ	2000.00	93.8	Ĺ	P
<u>Vanadium</u>	75-125	512.5610	18,4480	<u>B</u>	500.00	98.8	l_	<u>P</u>
Zinc	75-125	534.2940	42.6170	_1	500.00	98.3	l_	P_
Cyanide	<u> </u>	<u> </u>	]	_1			<b>I</b> _	NR

Comments:

#### 4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VRI KO1

Lab Name:	CAS\ROC		Contract:	EMCON	VBEROI
Lab Code:	10145	Case No.: 97-3-158	SAS No	o.: SD0	G No.: MW2D
Lab File ID:	R3475.D		- Lai	b Sample ID: <u>V</u>	BLK01
Date Analyze	ed: 03/20/97		Tir	ne Analyzed: 0	8:58
GC Column:	RTX502. ID:	0.53 (mm)	Н	eated Purge: (Y	/N) <u>N</u>

Instrument ID: GCMS#5

## THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS	LCS	R3476.D	09:45
02	GWTB1T	134570 1.0	R3477.D	10:48
03	GWTB2T	134875 1.0	R3479.D	12:17
04	GWFB1R	134879 1.0	R3480.D	12:59
05	GW16SS	134564 50	R3481.D	13:58

e34/9

COMMENTS		
	*	00096

page 1 of 1

FORM IV VOA

### **1A VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

Lab Name:	CASVRO	С			Contract:	EMCON		BLK01	
Lab Code:	10145	Cas	se No.:	97-3-158	SAS No	):	SDG No.:	MW2D	
Matrix: (soil/	water)	WATER	•		- Lal	Sample ID	: VBLK01		
Sample wt/v	ol:	25.0	(g/ml)	ML	Lal	b File ID:	R3475.D	)	
Level: (low/i	•		,		-	te Received			
% Moisture:	•		•			te Analyzed			
	•					_			
GC Column:	RTX50	2. ID: <u>0.8</u>	<u>3</u> (m	ım)	Dil	ution Factor	: <u>1.0</u>		
Soil Extract	Volume _		_ (uL)		So	il Aliquot Vo	lume:	<u>.                                    </u>	(uL)
				CO	NCENTRAT	TION UNITS	<b>:</b> :		
CAS NO	<b>)</b> .	COMP	DUND	(ug/	L or ug/Kg)	UG/L		Q	
74.07		Ohlos		<del>, </del>				1	
74-87			omethar				1	U	$\dashv$
75-01			Chloride				1	U	
74-83			omethar				1	U	_
75-00			<u>oethane</u>				. 1	U	$\dashv$
67-64		Aceto		· hana	<del></del>		5	U	
75-35			ichloroe				1	U	_
75-09 75-15			lene Ch				1	U	
75-15			n Disulf	hane			<u>1</u> 1	U	$\dashv$
78-93				nane				U	-
156-5			anone	th			5	U	-
67-66		Chlore		roethene			1	<u> </u>	
107-0				hono			1	U	$\dashv$
71-55			ichloroe	oethane			<u>1</u> 1	U	$\dashv$
56-23			ntetract				11	U	
71-43		Benze		iionae			<u>'</u> 1	U	-
79-01			oroethe				1	U	$\dashv$
78-87			ichlorop				1	U	$\dashv$
75-27				omethane			<u>'</u>	U	$\dashv$
108-1				entanone			5		$\dashv$
<del></del>	1-02-6			iloroprope				U	-
108-8		Tolue		iloroprope	iie		<u>1</u> 1	U	
	1-01-5			ropropene			·		$\dashv$
79-00				oethane	<del></del>		1 1	U	$\dashv$
591-7			anone	<u>Jeniane</u>			5	U	$\dashv$
127-1			chloroet	hene			1	Ü	$\dashv$
124-4				omethane		<del></del>	1	U	$\dashv$
108-9			obenzer				<u>'</u>	Ü	$\dashv$
100-4			enzene				1	U	$\dashv$
108-3			es (TOT				1	Ü	$\exists$

. 00097

100-42-5

79-34-5

75-25-2

156-60-5

Styrene

**Bromoform** 

1,1,2,2-Tetrachloroethane

trans-1,2-Dichloroethene

1

1

1

U

U

U

## 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: C	CASVROC			Contract:	EMCON	1	VBLKO	11
_	10145	Case	No.: 97-3-158	-	0.:		3 No.: MW2	2D
Matrix: (soil/wa	ater) W	ATER		La	b Sample	ID: V	BLK01	
Sample wt/vol:	: <u>25</u>	5.0	(g/ml) ML	La	ab File ID:	R	3475.D	
Level: (low/me	ed) <u>LC</u>	ow		D	ate Receiv	ved: _		
% Moisture: no	ot dec.			D	ate Analyz	zed: <u>0</u>	3/20/97	
GC Column:	RTX502.	ID: 0.5	3_ (mm)	D	ilution Fac	tor: 1	.0	_
Soil Extract Vo	olume		(uL)	S	oil Aliquot	Volum	ne:	(uL)
Number TICs 1	found:	0		ONCENTRA g/L or ug/Kg				
CAS NO.	c	OMPOU	ND		RT	EST	CONC.	Q

## VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLI	⟨02
------	-----

Lab Name:	CAS\ROC		Contract:	EMCON	VBLKU2		
Lab Code:	10145	Case No.: 97-3-158	SAS No	o.: SD	G No.: MW2D		
Lab File ID:	R3485.D		La	b Sample ID: \	/BLK02		
Date Analyz	ed: 03/20/97	<del></del>	Tir	ne Analyzed: <u>1</u>	7:00		
GC Column:	RTX502. ID	: <u>0.53</u> (mm)	H	eated Purge: (Y	//N) <u>N</u>		
Instrument II	D: GCMS#5						

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME		
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED		
01	VBLK02MS	VBLK02MS	R3486.D	17:50		
02	GW012S	135108 1.0	R3487.D	18:31		
03	GW012SMS	135108 1.0MS	R3488.D	19:12		
04	GW012SMSD	135108 1.0MSD	R3489.D	19:54		
05	GW03DS	134567 1.0	R3490.D	20:35		
06	GW03SS	134568 1.0	R3491.D	21:16		
07	GW02DS	134569 1.0	R3492.D	21:56		
08	GW16DS	134565 1.0	R3493.D	22:37		

COMMENTS		

page 1 of 1

FORM IV VOA

964 00099

## 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLK02 Lab Name: CAS\ROC Contract: EMCON 10145 SAS No.: SDG No.: MW2D Lab Code: Case No.: 97-3-158 Matrix: (soil/water) WATER Lab Sample ID: VBLK02 25.0 R3485.D Sample wt/vol: (g/ml) ML Lab File ID: LOW Level: (low/med) Date Received: % Moisture: not dec. Date Analyzed: 03/20/97 GC Column: <u>RTX502.</u> ID: <u>0.53</u> (mm) Dilution Factor: 1.0 Soil Extract Volume Soil Aliquot Volume: (uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/K	g) <u>UG/L</u>	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	υ
74-83-9	Bromomethane	. 1	U
75-00-3	Chloroethane	1	٦
67-64-1	Acetone	5	U
75-35-4	1,1-Dichloroethene	1	υ
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	1	C
78-93-3	2-Butanone	5	د
156-59-4	cis-1,2-Dichloroethene	1	υ
67-66-3	Chloroform	1	J
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	U
108-88-3	Toluene	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
108-38-3	Xylenes (TOTAL)	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	Ü
156-60-5	trans-1,2-Dichloroethene	1	Ū

Afla

**₽** 00100

## 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	CASVRO	oc			Contract:	EMCO	<b>N</b>	VBL	(02
Lab Code:	10145	Ca	se No.: <u>97</u>	-3-158	SAS No	o.:	SD	G No.: <u>MV</u>	V2D
Matrix: (soil/	water)	WATER	_		La	b Sample	e ID: <u>V</u>	/BLK02	
Sample wt/vo	ol:	25.0	(g/mi) <u>N</u>	IL.	La	b File ID:	: <u>F</u>	R3485.D	
Level: (low/r	med)	LOW	_		Da	ite Recei	ved: _		
% Moisture: not dec.				Date Analyzed: 03/20/97					
GC Column: RTX502. ID: 0.53 (mm)				)	Dilution Factor: 1.0				
Soil Extract Volume (uL)				So	il Aliquot	Volum	ne:	(uL)	
				COI	NCENTRA	TION UN	ITS:		
Number TICs found: 0 (ug/L or ug/Kg) UG/L					/L				
CAS NO.		COMPOL	JND			RT	EST	CONC.	Q

m 00101

### 4A **VOLATILE METHOD BLANK SUMMARY**

EPA SAMPLE NO.

Lab Name:	CAS\ROC		Contract: EMC	ON VBLK03
Lab Code:	10145	Case No.: 97-3-158	SAS No.:	SDG No.: MW2D
Lab File ID:	R3497.D		Lab Samı	ole ID: VBLK03
Date Analyz	ed: 03/21/97	<del></del>	Time Ana	lyzed: 09:26
GC Column:	RTX502. ID	: <u>0.53</u> (mm)	Heated F	Purge: (Y/N) N

Instrument ID: GCMS#5

### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	GW07SS	134877 50	R3498.D	10:50
02	GW01DS	134868 1.0	R3499.D	11:27
03	GW05DS	134869 1.0	R3500.D	12:08
04	GW17S	134870 1.0	R3501.D	12:49
05	GW015S	134871 1.0	R3502.D	13:30
06	GW011S	135425 1.0	R3503.D	14:28

COMMENTS		
	t.	00102

page 1 of 1

FORM IV VOA

95-4

### VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume _____ (uL)

EPA SAMPLE NO.

Soil Aliquot Volume: _____ (uL)

Lab Name:	CASVRO	oc	Contract: EMCON	VBLK03
Lab Code:	10145	Case No.: 97-3-15	58 SAS No.: SD0	G No.: MW2D
Matrix: (soil/	water)	WATER	Lab Sample ID: <u>V</u>	BLK03
Sample wt/v	ol:	25.0 (g/ml) ML	Lab File ID: <u>F</u>	R3497.D
Level: (low/r	med)	LOW	Date Received: _	·····
% Moisture:	not dec.		Date Analyzed: 0	3/21/97
GC Column:	RTX50	02. ID: 0.53 (mm)	Dilution Factor: 1	.0

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
74-87-3	Chloromethane			1	Ų
75-01-4	Vinyl Chloride			1	U
74-83-9	Bromomethane			1	U
75-00-3	Chloroethane			1	U
67-64-1	Acetone			5	U
75-35-4	1,1-Dichloroethe	ene		1	U
75-09-2	Methylene Chlor	ride		1	U
75-15-0	Carbon Disulfide	)		1	U
75-35-3	1,1-Dichloroetha	ine		1	U
78-93-3	2-Butanone			5	U
156-59-4	cis-1,2-Dichloro	ethene		1	Ū
67-66-3	Chloroform			1	U
107-06-2	1,2-Dichloroetha	ine		1	U
71-55-6	1,1,1-Trichloroe	thane		1	U
56-23-5	Carbontetrachlo	ride		1	U
71-43-2	Benzene			1	U
79-01-6	Trichloroethene			1	U
78-87-5	1,2-Dichloropror	pane		1	U
75-27-4	Bromodichlorom	nethane		1	U
108-10-1	4-Methyl-2-Pent	anone		5	U
10061-02-6	trans-1,3-Dichlo	ropropene		1	U
108-88-3	Toluene			1	U
10061-01-5	cis-1,3-Dichloro	propene		1	U
79-00-5	1,1,2-Trichloroe	thane		1	U
591-78-6	2-Hexanone			5	U
127-18-4	Tetrachloroethe	ne		1	Ū
124-48-1	Dibromochloron	nethane		1	U
108-90-7	Chlorobenzene			1	U
100-41-4	Ethylbenzene			1	U
108-38-3	Xylenes (TOTAL	_)	1	1	U
100-42-5	Styrene			1	U
79-34-5	1,1,2,2-Tetrachl	oroethane		1	U
75-25-2	Bromoform			1	U
156-60-5	trans-1,2-Dichlo	roethene		1	U

00103

Off9

### 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	CASVRO	oc			Contract:	EMCON		DLNU3	
Lab Code:	10145	Case	No.: 9	7-3-158	SAS No	o.:	SDG No.:	MW2D	
Matrix: (soil/	water)	WATER			La	b Sample	ID: VBLK03	<u> </u>	
Sample wt/ve	ol:	25.0	(g/ml) <u>N</u>	۸L	La	b File ID:	R3497.	)	
Level: (low/r	med)	LOW			Da	te Receiv	/ed:		
% Moisture:	not dec.				Da	ite Analyz	red: 03/21/97	7	
GC Column:	RTX5	02. ID: 0.53	(mr	1)	Dil	ution Fac	tor: 1.0		
Soil Extract \	Volume		(uL)		So	il Aliquot	Volume:		(uL)
				CON	ICENTRA	TION UN	ITS:		
Number TICs	s found:	0		(ug/l	L or ug/Kg)	UG/	<u>/L</u>		
CAS NO.		COMPOUN	ND			RT	EST. CON	C.	Q

### VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

Heated Purge: (Y/N) N____N

Lab Name:	CAS\ROC			Contract:	EMCON	VBLNU4	_
,	10145	Case No.:	97-3-158	SAS No	o.:	SDG No.: MW2D	
Lab File ID:	R3506.D	·		La	b Sample II	D: VBLK04	•
Date Analyze	d: <u>03/21/97</u>			Tir	ne Analyze	d: <u>16:31</u>	

Instrument ID: GCMS#5

GC Column: RTX502. ID: 0.53 (mm)

### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	GW17DS	134872 1.0	R3507.D	17:22
02	GW013S	134873 1.0	R3508.D	18:04
03	GW08SS	134874 1.0	R3509.D	18:45
04	GW07SD	134878 50	R3510.D	19:27
05	GW011SDL	135425 50	R3511.D	20:08
06	CBLK1	135256 1.0	R3513.D	21:30

COMMENTS	Œ

### 1A **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

VBLK04

Lab Name: CASVRC	Contract: EMCON	
Lab Code: 10145	Case No.: 97-3-158 SAS No.: SDG No.: M	1W2D
Matrix: (soil/water)	WATER Lab Sample ID: VBLK04	
Sample wt/vol:	25.0 (g/ml) ML Lab File ID: R3506.D	
Level: (low/med)		
% Moisture: not dec.		
	02. ID: 0.53 (mm) Dilution Factor: 1.0	
Soil Extract Volume	(uL) Soil Aliquot Volume:	(uL)
	CONCENTRATION UNITS:	
CAS NO.	COMPOUND (ug/L or ug/Kg) UG/L	Q
	(1920, 1911)	
74-87-3	Chloromethane 1	U
75-01-4	Vinyl Chloride 1	U
74-83-9	Bromomethane 1	U
75-00-3		U
67-64-1		U
75-35-4		U
75-09-2		U
75-15-0	Carbon Disulfide 1	U
75-35-3	1,1-Dichloroethane 1	U
78-93-3	2-Butanone 5	Ü
156-59-4	cis-1,2-Dichloroethene 1	Ū
67-66-3	Chloroform 1	Ü
107-06-2	1,2-Dichloroethane 1	Ü
71-55-6	1,1,1-Trichloroethane	Ü
56-23-5	Carbontetrachloride 1	U
71-43-2	Benzene 1	U
79-01-6		Ü
78-87-5		U
75-27-4	Bromodichloromethane 1	U
108-10-1	4-Methyl-2-Pentanone 5	U
10061-02-6	trans-1,3-Dichloropropene 1	U
108-88-3	Toluene 1	U
10061-01-5	cis-1,3-Dichloropropene 1	U
79-00-5	1,1,2-Trichloroethane 1	U
591-78-6	2-Hexanone 5	U
127-18-4	Tetrachloroethene 1	U
124-48-1	Dibromochloromethane 1	U
108-90-7	Chlorobenzene 1	U
100-41-4	Ethylbenzene 1	U
108-38-3	Xylenes (TOTAL) 1	U
100-42-5	Styrene 1	U
70 24 5	1 1 2 2 Totrophioropthone	11.

Bromoform

trans-1,2-Dichloroethene

75-25-2

156-60-5

### 1E

### VOLATILE ORGANICS ANALYSIS DATA SHEET

	\	/OLATIL	E ORGAI	NICS ANAL	YSIS DAT	A SHEET	EPA SAMPLE	۷O.
Lab Name:	CASVRO		ATIVELY	IDENTIFIE			VBLK04	
Lab Name.	CASIRC	<del>/</del>			Contract:	EMCON		
Lab Code:	10145		Case No.	97-3-158	SAS No	D.:	SDG No.: MW2D	
Matrix: (soil/	water)	WATE	₹		La	b Sample ID	: VBLK04	
Sample wt/v	ol:	25.0	(g/m	I) ML	La	b File ID:	R3506.D	
Level: (low/ı	med)	LOW			Da	ite Received	l:	
% Moisture:	not dec.				Da	ite Analyzed	: 03/21/97	
GC Column:	RTX50	02. ID:	0.53	(mm)	Dil	lution Factor	: <u>1.0</u>	
Soil Extract	Volume		(uL)		So	oil Aliquot Vo	olume:	(uL

**CONCENTRATION UNITS:** 

(ug/L or ug/Kg) UG/L

RT

EST. CONC.

Q

Number TICs found: 0

COMPOUND

CAS NO.

 Lab Name:
 CAS\ROC
 Contract:
 EMCON

 Lab Code:
 10145
 Case No.:
 97-3-158
 SAS No.:
 SDG No.:
 MW2D

 Lab File ID (Standard):
 R3473.D
 Date Analyzed:
 03/20/97

Instrument ID: GCMS#5 Time Analyzed: 07:26

GC Column: RTX502.2 ID: 0.53 (mm) Heated Purge (Y/N): N

		IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
}	10.110.110.070						
L	12 HOUR STD	126339	11.17	201147	13.36	168253	20.30
	UPPER LIMIT	252678	10.67	402294	12.86	336506	19.80
	LOWER LIMIT	63170	11.67	100574	13.86	84127	20.80
	EPA SAMPLE						
	NO.						
01	VBLK01	117843	11.14	179512	13.35	147017	20.30
02	LCS	123023	11.16	196337	13.35	157149	20.30
03	GWTB1T	128022	11.16	197307	13.34	157977	20.27
04	GWTB2T	122020	11.21	184974	13.40	145495	20.33
05	GWFB1R	117892	11.15	180735	13.35	148407	20.29
06	GW16SS	107992	11.17	179397	13.36	149849	20.29

IS1 = Pentafluorobenzene
IS2 = 1,4-Difluorobenzene
IS3 = d5-Chlorobenzene
IS4 = d4-1,4-Dichlorobenzene

Ryla

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

^{*} Values outside of contract required QC limits

Lab Name:	CASVROC				Contract:	EMCON	_
Lab Code:	10145	. Ca	se No.:	97-3-158	SAS No	.: SDG N	o.: <u>MW2D</u>
Lab File ID (	Standard):	R3473.	.D	_		Date Analyzed:	03/20/97
Instrument II	D: GCMS#5					Time Analyzed:	07:26
GC Column:	RTX502.2	ID:	0.53	(mm)		Heated Purge (	(/N): N

		IS4 AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	64492	26.12				
	UPPER LIMIT	128984	25.62				
	LOWER LIMIT	32246	26.62				
	EPA SAMPLE						:
	NO.						
01	VBLK01	58370	26.12				
02	LCS	66356	26.13				
03	GWTB1T	59631	26.15				
04	GWTB2T	59223	26.24				
05	GWFB1R	61717	26.15				
06	GW16SS	62709	26.15				

IS1 = Pentafluorobenzene
IS2 = 1,4-Difluorobenzene
IS3 = d5-Chlorobenzene
IS4 = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

page 2 of 2

**FORM VIII VOA** 

R4/9

Lab Name: CAS\ROC Contract: EMCON

Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: MW2D

Lab File ID (Standard): R3484.D Date Analyzed: 03/20/97

Instrument ID: GCMS#5 Time Analyzed: 16:25

GC Column: RTX502.2 ID: 0.53 (mm) Heated Purge (Y/N): N

		IS1 AREA #	RT #	· IS2 AREA #	RT #	IS3 AREA #	RT #
	12 HOUR STD	117027	11.16	191631	13.38	152573	20.32
Ì	UPPER LIMIT	234054	10.66	383262	12.88	305146	19.82
	LOWER LIMIT	58514	11.66	95816	13.88	76287	20.82
	EPA SAMPLE NO.						
01	VBLK02	109615	11.21	185149	13.39	133851	20.36
02	VBLK02MS	108498	11.18	171186	13.36	136109	20.33
03	GW012S	109143	11.18	193588	13.39	139971	20.33
04	GW012SMS	115067	11.18	174234	13.36	145565	20.32
05	GW012SMSD	112681	11.23	179707	13.43	148331	20.34
06	GW03DS	109972	11.16	168247	13.38	137845	20.36
07	GW03SS	116508	11.14	177332	13.34	143697	20.38
80	GW02DS	118317	11.12	181508	13.35	148345	20.38
09	GW16DS	114917	11.14	180832	13.36	144006	20.38

IS1 = Pentafluorobenzene
IS2 = 1,4-Difluorobenzene
IS3 = d5-Chlorobenzene
IS4 = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

Refly

# Column to be used to flag values outside QC limit with an asterisk.

page 1 of 2

FORM VIII VOA

95-4

00110

^{*} Values outside of contract required QC limits

Lab Name:	CASVROC			Contract:	EMCON	-	
Lab Code:	10145	Case No.	97-3-158	SAS No	.: SDG N	o.: <u>MW2</u> D	
Lab File ID (	Standard):	R3484.D			Date Analyzed:	03/20/97	
instrument IC	CMS#5	5			Time Analyzed:	16:25	
GC Column:	RTX502.2	2 ID: 0.53	(mm)		Heated Purge (	//N): N	

		IS4 AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	61443	26.18				
	UPPER LIMIT	122886	25.68				
	LOWER LIMIT	30722	26.68				
	EPA SAMPLE						
	NO.						
01	VBLK02	55175	26.24				
02	VBLK02MS	55602	26.19				
03	GW012S	57352	26.18		· · · · · · · · · · · · · · · · · · ·		
04	GW012SMS	59350	26.19				
05	GW012SMSD	61543	26.18				
06	GW03DS	57382	26.22				
07	GW03SS	61351	26.24				
08	GW02DS	62173	26.23				
<b>0</b> 9	GW16DS	61606	26.23				

IS1 = Pentafluorobenzene
IS2 = 1,4-Difluorobenzene
IS3 = d5-Chlorobenzene
IS4 = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

page 2 of 2

FORM VIII VOA

\$4/q

95-4

 Lab Name:
 CAS\ROC
 Contract:
 EMCON

 Lab Code:
 10145
 Case No.:
 97-3-158
 SAS No.:
 SDG No.:
 MW2D

 Lab File ID (Standard):
 R3496.D
 Date Analyzed:
 03/21/97

Time Analyzed: 08:47

GC Column: RTX502.2 ID: 0.53 (mm) Heated Purge (Y/N): N

		IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
}							
	12 HOUR STD	126779	11.13	201684	13.32	165258	20.26
	UPPER LIMIT	253558	10.63	403368	12.82	330516	19.76
	LOWER LIMIT	63390	11.63	100842	13.82	82629	20.76
	EPA SAMPLE						
	NO.						
01	VBLK03	117697	11.15	181182	13.33	144764	20.33
02	GW07SS	123487	11.18	192466	13.34	147491	20.33
03	GW01DS	123729	11.16	189638	13.34	149899	20.31
04	GW05DS	114486	11.23	180125	13.40	146972	20.37
05	GW17S	108925	11.12	169826	13.31	139178	20.26
06	GW015S	113708	11.19	174732	13.36	143637	20.31
07	GW011S	118860	11.19	179481	13.35	143794	20.28

IS1 =	Pentafluorobenzene
IS2 =	1,4-Difluorobenzene
IS3 =	d5-Chlorobenzene
IS4 =	d4-1,4-Dichlorobenzene

Instrument ID: GCMS#5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

page 1 of 2

FORM VIII VOA

B4/9

95-4

^{*} Values outside of contract required QC limits

Lab Name:	CASVROC				Contract:	EMCON			
Lab Code:	10145	Cas	se No.:	97-3-158	SAS No	.:	SDG N	o.: <u>MW2</u> D	
Lab File ID (S	Standard):	R3496.	D	_		Date An	alyzed:	03/21/97	
Instrument ID	: GCMS#5					Time Ar	nalyzed:	08:47	
GC Column:	RTX502.2	ID:	0.53	(mm)		Heated	Purge (Y	′/N): N	í

		IS4 AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	61338	26.09				
Ī	UPPER LIMIT	122676	25.59				
	LOWER LIMIT	30669	26.59				
	EPA SAMPLE NO.						
01	VBLK03	58740	26.20				
02	GW07SS	55650	26.24				
03	GW01DS	60754	26.18				
04	GW05DS	60867	26.20				
05	GW17S	57782	26.15				
06	GW015S	60204	26.13				
07	GW011S	60999	26.12				

IS1 = Pentafluorobenzene
IS2 = 1,4-Difluorobenzene
IS3 = d5-Chlorobenzene
IS4 = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

page 2 of 2

FORM VIII VOA

PHG.

 Lab Name:
 CAS\ROC
 Contract:
 EMCON

 Lab Code:
 10145
 Case No.:
 97-3-158
 SAS No.:
 SDG No.:
 MW2D

Lab File ID (Standard): R3505.D Date Analyzed: 03/21/97

GC Column: RTX502.2 ID: 0.53 (mm) Heated Purge (Y/N): N

Time Analyzed: 15:55

		IS1		IS2		IS3	
l		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	116376	11.20	203340	13.40	147911	20.31
	UPPER LIMIT	232752	10.70	406680	12.90	295822	19.81
	LOWER LIMIT	58188	11.70	101670	13.90	73956	20.81
	EPA SAMPLE			-			
	NO.						
01	VBLK04	113391	11.21	175127	13.40	142865	20.36
02	GW17DS	118429	11.16	179486	13.34	142219	20.39
03	GW013S	114300	11.14	174262	13.32	143504	20.28
04	GW08SS	110388	11.18	169931	13.35	146403	20.33
05	GW07SD	106618	11.16	161814	13.36	133524	20.33
06	GW011SDL	107968	11.18	168302	13.36	137845	20.33
07	CBLK1	112644	11.18	170632	13.36	142475	20.31

IS1 = Pentafluorobenzene IS2 = 1,4-Difluorobenzene IS3 = d5-Chlorobenzene IS4 = d4-1,4-Dichlorobenzene

Instrument ID: GCMS#5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

B4/9

# Column to be used to flag values outside QC limit with an asterisk.

page 1 of 2

FORM VIII VOA

95-4

^{*} Values outside of contract required QC limits

Heated Purge (Y/N):

Lab Name:	CASVROC			Contract:	EMCON	
Lab Code:	10145	Case No.:	97-3-158	SAS No	.: SDG N	o.: MW2D
Lab File ID (	Standard):	R3505.D	_		Date Analyzed:	03/21/97
Instrument IC	C: GCMS#5				Time Analyzed:	15:55

(mm)

		IS4 AREA #	RT #	AREA #	RT #	AREA #	RT #
1	2 HOUR STD	61037	26.17				
ι	JPPER LIMIT	122074	25.67				
L	OWER LIMIT	30519	26.67				
E	PA SAMPLE						
	NO.						
01	VBLK04	59782	26.19				
02	GW17DS	57457	26.24				
03	GW013S	57266	26.21				
04	GW08SS	60494	26.21				
05	GW07SD	55552	26.22				
06	GW011SDL	55906	26.22				
07	CBLK1	59638	26.18				

IS1	=	Pentafluorobenzene
IS2	=	1,4-Difluorobenzene
IS3	=	d5-Chlorobenzene
IS4	=	d4-1.4-Dichlorobenzene

GC Column: RTX502.2 ID: 0.53

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

page 2 of 2

FORM VIII VOA

95-4

^{*} Values outside of contract required QC limits

### 48 SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLK1

Lab Name:	Columbi	a Anal	ytical Servi	ces	Contract:	EMCON	SBLKI
Lab Code:	10145		Case No.:	9703-158	SAS No	.: SI	DG No.: MW2D
Lab File ID:	DL44	8.D			Lat	Sample ID:	SBLK1
Instrument ID	):	MS#	4	_	Da	te Extracted:	03/17/97
Matrix: (soil/v	vater)	WATE	R		Da	te Analyzed:	03/24/97
Level: (low/n	ned)	LOW			Tin	ne Analyzed:	13:55

### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	SBLK1MS	SBLK1MS	DL449.D	03/24/97
02	GW07SS	134877	DL450.D	03/24/97
03	GW07SD	134878	DL451.D	03/24/97
04	GWFB1R	134879	DL452.D	03/24/97
05	GW012S	135108	DL453.D	03/24/97
06	GW012SMS	135108MS	DL454.D	03/24/97
07	GW012SMSD	135108MSD	DL455.D	03/24/97

COMMENTS:		
	77	 _

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	Columb	ia Analyti	ical Servi	ces	Contract:	EMCON	SBLKI	
Lab Code:	10145	C	ase No.:	9703-158	SAS No	.:	SDG No.: MW2D	
Matrix: (soil/	water)	WATER			Lat	Sample II	D: SBLK1	
Sample wt/ve	ol:	1000	(g/ml)	ML	Lat	File ID:	DL448.D	

% Moisture: _____ decanted:(Y/N) N Date Extracted: 03/17/97

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 03/24/97

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

LOW

Level: (low/med)

### CONCENTRATION UNITS:

Date Received: 03/12/97

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-95-2	Phenol		10	U
111-44-4	bis(-2-Chloroethyl)E	ther	10	U
95-57-8	2-Chlorophenol		10	U
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		10	U
95-50-1	1,2-Dichlorobenzene		10	U
108-60-1	2,2'-oxybis(1-Chloro	propane)	10	U
95-48-7	2-Methylphenol		10	U
621-64-7	N-Nitroso-Di-n-propy	/lamine	10	U
67-72-1	Hexachloroethane		10	U
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	U
111-91-1	bis(-2-Chloroethoxy)	Methane	10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenze	ne	10	U
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadien	9	10	U
59-50-7	4-Chloro-3-methylph	enol	10	U
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopen	tadiene	10	U
88-06-2	2,4,6-Trichloropheno	ol .	10	U
95-95-4	2,4,5-Trichloropheno	ot	25	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		25	U
208-96-8	Acenaphthylene		10	U.
131-11-3	Dimethyl Phthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		25	U
51-28-5	2,4-Dinitrophenol		25	U
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinitrotoluene		10	U
100-02-7	4-Nitrophenol		25	U

## 1C

EPA SAMPLE NO.

10

10

10

10

10

10

10

10

2

10

10

10

10

10

10

10

U

U

U

U

U

Ū

U

U

J

Ū

U

U

U

Ū

U

	SEMIVOLATILE ORGANICS ANALYSIS DATA	CHEET .		
	DEINITY OLD THE ORGANICS ANALTSIS DATA	SHEET	SDI V4	
Lab Name: Colu	mbia Analytical Services Contract: EM	MCON	SBLK1	
Lab Code: 1014	5 Case No.: 9703-158 SAS No.:	SDC	No.: MW2D	
Matrix: (soil/water)	WATER Lab Sa	imple ID: S	BLK1	
Sample wt/vol:		le ID: D		
Level: (low/med)		eceived: 0:		
% Moisture:	decanted:(Y/N) N Date E			
	act Volume: 1000 (uL) Date 4	_		
njection Volume:		n Factor: 1.		
	N pH:	doto <u>1.</u>		
or o olcanap. (177				
	CONCENT	RATION UN	NITS:	
CAS NO.	COMPOUND (ug/L or ug	/Kg) <u>UG/L</u>	<u> </u>	
86-73-7	Eluoropo		10	_
7005-72-3	Fluorene 4-Chlorophenyl-phenylether		10 U	-
84-66-2	Diethylphthalate		10 U	_
100-01-6	4-Nitroaniline		25 U	$\dashv$
534-52-1	4,6-Dinitro-2-methylphenol	<del> </del>	25 U	$\dashv$
86-30-6	N-Nitrosodiphenylamine		10 U	_
101-55-3	4-Bromophenyl-phenylether		10 U	$\dashv$
118-74-1	Hexachlorobenzene		10 U	$\dashv$
87-86-5	Pentachlorophenol		25 U	$\dashv$
85-01-8	Phenanthrene		10 U	$\dashv$
120-12-7	Anthracene		10 U	$\dashv$
86-74-8	Carbazole		10 11	

Carbazole

Pyrene

Chrysene

Fluoranthene

Di-n-Butylphthalate

Butyl benzyl phthalate

3,3'-Dichlorobenzidine

Bis(2-Ethylhexyl)Phthalate

Benzo(a)Anthracene

Di-n-octyl phthalate

Benzo(a)Pyrene

Benzo(b)fluoranthene

Benzo(k)Fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)Perylene

84-74-2

206-44-0

129-00-0

85-68-7

91-94-1

56-55-3

218-01-9

117-81-7

117-84-0

205-99-2

207-08-9

50-32-8

193-39-5

53-70-3

191-24-2

NYSDEC Sample No: SBLK1

(ug/L or ug/Kg)UG/L

## 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: -- SAS No.: -- SDG No.: MW2D

Matrix: (soil/water) WATER Lab Sample ID: SBLK1
Sample wt/vol: 1000 (g/mL) ML Lab File ID: DL448

Level (low/med): LOW Date Received: --

% Moisture: Date Extracted:03/17/97
Extraction: (SepF/Cont/Sonc)SEPF Date Analyzed: 03/24/97

GPC Cleanup (Y/N) pH Dilution Factor: 1.0
Number TIC's found: 1 Concentration Units:

CAS NUMBER COMPOUND NAME RTEST. CONC. Q _____ _____ 1. 1792810 cis-1,2-Cyclohexanediol 11.46 12 J 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. <u>17.</u> 18. 19. 20. 21. 22. 23. 24. 25. <u> 26.</u> 27. 28. <u> 29.</u> 30.

> FORM I SV-TIC NYSDEC B-78

Lab Name: Columbia Analytical Services Contract: EMCON

Lab Code: 10145 Case No.: 9703-158 SAS No.: SDG No.: MW2D

Lab File ID (Standard): DL444.D Date Analyzed: 03/24/97

Instrument ID: MS #4 Time Analyzed: 10:45

		IS1(DCB) AREA #	RT #	IS2(NPT) AREA #	RT #	IS3(ANT) AREA #	RT #
	12 HOUR STD	29477	10.56	121732	13.47	85391	17.02
Ì	UPPER LIMIT	58954	11.06	243464	13.97	170782	17.52
	LOWER LIMIT	14739	10.06	60866	12.97	42696	16.52
	EPA SAMPLE						
	NO.			:			
01	SBLK1	32414	10.56	127015	13.47	87374	17.02
02	SBLK1MS	32365	10.57	128783	13.47	87708	17.01
03	GW07SS	32396	10.56	126995	13.47	87992	17.01
04	GW07SD	33068	10.56	131890	13.47	90993	17.01
05	GWFB1R	33897	10.56	133056	13.47	91914	17.01
06	GW012S	35281	10.56	140893	13.47	93718	17.02
07	GW012SMS	36528	10.57	147004	13.47	99756	17.02
08	GW012SMSD	35292	10.57	146755	13.47	98859	17.02

IS1 (DCB) = d4-1,4-Dichlorobenzene

IS2 (NPT) = d8-Naphthalene

IS3 (ANT) = d10-Acenaphthene

IS4 (PHN) = d10-Phenanthrene

IS5 (CRY) = d12-Chrysene

IS6 (PRY) = d12-Perylene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

page 1 of 2

FORM VIII SV-1

3/90

^{*} Values outside of contract required QC limits

Lab Name: Columbia Analytical Services Contract: EMCON

Lab Code: 10145 Case No.: 9703-158 SAS No.: SDG No.: MW2D

Lab File ID (Standard): DL444.D Date Analyzed: 03/24/97

Instrument ID: MS #4 Time Analyzed: 10:45

		IS4(PHN) AREA #	RT #	IS5(CRY) AREA #	RT #	IS6(PRY) AREA #	RT #
	12 HOUR STD	178413	19.81	173029	24.76	178300	28.68
Ī	UPPER LIMIT	356826	20.31	346058	25.26	356600	29.18
ĺ	LOWER LIMIT	89207	19.31	86515	24.26	89150	28.18
ĺ	EPA SAMPLE						
	NO.						
01	SBLK1	185065	19.80	185897	24.74	172414	28.66
02	SBLK1MS	185152	19.81	180083	24.75	164525	28.67
03	GW07SS	183777	19.80	186747	24.75	170094	28.67
04	GW07SD	190922	19.81	190065	24.75	170756	28.67
05	GWFB1R	192047	19.80	192922	24.75	172232	28.66
06	GW012S	197766	19.81	196149	24.75	176232	28.66
07	GW012SMS	205784	19.81	204193	24.74	175046	28.67
08	GW012SMSD	207035	19.81	202735	24.74	179771	28.66

IS1 (DCB) = d4-1,4-Dichlorobenzene

IS2 (NPT) = d8-Naphthalene

IS3 (ANT) = d10-Acenaphthene

IS4 (PHN) = d10-Phenanthrene

IS5 (CRY) = d12-Chrysene

IS6 (PRY) = d12-Perylene

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

page 2 of 2

FORM VIII SV-2

^{*} Values outside of contract required QC limits

3 BLANKS

Lab Name: COLUMBIA ANALYTICAL

Contract: EMCON

Lab Code: 10145

Case No.: SAS No.:

SDG No.: MWZD

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial	1						-		١	
	Calib.	İ	Conti	nu	ing Calib	ra	tion		Prepa-	١	1
	Blank	-1		Вί	ank (ug/l	.)		i	ration		I
Analyte	(ug/L)	디	1	С	2	С	3	cl	Blank	c	H
Aluminum	11.7	드!: 뜨!:	11.7	띠	11.7	ΠĮ	11.7	<u>  </u>	11.700	삗	P
Antimony	1.2	비	1.2	ᄞ	1.2	미	-2.7	빌	-1.715	B	P
Arsenic	2.7	비	2.7	ᄞ	2.7	미	2.7	미	2.700	171	P
Barium	3.0	ᄞ	3.0	ᄞ	3.0	ᄖ	3.0	미	3.000		<u> P</u>
Beryllium	0.1	ᄖ	0.1	ᆈ	0.1	밀	0.1	<u>B</u>	0.100	B	<u> P</u>
C <u>admium</u>	0.3	ᄖ	0.3	ᆝ	0.3	빈	0.3	미	0.300	빈	1P
alcium	137.0	미	137.0	ᆈ	137.0	미	137.0	lΠl	137.000	ĮΨ	1P
Chromium	0.6	ᄞ	0.6	ᄞ	0.6	미	0.6	미	0.600	<u> u </u>	P
Cobalt	0.7	미	0.7	ᄖ	0.7	ΠI	0.7	미	0.700		IP.
Copper	1.7	ᄞ	1.7	띠	1.7	미	1.7	빈미	1.700		P
lron	23.6	미	23.6	ᄞ	23.6	빈	23.6	ΙυΙ	23,600		<u> P</u>
Lead	1.1	미	1.1	미	1.1	미	1.1	미	1.100	ĮΨ	1P
Magnesium	44.0	미	44.0	ᄞ	44.0	빈비	44.0	미	44,000	ļυ	<u> P</u>
Manganese	0.4	미	0.4	미	0.4	ĮΨĮ	0.4	미	0.400	ĮΨ	<u> P</u>
Mercury	0.2	미	0.2	П	0.2	ĮΨ	0.2	미	0.200	<u> U</u>	<u>    c</u>
Nickel	2.0	미	2.0	미	2.0	미	2.0	빈	2.000	ĮΨ	I P
Potassium	361.0	미	361.0	ᄓ	361.0	ļΠĮ	-446.3	B	361.000	ĮΨ	l <u>P</u>
Selenium	1.0	ᄓ	1.0	ŭΙ	1.0	빈	1.0	미	1.000	ĮΨ	<u>  F</u>
Silver	0.7	미	0.7	미	0.7	lΠ	0.7	미	0.700	ĮΨ	I P
Sodium	67.5	미	67.5	미	67.5	ĮΨ	67.5	빈	67.500	<u> U</u>	l le
Thallium	2.1	Πļ	2.1	υl	2.1	ļυļ	2.1	미	2.100	ĮΨ	<u>  P</u>
Vanadium	0.4	미	0.4	빈	0.4	ļυ	0.4	ĮΨĮ	0.400	<u>l</u>	112
Zinc	4.9	υl	4.9	빈	4.9	Įυ	4.9	<u>lul</u>	4.900	ļυ	112
Cyanide	11	_				1_1		Lİ	l	1_	11_

3 Blanks

Lab Name: COLUMBIA ANALYTICAL

Contract: EMCON

Lab Code: 10145

Case No.:

SAS No.:

SDG No.: MW2D

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial	-							-	1	Ī	1
	Calib.	١	Cont	in	ing	Calib	) TE	stion	-	Ргера-	٠ [	1
	Blank	- 1		BI	ank	(ug/l	.)		-	ration	[	1
Analyte	(ug/L)	c	<b>1</b>	C		2	C	3	디	Blank	c	M
Aluminum		_	11.7	ĮΨ					_¦ _		_	P
<u>Antimony</u>		L	1.2	미			_		_1	<u> </u>	1_1	1P
Arsenic		1_1	2.7	미			_	l	_1	l	1_1	1P
Barium		_	3.0	미			_		_1	<u> </u>	1_1	<u> P</u>
Beryllium		_	0.1	미			_		_1	<u> </u>	1_1	<u>P</u>
Cadmium		1_1	0.3	미			<b> _</b>		_1	<u> </u>	<u> </u>	P
<u>Calcium</u>		1_1	137.0	빈			_		_1	l	<u> </u> _	P
Chromium		1_1	0.6	ĮΨ			_	<b></b>	_1	İ	L	P
Cobalt		_	0.7	וַטַ			_		_ĺ		l_l	P
Copper		_	1.7	Įυ			<u> </u>		_i		<u> </u>	<u>  P</u>
Iron		L	23.6	Įυ			<u> </u>		_i		1_1	P
Lead		Ĺĺ	1.1	Įυ			_  _		_i		i_i	ļΡ
Magnesium_		L	44.0	<u> U</u>					_i		i_   _	ĮΡ
Manganese		L	0.4	Įυ					_i	İ		ĺΡ
Mercury		L	0.2	<u> U</u>		0.2	υl	0.2	ים עו	i	<u> </u>	C
Nickel		<u> </u>	2.0						_i	i	<u> </u>	ĺР
Potassium		ا_ا	361.0	Įυ					_i	i	i_i	ĺΡ
Selenium		L	1.0	Įυ		1.0	ט	1.0	υl	1	i_i	F
Silver		i_i	0.7						_i	i	i_ i	P
Sodium		ΙĹΪ	67.5						_i		<u> </u>	Ι <u>Ρ</u>
Thallium		1_1	2.1	Įυ			<u> </u>		_i		  _	ĺΡ
<u>Vanadium</u>		L	0.4	U					_i	i	i_	IP
Zinc			4.9	ĮΨ			Ĺ		_i		<u> </u>	<u>P</u>
Cyanide		Ĺ		Ĺ					ij		i	i

3 BLANKS

Lab Name: COLUMBIA ANALYTICAL Contract: EMCON

Lab Code: 10145

Case No.:

SAS No.:

SDG No.: MW2D

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib.		Cont	inui	ng Cali	bra	tion		Prepa-		
	Blank	.1		Bla	nk (ug/	L)		11	ration	11	
Analyte	(ug/L)	c	1	С	2	С	3	cii	Blank	cil	M
Aluminum		!_ .I_ _				1_1			11.70	<u> </u>	<u> </u>
Antimony		1_1_		<u> _ _</u>		1_1		_!_!	-3.27	<u> </u>	<u>P</u>
Arsenic		. _ _		_ _		1_1		_1_11	2.70		<u>P</u>
Barium		. _ _		<u> _ _</u>		1_1		_!_!	3.00		P
Beryllium		<u>                                     </u>		<u> </u> _ _		<u>                                      </u>		_i_ii	0.10	0 8 1	P
^ <u>admfcm</u>		. _ _		<u>                                     </u>		1_1		_ _	0.30		P
lcium		. _ _		<u>                                     </u>		<u> </u> _		_ _	137.00		Ρ
Chromium		1_1_		<u>                                     </u>		ĹĹ		_ _	1.49	4 B  F	P
Cobalt		1_1_				L		_i_i	0.70		P
Copper		<u> </u> _ _		<u>                                     </u>		1_1		_ _	1.70		P
Iron		1_1_		<u> _ _</u>		1_1		_ _	23.60		P
Lead		. _ _		<u> _ _</u>		1_1		_ _	1.10		P
Magnesium		. _ _		<u> _ _</u>		1_1		_1_11	44.00	1 1010	P
Manganese		1_1_		<u>                                     </u>		1_1		_ _	0.40	0	P
Mercury		1_1_		<u>                                     </u>		1_1		_1_11		_1_11	
Nickel		1_1_				1_1		_ _	2.00	0   U   I	P
Potassium		<u> </u> _ _		_ _  _ _		L		_ _	361.00	0	P
Selenium		1_1_		_ _  _ _		1_1		_i_i	1.00	0 0 1	F
Silver		. _ .				.I_I		_[_[		0   U   U	
Sodium	145.1	181	160.4	BI	147.8	B	196.	9 8	67.50	<u> </u>	P
Thallium		. _ _		<u> </u>		ı_i		_[_[		<u> </u>	
Vanadium		. _		<u> </u>		1_1		_[_[i		0	
Zinc		1_1_		<u>                                     </u>		1_1				0 1	_
Cyanide		ii		iπ		iΪ				1 11	_



### A FULL SERVICE ENVIRONMENTAL LABORATORY

April 17, 1997

Mr. Curtis Taylor
EMCON
Crossroads Corp. Center
1 International Blvd, Ste. 700
Mahwah, NJ 07495

PROJECT:LMC SYRACUSE
Submission #:9703000158

Dear Mr. Taylor

Enclosed are the analytical results of the analyses requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at (716) 454-6810.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Mark Wilson

Client Service Manager

Enc.

cc: Mr. Chris Taylor

Environmental Quality Assoc.

R.D. #5, Box 800 Middletown, NY 10940

This package has been reviewed by Columbia Analytical Services' OA Department/Laboratory Director prior to report submittal.



### **CASE NARRATIVE**

COMPANY: EMCON Lockheed Martin Corp - Syracuse SUBMISSION #: 9703000158

EMCON water samples were collected on 03/12/97 through 03/14/97 and received at CAS on 03/13/97 through 03/15/97 in good condition. See the CAS Batching form to cross reference between Client ID and CAS sample numbers.

### **METALS**

Six water samples were analyzed for the Target Analyte List (TAL) of metals by NYSASP 1995 Inorganic methods.

These samples were filtered pnor to analysis and therefore are the soluble metals in the sample.

All Initial and Continuing calibrations were compliant.

The Sodium results were flagged with an "E" indicating the ICP Serial Dilution was outside of control limits.

No other Analytical or QC problems were encountered.

I certify this this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael K. Perry Laboratory Director Date

4/17/47

00001

00000

### INORGANIC QUALIFIERS

C (Concentration) qualifier - Enter "B" if the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but was greater than or equal to the Instrument Detection Limit (IDL). If the analyte was analyzed for, but not detected, a "U" must be entered.

Q qualifier - Specified entries and their meanings are as follows:

- E The reported value is estimated because of the presence of interference.
- M Duplicate injection precision not met.
- N Spiked sample recovery not within control limits.
- S The reported value was determined by the Method of Standard Additions (MSA).
- W Post-digestion spike for Furnace AA Analysis is out of control limits (85-115), while sample absorbance is less than 50% of spike absorbance.
- * Duplicate analysis not within control limits.
- + Correlation coefficient for the MSA is less than 0.995.

### M (Method) qualifier - Enter:

- "P" for ICP
- "A" for Flame AA
- "F" for Furnace AA
- "PM" for ICP when Microwave Digestion is used
- "AM" for Flame AA when Microwave Digestion is used
- "FM" for Furnace M when Microwave Digestion is used
- "CV" for Manual Cold Vapor AA
- "AV" for Automated Cold Vapor AA
- "CA" for Midi-Distillation Spectrophotometric
- "AS" for Semi-Automated Spectrophotometric
- "C" for Manual Spectrophotometric
- "T" for Titrimetric
- " " where no data has been entered
- "NR" if the analyte is not required to be analyzed

10/95

7
6
_
7
٦
$\geq$

CAS JOB # CLIENT/EPA ID MATRIX REQUESTED PARAMETERS SAMPLED RECEIVED (SOLIDS) SOLIDS 134880 - GWISSF water Metals soluble 3/12/97 3/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97 13/13/97	BATCH COMPLETE: DISKETTE REQUESTED: CLIENT REP: Mark Wi DATE DUE: 04/12/97	BATCH COMPLETE:  DISKETTE REQUESTED: Y  CLIENT REP: Mark Wilson  DATE DUE: 04/12/97	X	SDG #: GW10S SUBMISSION #:03-158 DATE: 03/13/97 DATE REVISED: 03/17/97	CLIENT:EMCON PROJECT:LMC PROTOCOL: A	CON MC ASPB		
134880 - GW10SF   water   Metals soluble   3/12/97   3/13/97     134881 - GW7SSF   water   Metals soluble   3/12/97   3/13/97     134882 - GW7SSF   water   Metals soluble   3/12/97   3/13/97     134883 - GWFBIF   water   Metals soluble   3/12/97   3/13/97     135110 - GW12SF   water   Metals soluble   3/13/97   3/15/97     135428 - GW11SF   water   Metals soluble   3/14/97   3/15/97     15428 - GW11SF   water   Metals soluble   3/14/97   3/15/97     15428 - GW11SF   water   Metals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Metals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetals soluble   3/14/97   3/15/97     155428 - GW11SF   water   Wetal	JOB	1	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pH (SOLIDS)	\$ SOLIDS
134881- GW7SSF water Metals soluble 3/12/97 3/13/13/883- GW7SDF water Metals soluble 3/12/97 3/13/13/13/13/13/13/13/13/13/13/13/13/13	1 1	GW10SF	water	1	3/12/97	3/13/97		
134882 - GW7SDF water Metals soluble 3/12/97 3/13/13/13/13/13/14/13/13/13/13/13/13/13/13/13/13/13/13/13/	134881 -	GW7SSF	water		/12/	/13/		
134883- GWFB1F water Metals soluble 3/12/97 3/13/ 135110- GW12SF water Metals soluble 3/13/97 3/14/ 135428- GW11SF water Metals soluble 3/14/97 3/15/ 135428 - GW11SF water Metals soluble 3/14/97 3/15/ 135428 - GW11SF water Metals soluble 3/14/97 3/15/ 135428 - GW11SF water Metals soluble 3/14/97 3/15/ 135428 - GW12SF water Metals soluble 3/14/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/14/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/14/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/14/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/14/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/14/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/14/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/14/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/14/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/14/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/ 135428 - GW12SF water Metals soluble 3/12/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/15/97 3/	134882 -	GW7SDF	water		/12/	/13/		
135110 - GW12SF water Metals soluble 3/13/97 3/14/ 135428 - GW11SF water Metals soluble 3/14/97 3/15/ 135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW12SF water Metals soluble 3/14/97 3/15/  135428 - GW12SF water Metals soluble 3/14/97 3/15/  135428 - GW12SF water Metals soluble 3/14/97 3/15/  135428 - GW12SF water Metals soluble 3/14/97 3/15/  135428 - GW12SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF water Metals soluble 3/14/97 3/15/  135428 - GW11SF wate	134883	GWFB1F	water		/12/	/13/		
135428 - GW11SF water Metals soluble 3/14/97 3/15/    135428 - GW11SF water Metals soluble 3/14/97 3/15/   135428 - GW11SF water Metals soluble 3/14/97 3/15/   135428 - GW11SF water Metals soluble 3/14/97 3/15/	1	GW12SF	water		/13/	/14/		
		GW11SF	water		/14/	/15/		
RACER005751					<i>)</i> /			
				(N)				
		-						
CEROOFT	DA							
	2006							
	75							

CAS ASP/CLP BATCHING FORM

8F.XLS

### COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name:	GENERAL	TESTING	CORP.	Contra	ct: EMCON			
tab Code:	10145	Cas	e No.:	SAS No	·.:	SDG	No.:	GW10S
SOW No.:	NYS ASP	12/91						
		Sample No	•	L	ab Sample I	D.		
		GW10SF	-		134880	-		
		GW11SF	-		135428	-		
		GW12SF	-		135110	•		
		GW7SDF	-		134882	-		
		GW7SSF	<del>-</del>		134881	-		
		GWFB1F	<del>-</del>		134883	-		
		<u> </u>	_			-		
			_			•		
			-			-		
			_			-		
			_			-		
			-			-		
			_			-		
			_			-		
			-					
			_			_		
			_			_		
			_			_		
						_		
Were ICP	interel	ement corr	ections	applied?			Yes/N	o YES
		und correc					Yes/N	o YES
				ted before				
appl	ication	of backgr	ound co	rrections?			Yes/N	o NO
Comments:	:	see	<i>C</i> વ કર	remalive	_			
Leanti	fu shas	thic data	nachasa	is in complian	ca with the	tore	nc ar-	1
condition	ons of t	he contrac	t, both	technically an	d for compl	etene	ess, f	or
in this	hardcop	y data pad	ckage an	d in the comput		data	subm	nitted
				orized by the L by the followin			01	.IIE
gnatu	Ca	il IK		✓ Name:	Michan	0	K I	) binca
	. <del> дег</del> и	liclia		Title:	1 houts	10	Die	dor
Date:	<del></del>	1.2/8/				•	. 1	<del></del> `

COVER PAGE - IN

		Y		
SAMPLE ID	MATRIX	METALS	DATE	DATE
		REQUESTED	RECEIVED	ANALYZED
134880	WATER	AG, AL, AS, BA, BE, CA, CD, CO, CR, CU,	3/13/97	3/26/97
154555	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN	3/13/3/	3/20/9/
134881	WATER	AG, AL, AS, BA, BE, CA, CD, CO, CR, CU,	3/13/97	3/26/97
		FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN		7,00,0
134882	WATER	AG, AL, AS, BA, BE, CA, CD, CO, CR, CU, FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN	3/13/97	3/26/97
		AG, AL, AS, BA, BE, CA, CD, CO, CR, CU,		
134883	WATER	FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN	3/13/97	3/26/97
135110	/:>===	AG, AL, AS, BA, BE, CA, CD, CO, CR, CU,		
135110	WATER	FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN	3/14/97	3/26/97
135428	WATER	AG, AL, AS, BA, BE, CA, CD, CO, CR, CU,	3/15/97	3/26/97
155426	WALEK	FE, K, MG, MN, NA, NI, PB, SB, TL, V, ZN	3/15/9/	3/26/9/
				1
-				
ļ				

9/89

SAMPLE ID	MATRIX	METALS	DATE	DATE
	ļ <del>.</del>	REQUESTED	RECEIVED	ANALYZED
134880	WATER	NA ————————————————————————————————————	3/13/97	3/31/97
		· · · · · · · · · · · · · · · · · · ·		
			!	
		· · · · · · · · · · · · · · · · · · ·		

SAMPLE ID	MATRIX	METALS	DATE	DATE
		REQUESTED	RECEIVED	ANALYZED
134880	WATER	SE	3/13/97	4/3/97
134881	WATER	SE	3/13/97	4/3/97
134882	WATER	SE	3/13/97	4/3/97
134883	WATER	SE	3/13/97	4/3/97
135110	WATER	SE	3/14/97	4/3/97
135428	WATER	SE	3/15/97	4/3/97
				-
	<u> </u>	1		

9/89

00007

SAMPLE ID	MATRIX	METALS	DATE	DATE
		REQUESTED	RECEIVED	ANALYZED
134880	WATER	HG	3/13/97	3/19/97
134881	WATER	HG	3/13/97	3/19/97
134882	WATER	HG	3/13/97	3/19/97
134883	WATER	HG	3/13/97	3/19/97
135110	WATER	HG	3/14/97	3/19/97
135428	WATER	HG	3/15/97	3/19/97
			_	
<b></b>	l		L	

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

GW10SF

Lab Name: GENERAL TESTING CORP.

Contract: EMCON

Lab Code: 10145

Case No.:

SAS No.:

SDG No.: GW10S

Matrix (soil/water): WATER

Lab Sample ID: 134880

Level (low/med):

LOW

Date Received: 03/13/97

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

  CAS No.	Analyte	  Concentration 	c	   •	   <b>H</b>
7429-90-5	Aluminum	80.6	<u> </u>		P
7440-36-0	Antimony	1.2	Įυ	i	<u>P</u>
7440-38-2	Arsenic	4.2	<u>B</u>	1	P
7440-39-3	Barium	279	l_	l	P
7440-41-7	Beryllium	0.10	Įυ	l	<u>P</u>
7440-43-9	Cadmium	0.30	U	l	P
7440-70-2	Calcium	442000	l_		P
7440-47-3	Chromium	0.60	ļυ	<u> </u>	P
7440-48-4	Cobalt	0.70	ļυ		<u>P</u>
7440-50-8	Copper	2.3	<u>B</u>	l	P
7439-89-6	<u>Iron</u>	100	<b> </b> _	İ	P_
7439-92-1	Lead	1.1	ļŪ		<u> </u>
7439-95-4	Magnesium	132000	l_		<u>P</u>
7439-96-5	Manganese	39.3	<b> </b> _	l	<u>P</u>
7439-97-6	Mercury	0.20	ĮΨ	l	CV
7440-02-0	Nickel	2.0	ļυ	l	<u>P</u>
7440-09-7	Potassium	4800	B	ـــــا	P
7782-49-2	Selenium	1.6	B	U J	F
7440-22-4	Silver	1.8	<u> </u>	ا	<u>P</u>
7440-23-5	Sodium	115000	1_	IE J	P
7440-28-0	Thallium	2.3	В	<u> J</u>	P
7440-62-2	<u>Vanadium</u>	0.68	멸	l	<u> </u>
7440-66-6	Zinc	57.8	L	l	P
l	Cyanide	l	l_	1	<b>_</b>

Color Before: COLORLESS

Clarity Before: CLEAR

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

Comments:

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: GENERAL TESTING CORP. Contract: EMCON

**GW11SF** 

Lab Code: 10145

Case No.:

SAS No.:

SDG No.: GW10S

Matrix (soil/water): WATER

Lab Sample ID: 135428

Level (low/med): LOW

Date Received: 03/15/97

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

						_
  CAS No.	Analyte	Concentration	  c 	   	٥	  H
7429-90-5	Aluminum		B	-		IP
7440-36-0	Antimony		Ιυ	ï		P
7440-38-2	Arsenic	3.4	В		3	P
7440-39-3	Barium	231	i	i		P
7440-41-7	Beryllium	0.10	U			P
7440-43-9	Cadmium	0.30	U	_		P
7440-70-2	Calcium	164000	i_	_		P
7440-47-3	Chromium	0.60	ייו	<u> </u>		P
7440-48-4	Cobalt	0.70	υ			P
7440-50-8	Copper	1.7	ļυ	İ		P
7439-89-6	Iron	218	1	_		P
7439-92-1	Lead	1.1	Įυ	_		P_
7439-95-4	Magnesium	46200	i_	_		P
7439-96-5	Manganese	50.3	i_	_		P
7439-97-6	Mercury	0.20	Ų	_		CΥ
7440-02-0	Nickel	2.0	ĮΫ	<u> </u>		P
7440-09-7	Potassium	2180	<u>B</u>	_		P
7782-49-2	Setenium	1.5	B	W	7	F
7440-22-4	Silver	0.71	<u>B</u>	_		P
7440-23-5	Sodium	17000	Ĺ	<u> </u>	1	P
7440-28-0	Thallium	3.3	B	_	1	P
7440-62-2	Vanadium	0.40	ļυ	Ĺ		P
7440-66-6	Zinc	71.6	L			P
	Cyanide		L	<u> </u>		<u></u>

Color Before: COLORLESS Clarity Before: CLEAR

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

Cc its:

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

GW12SF

Lab Name: GENERAL TESTING CORP.

Contract: EMCON

Lab Code: 10145 Case No.: SAS No.:

SDG No.: GW10S

Matrix (soil/water): WATER

Lab Sample ID: 135110

Level (low/med):

LOW

Date Received: 03/14/97

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

on	l lc			1.1
	1	 	Q	M 
9	1 –   B	- 		  P
_	:-	!		P
3	В	ï	J	IP I
2	В	i_		P
4	lВ	i_		P
0	.–  ⊍	i_		P
0	i_	iΞ		P
<u>7</u>	В	i_		P
0	Ū	i_		P
6	B	ĺ_		<u>P</u>
0	B	Ĺ		P
1	ļυ	<u> </u>		<u> P</u>
0	i_	_		P
9	B	l_		<u>P</u>
0	Įυ	L		CV
0	ļυ	Í		<u>P</u>
0	В	i_		P
6	В	<u> </u>		F_
6	B	I_		P
0	L	E	5	<u> P</u>
9	8	l_	1	P
0	ĮΨ	<b> </b> _		P
2	l_	1_		<u>P</u>
	1_	I_		_
	2 3 2 4 0 0 7 0 6 0 1 0 9 0 0 0 6 6 0 9	2   U   U   S   S   S   S   S   S   S   S	2   B	2   U

Color Before: COLORLESS

Clarity Before: CLEAR

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

Comments:

SAMPLE NO.

1

INORGANIC ANALYSIS DATA SHEET

Lab Name: GENERAL TESTING CORP. Contract: EMCON

GW7SDF

Lab Code: 10145

Case No.:

SAS No.:

SDG No.: GW10S

Matrix (soil/water): WATER

Lab Sample ID: 134882

Level (low/med): LOW

Date Received: 03/13/97

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

1	1	l			<u> </u>
CAS No.	Analyte	Concentration	c	•	M
<b> </b>	l		_	l	_
7429-90-5	<u>Aluminum</u>	73.0	В	l	P
7440-36-0	Antimony	1.2	ĮŪ		<u>P</u>
7440-38-2	Arsenic	3.4	В	1_5	<u> P</u>
7440-39-3	8arium	115	В		P
7440-41-7	Beryllium	0.10	Ų	l	P
7440-43-9	Cadmium	0.30	Ų		P
7440-70-2	Calcium	151000	Ĺ		P
7440-47-3	Chromium	0.83	В		P
7440-48-4	Cobalt	0.72	В	l	P
7440-50-8	Copper	1.7	Įυ		P
7439-89-6	Iron	739	Ĺ		P.
7439-92-1	Lead	1.1	Įυ		P
7439-95-4	Magnesium	50500	L		P
7439-96-5	Manganese	283	L		P
7439-97-6	Mercury	0.20	ū		CV
7440-02-0	Nickel	2.0	Įυ	1	P
7440-09-7	Potassium	1190	8		P
7782-49-2	Selenium	1.0	U		F
7440-22-4	Silver	0.74	В		Р
7440-23-5	Sodium	20300	L	EJ	P
7440-28-0	Thallium	3.9	В	3	P
7440-62-2	Vanadium	0.40	Įυ		P
7440-66-6	Zinc	26.6	<u>-</u>		P
l	Cyanide	l	_  _		

Color Before: COLORLESS Clarity Before: CLEAR

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

Comments:

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: GENERAL TESTING CORP.

Contract: EMCON

Lab Code: 10145 Case No.:

SAS No.:

SDG No.: GW10S

Matrix (soil/water): WATER

Lab Sample ID: 134881

Level (low/med): LOW

Date Received: 03/13/97

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

	1		
  CAS No. 	   Analyte 		M
7429-90-5	Aluminum	71.5  B	IP
	Antimony	1.2  U	IP.
7440-38-2	Arsenic	2.7 U J	IP
7440-39-3	Barium	121 B	P
7440-41-7	Beryllium	0.10  0	P
7440-43-9	Cadmium	0.30   U	P
7440-70-2	Calcium	157000	P
7440-47-3	Chromium	0.60 U	P
7440-48-4	Cobalt	0.77 B	P
7440-50-8	Copper	1.7 U	P
7439-89-6	1ron	767	P
7439-92-1	Lead	1.1  0	P
7439-95-4	Magnesium	52000	P
7439-96-5	Manganese	292	IP.
7439-97-6	Mercury	0.20  U	CV
7440-02-0	Nickel	2.0 U	P
7440-09-7	Potassium	1100   B	P
7782-49-2	Selenium	1.3 B V J	F
7440-22-4	Silver	0.75  8	P
7440-23-5	Sodium	21200   E J	IP.
7440-28-0	Thallium	3.7 B J	IP.
7440-62-2	Vanadium	0.40 U	IP
7440-66-6	Zinc	28.5	IP.
l	Cyanide	_	_ _

Color Before: COLORLESS

Clarity Before: CLEAR

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

Comments:

INORGANIC ANALYSIS DATA SHEET

GWFB1F

SAMPLE NO.

Lab Name: GENERAL TESTING CORP. Contract: EMCON

Lab Code: 10145 Case No.:

SAS No.:

SDG No.: GW10S

Matrix (soil/water): WATER

Lab Sample ID: 134883

Level (low/med): LOW

Date Received: 03/13/97

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

			_		
CAS No.	   Analyte 	  Concentration 	  c   _	Q	 
7429-90-5	Aluminum	43.3	8		P
7440-36-0	Antimony	1.2	lυl		<u>P</u>
7440-38-2	Arsenic	2.7	υl	I	<u>P</u>
7440-39-3	Barium	3.0	ĮΨ		<u>P</u>
7440-41-7	Beryllium	0.12	<u>B</u>		P
7440-43-9	Cadmium	0.30	Įυ		P
7440-70-2	Calcium	137	υ		P
7440-47-3	Chromium	1.1	<u>B</u>		<u>P</u>
7440-48-4	Cobalt	0.70	Ι <u>υ</u>		P
7440-50-8	Copper	1.7	Įυ		P
7439-89-6	1 ron	66.5	В		<u> P_</u>
7439-92-1	Lead	1.1	Įυ		<u>P</u>
7439-95-4	Magnesium	44.0	ļυ		P
7439-96-5	Manganese	0.63	<u>  B</u>		P
7439-97-6	Mercury	0.20	<u> u</u>	l	CV
7440-02-0	Nickel	2.0	<u>U</u>		P
7440-09-7	Potassium	361	ļυ		<u>P</u>
7782-49-2	Selenium	1.0	ļυ	l	F
7440-22-4	Silver	0.70	ļψ	l	P
7440-23-5	Sodium	103	В	E J	P
7440-28-0	Thallium	2.1	ļυ	1_5	P
7440-62-2	Vanadium	0.40	Įυ	l	P
7440-66-6	Zinc	4.9	ļυ	1	P
	Cyanide		L	l	1_

Color Before: COLORLESS Clarity Before: CLEAR

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

Cor nts:

3 Blanks

Lab Name: GENERAL TESTING CORP.

Contract: EMCON

Lab Code: 10145

Case No.:

SAS No.:

SDG No.: GW10S

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial						-	1	1	
	Calib.	Contin	nuing	Calib	ora	tion	1	Prepa-	- 1	
	Blank	8	3 lank	(ug/l	.)		1	ration	-	1
Analyte	(ug/L) C	1 (	C	2	С	3	c	Blank	<b>C</b>	M
ll							_	1	_	<b>I</b> _
Atuminum	<u> 11.7 U</u>	11.7	ــــالـ	11.7	IJΙ	11.7	Πļ	11.700	ΠI	<u>  P</u>
Antimony	1.2 0	1.2	ا	1.2	υl	-2.7	<u>B</u>	-1.715	18	P
Arsenic	2.7 U	2.7	ال	2.7	ŪΙ	2.7	미	2.700	빈미	<u> P</u>
Barium	3.0 0	3.0	ال	3.0	IJ	3.0	IJΙ	3.000	빈	<u>  P</u>
Beryllium	0.1 0	0.1	ال	0.1	8	0.1	B	0.100	<u> B </u>	P
Cadmium	0.3 0	0.3	۱	0.3	υl	0.3	υl	0.300	빈미	P
Calcium	<u> 137.0   U  </u>	137.0	ــــالــ	137.0	lΠl	137.0	ΠI	137.000	빈	<u>P</u>
Chromium	0.6 0	0.6	ار	0.6	IJΙ	0.6	υl	0.600	미미	P
Cobalt	0.7 0	0.7	ار	0.7	Įυl	0.7	IJΙ	0.700	lΠl	P
Copper	1.7 0	1.7	ال	1.7	ĮΨĮ	1.7	lΠl	1.700	미	P
Iron	23.6 U	23.6	١١	23.6	미	23.6	Įυļ	23.600	빈	<u>  P</u>
Lead	1.1 0	1.1	<u> </u>	1.1	IJΙ	1.1	ĮυĮ	1.100	빈	<u>  P</u>
Magnesium	44.0 U	44.0	ا	44.0	ΠI	44.0	Ψĺ	44.000	Ι <u>υ</u> Ι	P
Manganese	0.4 0	0.4	ـــالــ	0.4	ĮΨ	0.4	Ι <u>υ</u> Ι	0.400	미미	P
Mercury	0.2 0	0.2	ـــاك	0.2	lυl	0.2	lυl	0.200	빈	CV
Nickel	2.0 0	2.0	ار	2.0	IJΙ	2.0	ΠĮ	2.000	ĮΨΙ	P
Potassium	<u>361.0 U</u>	361.0	ال_	<u>361.0</u>	<u> U </u>	-446.3	<u> 8 </u>	361.000	lυl	P
Selenium_	1.0 0	1.0	اي	1.0	<u> U </u>	1.0	υl	1.000	빈	F
Silver	0.7 U	0.7	ال	0.7	Įυĺ	0.7	Įυį	0.700	ĮΨ	P
Sodium	67.5 U	67.5	<u> </u>	67.5	빈	67.5	IJΪ	67.500	ĮΨĮ	P
Thallium	2.1 U	2.1	۳۱	2.1	<u> u </u>	2.1	ĮυĮ	2.100	ĮΨĮ	P
Vanadium	0.4 U	0.4	U	0.4		0.4	ΙUΙ	0.400	וַעַן	P
Zinc	4.9 U	4.9	<u> </u>	4.9	ĮυĮ	4.9	ΙυΙ	4.900	ΙυΙ	P
Cyanide					, 		i - i		i_i	ī

3 BLANKS

Lab Name: GENERAL TESTING CORP. Contract: EMCON

Lab Code: 10145 Case No.: SAS No.: SDG No.: GW10S

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial									1	i			Ī
1	Calib.	-	Cont	inu	ing	Calib	ога	tion			ļ	Ргера-	I	1
	Blank	- 1		Bl	ank	(ug/l	.)			1	1	ration	1	1
Analyte	(ug/L)	С	1	С		2	С	:	3	C		Blank	C	H
		_					_			_	!			<u> </u> _
Aluminum		. _	11.7				_			_	!_		_ _	P
Antimony		. _	1.2				_			_	_		_ _	P
Arsenic		. _	2.7	. —			_			_	l		_ _	<u>P</u>
<u>Barium</u>		. _	3.0				_			_1	<b>I</b>		_ _	1º
Beryllium		. _	0.1	<u> </u> <u>u</u>			_1			_	<b> </b>		_ _	1P
ıdım ium		. _	0.3	<u>ايا</u> .			_			_	<b> </b> _		_ _	<u>₽</u>
Calcium		. _	137.0	Πl			-1			1_1	1_		_ _	IP.
Chromium		. _	0.6	UI.			_			_	_		_ _	IP.
Cobalt		. _	0.7	<u> </u>			_			1_1	<b>I</b>		_ _	1 <u>P</u>
Copper		. _	1.7	빈			<u> </u>			-1	1_		_1_1	IP.
Iron		. _	23.6	U.			_			_	I		_1_1	IP.
Lead		Ĺ	1.1	IJΙ			<u> </u>			LΙ	<u></u>		_[_[	ĺР
Magnesium		I_	44.0	<u> u </u>			_  _			_			_ _	P
Manganese		. _	0.4	IJΙ			<u> </u>			_	1_		_ _	P
Mercury		. _	0.2	וטו		0.2	וטו		0.2	υl	i_		_ _	Ic
Nickel		Ï_	2.0	υl						_  _	i_			ĺР
Potassium		Ĭ.	361.0				Ĺ			ĹΪ	iΞ		_ [_	IР
Selenium		Ĺ	1.0			1.0	u		1.0	u	iΞ		_ [	IF
Silver		Ī_	0.7				_			_   _	i_		1	ĺР
Sodium		Ĺ	67.5				<u> </u>			; 	Ĺ			ĺΡ
Thallium		İ	2.1				_ i			_ i				ΙP
Vanadium		1	0.4							ij	i		-   -	ΙP
Zinc		ï	4.9							i i	i		_;-;	I P
Cyanide		ï		1			-			-	ï		-;- ! !	ii-

3 BLANKS

Lab Name: GENERAL TESTING CORP.

Contract: EMCON

Lab Code: 10145 Case No.:

SAS No.: SDG No.: GW10S

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial								ļ	•	ļ	Ī
	Calib.	إ	Cont		-			ition	-	Prepa-	١	ļ
	Blank	ا			ank	(ug/i	L)		J	ration	١	
Analyte	(ug/L)	C	1	С		2	С	3	c	Blank	c	M
Aluminum		!		_			  _		_¦	11.700	_   만	<u> </u>
Antimony		1_1		_			  _		i_i	-3.276	В	<u>P</u>
Arsenic		1_1		_			  _		i_i	2.700	υl	P_
Barium		1_1		<u> </u>			i		i_i	3.000	υl	P
Beryllium		1_1		_			_   _		1_1	0.100		
Cadmium		1_1		_			1_1		i_i	0.300	υl	IP.
Calcium		1_1		_			<u> </u>		1_1	137.000	υl	P
Chromium		_		_			<b> </b> _		1_1	1.494	В	<u>P</u>
Cobalt		1_1	•	_			<u> </u>		1_1	0.700	미	P
Copper		1_1		<b> </b> _			<u> </u>		1_1	1.700	빈	P
Iron		1_1		_			<u> </u>		1_1	23.600	미	P
Lead		1_1	***	<b> </b> _			1_		1_1	1.100	미	P
Magnesium		1_1		_			_		1_1	44.000	미	P
Manganese		1_1		_			<b> </b> _		1_1	0.400	빈	P
Mercury		<u> </u> _		<b> </b> _			L		LΪ	l	_   _	<u> </u>
Nickel		1_1		_					1_1	2.000	υl	P
Potassium		<u> </u>		_			i_   _		ΙĹ	361.000	υl	P
Selenium		1_1		_			ا_ا		1_1	1.000	Δĺ	F
Silver		1_1		_			<u> </u>		L	0,700	υl	P
Sodium	145.1	<u>B</u>	160.4	<u>B</u>		47.8	В	196,9	B	67.500	ΙυΙ	P
Thailium		. _		1_			L		ΙĪΪ	2.100	υl	P
Vanadium		اًـا		<b> </b> _			1_		ΙĪΪ	0.400	IJΙ	P
Zinc		. _		<b>L</b>					ΙΪ	4.900		
Cyanide		اً_اً.		L			i_1		Li		_i	i_



#### A FULL SERVICE ENVIRONMENTAL LABORATORY

April 17, 1997

Mr. Curtis Taylor
EMCON
Crossroads Corp. Center
1 International Blvd, Ste. 700
Mahwah, NJ 07495

PROJECT:LMC SYRACUSE
Submission #:9703000158

Dear Mr. Taylor

Enclosed are the analytical results of the analyses requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at (716) 454-6810.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Mark Wilson

Client Service Manager

Enc.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director prior to report submittal.

# Z.

#### CASE NARRATIVE

COMPANY: EMCON Lockheed Martin Corp - Syracuse SUBMISSION #: 9703000158

EMCON water samples were collected on 03/13/97 through 03/14/97 and received at CAS on 03/14/97 through 03/15/97 in good condition. See the CAS Batching form to cross reference between Client ID and CAS sample numbers.

#### **VOLATILE ORGANICS**

Thirteen water samples were analyzed for Target Compound List (TCL) of volatile organics by method 95-4 from the NYSASP 1995 and five soils by 95-1.

Sample GW14S was analyzed for site specific QC. All matrix spike recoveries and %RPD were within QC Limits except for the RPD of Benzene. Sample SS02D was analyzed for site specific QC for 95-1 soil analysis. All matrix spike recoveries and %RPD were within QC limits. All Blank Spike recoveries were within QC limits.

All tuning criteria for BFB were met.

The initial and continuing calibration criteria were met for all analytes.

All surrogate standard recoveries were within acceptance limits.

All internal standard areas were within QC Limits.

All samples were analyzed within the holding time as specified in the method.

After screening, samples GW010S, OF001D, OF001S, OF002S and GW18SS were analyzed with smaller sample amounts to bring target analytes within the calibration range of the method.

No other analytical or QC problems were encountered.

#### Soil TOC

Two soil samples were analyzed for TOC by the Lloyd-Kahn method.

These samples were subcontracted to H2M Labs, ID #10478.

• 00001

#### EMCON 9703000158 PAGE 2

I certify this this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael K. Perry Laboratory Director Date

				1 / / / / /			
			)				
					n method	subout Lloyd Kahn	TOC is s
			J				
		3/15/97	3/14/97	95-4	water	GWTB4T	135427
		3/15/97	3/14/97	95-4	water	GW010S	135426
				95-4	water	CBLK2	135257
		3/14/97	3/13/97	95-1	soil	S	135123
		3/14/97	3/13/97	95-1, TOC	soil	QC SS02DS	135121
		3/14/97		95-1	soil	SSOIUD	135119
		3/14/97	3/13/97	95-1	soil	SULOSS	135118
		3/14/97	3/13/97	95-1, TOC	soil	SS01DS	135116
		3/14/97	3/13/97	95-4	water	OFTB3T	135105
		3/14/97	3/13/97	95-4	water	GW06DS	135104
		3/14/97	3/13/97	95-4	water	GW18DS	135103
		3/14/97	3/13/97	95-4	water	GW18SS	135102
		3/14/97	3/13/97	95-4	water	GW014S	135101
		3/14/97	3/13/97	95-4	water	SHOORS	135100
		3/14/97	3/13/97	95-4	water	OF002S	135099
		3/14/97	3/13/97	95-4	water	QC SW004S	135098
		3/14/97	3/13/97	95-4	water	OF001D	135097
		3/14/97	/13/	95-4	water	OF001S	135096
SOLIDS	(SOLIDS)	RECEIVED	SAMPLED				
ж	Нd	DATE	DATE	REQUESTED PARAMETERS	MATRIX	CLIENT/EPA ID	CAS JOB #
		MC ASPB	CLIENT: EMCON PROJECT: LMC PROTOCOL: A	SUBMISSION #:03-158 SUBMISSION #:03-158 DATE: 03/12/97 DATE REVISED: 03/17/97	X	REQUESTED: Y REQUESTED: Y EP: Mark Wilson : 04/12/97	DISKETTE REQUESTED CLIENT REP: Mark W DATE DUE: 04/12/97

#### ORGANIC QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
- P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form I and flagged with a "P".
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and ALL concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X As specified in Case Narrative.

10/95

EPA	SAMP	LE NO.
-----	------	--------

Lab Name:	CASVR	oc		Contract:	EMCON	GWTB4T	
Lab Code:	10145	Ca	se No.: 97-3-158	SAS No	o.: s	DG No.: GW148	3
Matrix: (soil/	water)	WATER	_	Lai	Sample ID:	135427 1.0	
Sample wt/v	ol:	25.0	(g/ml) ML	Lai	File ID:	R3535.D	
Level: (low/	med)	LOW	_	Da	te Received:		
% Moisture:	not dec.			Da	te Analyzed:	03/23/97	
GC Column:	RTX5	02. ID: 0.	53 (mm)	Dil	ution Factor:	1.0	
Soil Extract	Volume		(uL)	So	il Aliquot Volu	iwe.	(ul

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5 -	UI
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	1	U
78-93-3	2-Butanone	5	US
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	Ū
71-55-6	1,1,1-Trichloroethane	1	Ū
56-23-5	Carbontetrachloride	1	Ū
71-43-2	Benzene	1	U J
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	Ū
75-27-4	Bromodichloromethane	1	Ü
108-10-1	4-Methyl-2-Pentanone	5	Ū
10061-02-6	trans-1,3-Dichloropropene	1	Ū
108-88-3	Toluene	1	Ū J
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachioroethene	1	Ū
124-48-1	Dibromochloromethane	1	Ū
108-90-7	Chlorobenzene	1	U S
100-41-4	Ethylbenzene	1	U J
108-38-3	Xylenes (TOTAL)	1	UJ
100-42-5	Styrene	1	U 1
79-34-5	1,1,2,2-Tetrachloroethane	1	Ü
75-25-2	Bromoform	1	Ü
156-60-5	trans-1,2-Dichloroethene	1	Ū



Number TICs found: 0

COMPOUND

CAS NO.

TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

			· · · · · · · · ·		• •		
Lab Name:	CASVRO	oc		Contract:	EMCON	_ GWTB4T	
Lab Code:	10145	Cas	se No.: <u>97-3-1</u>	58 SAS No	o.: s	SDG No.: <u>GW148</u>	<u> </u>
Matrix: (soil/	water)	WATER		La	b Sample ID:	135427 1.0	
Sample wt/v	ol:	25.0	(g/ml) ML	La	b File ID:	R3535.D	
Level: (low/	med)	LOW	•	Da	ite Received:		
% Moisture:	not dec.			Da	ite Analyzed:	03/23/97	
GC Column:	RTX5	02. ID: 0.5	3 (mm)	Dil	lution Factor:	1.0	
Soil Extract	Volume		_ (uL)	So	il Aliquot Vol	ume:	(uL)
			(	CONCENTRA	TION UNITS:	:	
North an TIO	- <b>6</b> d.	•	(	(ug/L or ug/Kg)	) UG/L		

RT

EST. CONC.

Q

EPA SAMPLE NO.

**GW010S** Lab Name: CAS\ROC Contract: EMCON Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: GW14S Matrix: (soil/water) WATER Lab Sample ID: 135426 25 Sample wt/vol: 1.0 (g/ml) ML Lab File ID: R3521.D Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 03/22/97 GC Column: RTX502. ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume (uL) Soil Aliquot Volume:

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	25	U
75-01-4	Vinyl Chloride	25	U
74-83-9	Bromomethane	25	U
75-00-3	Chloroethane	25	U
67-64-1	Acetone	120	UJ
75-35-4	1,1-Dichloroethene	25	U
75-09-2	Methylene Chloride	25	J
75-15-0	Carbon Disulfide	25	د
75-35-3	1,1-Dichloroethane	380	
78-93-3	2-Butanone	120	U J
156-59-4	cis-1,2-Dichloroethene	150	
67-66-3	Chloroform	25	U
107-06-2	1,2-Dichloroethane	25	U
71-55-6	1,1,1-Trichloroethane	25	Ü
56-23-5	Carbontetrachloride	25	Ū
71-43-2	Benzene	25	U J
79-01-6	Trichloroethene	25	U
78-87-5	1,2-Dichloropropane	25	U
75-27-4	Bromodichloromethane	25	Ū
108-10-1	4-Methyl-2-Pentanone	120	Ū
10061-02-6	trans-1,3-Dichtoropropene	25	Ü
108-88-3	Toluene	25	U J
10061-01-5	cis-1,3-Dichloropropene	25	U
79-00-5	1,1,2-Trichloroethane	25	U
591-78-6	2-Hexanone	120	U
127-18-4	Tetrachloroethene	25	U
124-48-1	Dibromochloromethane	25	U
108-90-7	Chlorobenzene	25	
100-41-4	Ethylbenzene	25	U J
108-38-3	Xylenes (TOTAL)	25	U.\$
100-42-5	Styrene	25	UJ
79-34-5	1,1,2,2-Tetrachloroethane	25	U
75-25-2	Bromoform	25	U
156-60-5	trans-1,2-Dichloroethene	25	U

Cut 47

TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMP	LE	NO.

Lab Name:	CASVRO	C		Cont	ract:	EMCON		GV	W010S	
Lab Code:	10145	Cas	e No.: 97-3-	158 SA	S No	).:	SDO	3 No.:	GW14	<u>s</u>
Matrix: (soil/	water)	WATER			Lal	b Sample	ID: 1	35426 2	25	
Sample wt/v	ol:	1.0	(g/ml) ML		La	b File ID:	F	R3521.D		
Level: (low/	med)	LOW			Da	te Receiv	ed:			
% Moisture:	not dec.				Da	te Anaiyz	ed: 0	3/22/97		
GC Column:	RTX5	02. ID: 0.5	3 (mm)		Dil	ution Fac	tor: <u>1</u>	.0		
Soil Extract	Volume		_ (uL)		So	il Aliquot	Volum	ne:		(uL)
				CONCEN	ITRA	TION UNI	TS:			
Number TIC	s found:	0	_	(ug/L or u	g/Kg)	<u>UG</u>	L	_		
CAS NO.		COMPOU	IND			RT	EST	. CONC	).	Q

EPA SAMPLE NO.

Lab Name:	CASIRO	C		Contract:	EMCON	GW0145	
Lab Code:	10145	Cas	se No.: 97-3-158	SAS No	o.: §	BDG No.: GW14S	;
Matrix: (soil/v	vater)	WATER		_ La	b Sample ID:	: 135101 1.0	
Sample wt/vo	oi:	25.0	(g/ml) ML	La	b File ID:	R3523.D	
Level: (low/n	ned)	LOW		Da	ite Received:		
% Moisture: r	not dec.			Da	ite Analyzed:	03/22/97	
GC Column:	RTX50	02. ID: 0.5	3 (mm)	Di	lution Factor:	1.0	
Soil Extract \	/olume		_ (uL)	So	il Aliquot Vol	ume:	(uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg	) UG/L	Q
74-87-3	Chloromethane	1	Ü
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
67-64-1	Acetone	- 5	UJ
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	Ü
75-35-3	1,1-Dichloroethane	1	Ü
78-93-3	2-Butanone	5	UJ
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	Ü
71-55-6	1,1,1-Trichloroethane	1	Ü
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	UJ
79-01-6	Trichloroethene	1	Ü
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	Ū
10061-02-6	trans-1,3-Dichloropropene	1	Ü
108-88-3	Toluene	1	UJ
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	Ü
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	1	UJ
100-41-4	Ethylbenzene	1	UJ
108-38-3	Xylenes (TOTAL)	1	UJ
100-42-5	Styrene	1	UJ
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	Ü
156-60-5	trans-1,2-Dichloroethene	1	Ü

#### 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPI	LE NO
-----	-------	-------

			GW01	146
Lab Name: CAS\R	oc	Contract: EMCO		143
Lab Code: 10145	Case No.: 97-3-158	SAS No.:	SDG No.: GW	V14S
Matrix: (soil/water)	WATER	Lab Sampl	e ID: 135101 1.0	
Sample wt/vol:	25.0 (g/ml) ML	_ Lab File IC	: R3523.D	
Level: (low/med)	LOW	Date Rece	ived:	
% Moisture: not dec.		Date Analy	zed: 03/22/97	
GC Column: RTX	502. ID: <u>0.53</u> (mm)	Dilution Fa	ctor: 1.0	
Soil Extract Volume	(uL)	Soil Aliquo	t Volume:	(uL)
	co	NCENTRATION UN	NTS:	
Number TICs found:	(ug	/L or ug/Kg) UC	6/L	
CAS NO.	COMPOUND	RT	EST. CONC.	Q

Lab Name: CAS\ROC

EPA SAMPLE NO.

		GW06DS
Contract:	EMCON	

Lab Code:	10145	Cas	se No.: <u>97-3-158</u>	SAS No.:	SDG No.: GW14S	
Matrix: (soil/w	rater)	WATER	_	Lab Sample	ID: 135104 1.0	_
Sample wt/vo	t:	25.0	(g/ml) ML	Lab File ID:	R3533.D	
Level: (low/m	red)	LOW	_	Date Receive	ed:	
% Moisture: n	ot dec.			Date Analyzo	ed: 03/23/97	
GC Column:	RTX5	02. ID: 0.	53 (mm)	Dilution Fact	or: 1.0	
Soil Extract V	olume		(ul.)	Soil Aliquot V	Volume:	/t

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	UJ
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	0	J
78-93-3	2-Butanone	5	UJ
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	Ü
107-06-2	1,2-Dichloroethane	1	Ü
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	Ü
71-43-2	Benzene	1	U J
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	Ü
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	Ü
108-88-3	Toluene	1	<u>U</u> .1
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	Ü
591-78-6	2-Hexanone	5	Ü
127-18-4	Tetrachloroethene	1	Ü
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	1	UJ
100-41-4	Ethylbenzene	1	UJ
108-38-3	Xylenes (TOTAL)	1	UJ
100-42-5	Styrene	1	<u> </u>
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	Ü
156-60-5	trans-1,2-Dichloroethene	1	Ü

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	CASVRO	oc		Contra	ict:	EMCON	<u> </u>	G	W06D	S
Lab Code:	10145	Cas	se No.: <u>97-3</u>	-158 SAS	No	o.:	SD	G No.:	GW1	48
Matrix: (soil/	water)	WATER			La	b Sample	ID: 1	35104	1.0	
Sample wt/v	ol:	25.0	(g/ml) ML		La	b File ID:	<u> </u>	R3533.E	)	_
Level: (low/r	med)	LOW			Da	ite Receiv	/ed: _			_
% Moisture:	not dec.				Da	ite Anaiyz	ed: C	3/23/97	·	_
GC Column:	RTX5	02. ID: 0.5	3 (mm)		Dil	lution Fac	tor: _	1.0		
Soil Extract	Volume	<del> </del>	_ (uL)		So	il Aliquot	Volur	ne:		_ (uL)
				CONCENT	RA	TION UN	ITS:			
Number TIC	s found:	0	_	(ug/L or ug	/Kg	) UG	/L	<del></del>		
CAS NO.		COMPOL	IND			RT	EST	r. con	c.	Q

EPA SAMPLE NO.

Lab Name:	CASVR	oc		Contract:	EMCON	GW18DS	
Lab Code:	10145	Ca	se No.: <u>97-3-158</u>	SAS No	o.: ;	SDG No.: GW14S	_
Matrix: (soil/	water)	WATER	_	La	b Sample ID	: 135103 1.0	
Sample wt/v	ol:	25.0	(g/ml) ML	Lal	b File ID:	R3524.D	
Level: (low/	med)	LOW	_	Da	te Received	•	
% Moisture:	not dec.		<del></del>	Da	te Analyzed	03/22/97	
GC Column:	RTX5	02. ID: <u>0.</u>	53 (mm)	Dil	ution Factor	1.0	
Soil Extract	Volume		_ (uL)	So	il Aliquot Vo	lume: (	uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	٦
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	C
67-64-1	Acetone	5 -	υJ
75-35-4	1,1-Dichloroethene	1	_ _
75-09-2	Methylene Chloride	1	J
75-15-0	Carbon Disulfide	1	٦
75-35-3	1,1-Dichloroethane	1	
78-93-3	2-Butanone	5	UJ
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	Ū
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	UJ
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	Ü
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	Ū
108-88-3	Toluene	1	UJ
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	Ü
108-90-7	Chlorobenzene	1	υJ
100-41-4	Ethylbenzene	1	UJ
108-38-3	Xylenes (TOTAL)	1	UJ
100-42-5	Styrene	1	ŪĴ
79-34-5	1,1,2,2-Tetrachloroethane	1	Ü
75-25-2	Bromoform	1	Ų
156-60-5	trans-1,2-Dichloroethene	1	U

00013

#### 1E

### VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.
-----	--------	-----

Lab Name:	CAS\RC	C		Contract:	EMCO	v I	GW18	DS
Lab Code:	10145		se No.: <u>97-3</u>		-		No.: GW	/148
Matrix: (soil/w	vater)	WATER	_	L	ab Sample	D: 13	5103 1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML	L:	ab File ID:	R	3524.D	
Level: (low/n	ned)	LOW	_	D	ate Recei	ved:		
% Moisture: r	not dec.			D	ate Analy	zed: 03	/22/97	
GC Column:	RTX50	02. ID: 0.	53 (mm)	D	ilution Fac	tor: 1.0	0	
Soil Extract V	/olume		_ (uL)	s	oil Aliquot	Volume	):	(uL)
				CONCENTRA	TION UN	ITS:		
Number TICs	found:	0	_	(ug/L or ug/Ko	) UG	/L	_	
CAS NO.		COMPOL	JND		RT	EST.	CONC.	Q

EPA SAMPLE NO.

							GW18SS	,
ab Name:	CASVRO	)C			Contract:	EMCON	GW1033	
_ab Code:	10145	c	ase No.:	97-3-158	SAS No	.: sc	OG No.: GW14S	
Matrix: (soil/	water)	WATER	_		Lat	Sample ID:	135102 10	
Sample wt/v	ol:	2.5	(g/ml)	ML	Lat	File ID:	R3520.D	
_evel: (low/r	med)	LOW	_		Dat	te Received:		
% Moisture:	not dec.				Dat	te Analyzed:	03/22/97	
GC Column:	RTX50	<u>)2.</u> 1D: <u>(</u>	0.53 (n	nm)	Dila	ution Factor:	1.0 (×10)	
Soil Extract \	Volume		(uL)		Soi	il Aliquot Volu	me: (uL	_)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	10	U
75-01-4	Vinyl Chloride	10	U
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
67-64-1	Acetone	- 50	U 3
75-35-4	1,1-Dichloroethene	10	Ü
75-09-2	Methylene Chloride	10	U
75-15-0	Carbon Disulfide	10	U
75-35-3	1,1-Dichloroethane	130	
78-93-3	2-Butanone	50	UJ
156-59-4	cis-1,2-Dichloroethene	10	U
67-66-3	Chloroform	10	Ū
107-06-2	1,2-Dichloroethane	10	Ū
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbontetrachloride	10	U
71-43-2	Benzene	10	US
79-01-6	Trichloroethene	10	Ü
78-87-5	1,2-Dichloropropane	10	Ü
75-27-4	Bromodichloromethane	10	Ū
108-10-1	4-Methyl-2-Pentanone	50	U
10061-02-6	trans-1,3-Dichloropropene	10	Ü
108-88-3	Toluene	10	U5
10061-01-5	cis-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
591-78-6	2-Hexanone	50	U
127-18-4	Tetrachloroethene	10	U
124-48-1	Dibromochloromethane	10	U
108-90-7	Chlorobenzene	10	UJ
100-41-4	Ethylbenzene	10	UJ
108-38-3	Xylenes (TOTAL)	10	UJ
100-42-5	Styrene	10	UJ
79-34-5	1,1,2,2-Tetrachloroethane	10	U
75-25-2	Bromoform	10	U
156-60-5	trans-1,2-Dichloroethene	10	Ū

#### 1E

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

	- 4 - 5 - 5				<b>-</b> 14001	.	GV	V18SS	
Lab Name:	CASVRO	OC .		Contract:	EMCON	<u>√</u> [			
Lab Code:	10145	Case No.:	97-3-158	SAS No	o.:	_ SDG	S No.: _	GW14S	<u> </u>
Matrix: (soil/	water)	WATER		La	b Sample	ID: 13	35102 1	0	
Sample wt/v	ol:	2.5 (g/ml)	ML	La	b File ID:	R	3520.D		
Level: (low/	med)	LOW		Da	ite Receiv	ved: _			
% Moisture:	not dec.			Da	ite Analyz	zed: 0	3/22/97		
GC Column:	RTX5	02. ID: <u>0.53</u> (r	nm)	Dil	lution Fac	tor: 1	.0		
Soil Extract	Volume	(uL)		So	il Aliquot	Volum	e:		(uL)
				ICENTRA					
Number TIC	s found:	0	(ug/t	or ug/Kg	) <u>UG</u>	/L	_		
CAS NO.		COMPOUND			RT	EST	CONC		Q

COMPOUND

CAS NO.

EPA SAMPLE NO.

Q

Lab Name:	CASVRO	oc			Contract:	EMCON	_ L	OFIB31	
Lab Code:	10145	Cas	e No.: <u>97-</u>	3-158	SAS No	.:	SDG	No.: GW149	<u>S</u>
Matrix: (soil/	water)	WATER			Lat	Sample II	D: <u>135</u>	5105 1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML		Lat	File ID:	R3	534.D	
Level: (low/r	med)	LOW			Dat	te Receive	d:		
% Moisture:	not dec.				Dat	te Analyzed	1: <u>03/</u>	23/97	
GC Column:	RTX5	02. ID: <u>0.5</u>	3 (mm)		Dili	ution Facto	r. <u>1.0</u>		
Soil Extract \	Volume		(uL)		Soi	il Aliquot Vo	olume:	•	(uL

#### **CONCENTRATION UNITS:**

UG/L

(ug/L or ug/Kg)

74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	U 3
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	1	U
78-93-3	2-Butanone	5	US
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	Ü
71-55-6	1,1,1-Trichloroethane	1	Ü
56-23-5	Carbontetrachloride	1	Ü
71-43-2	Benzene	1	UJ
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	Ū
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	Ü
108-88-3	Toluene	1	ŪJ
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	Ū
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	Ū
108-90-7	Chlorobenzene	1	UI
100-41-4	Ethylbenzene	1	UJ
108-38-3	Xylenes (TOTAL)	1	UJ
100-42-5	Styrene	1	UJ
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
156-60-5	trans-1,2-Dichloroethene	1	U

C- <149

00017

#### 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.
-----	--------	-----

				<b></b>	D 00 0			0570	~-	
Lab Name:	CAS\RC	oc			Contract:	EMCON	<u></u>	OFTB	31	
Lab Code:	10145		Case No.:	97-3-158	SAS No	ı.:	_ SD	G No.: <u>GW</u>	′14S	
Matrix: (soil/	water)	WATER	2		Lal	Sample	ID: 1	35105 1.0	<del></del>	
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lai	b File ID:	1	R3534.D	_	
Level: (low/r	med)	LOW	··		Da	te Receiv	/ed: _			
% Moisture:	not dec.				Da	te Analyz	zed: (	03/23/97	<del></del>	
GC Column:	RTX5	02. ID:	<u>0.53</u> (r	nm)	Dil	ution Fac	tor: _	1.0		
Soil Extract \	Volume		(uL)		So	il Aliquot	Volur	ne:	(uL	.)
					NCENTRAT					
Number TIC:	s found:	0		(ug/	L or ug/Kg)	UG	/L		<del></del>	
CAS NO.		COMP	OUND			RT	ES	Γ. CONC.	Q	

EPA SAMPLE NO.

OF001D Lab Name: CAS\ROC Contract: EMCON Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: GW14S Matrix: (soil/water) WATER Lab Sample ID: 135097 10 Sample wt/vol: (g/ml) ML 2.5 Lab File ID: R3518.D Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 03/22/97 GC Column: RTX502. ID: 0.53 (mm) (×10) Dilution Factor: 1.0 Soil Extract Volume Soil Aliquot Volume: (uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	10	U
75-01-4	Vinyl Chloride	77	
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
67-64-1	Acetone	50-	US
75-35-4	1,1-Dichloroethene	10	U
75-09-2	Methylene Chloride	10	U
75-15-0	Carbon Disulfide	10	Ü
75-35-3	1,1-Dichloroethane	130	
78-93-3	2-Butanone	50	UJ
156-59-4	cis-1,2-Dichloroethene	41	
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	Ü
71-55-6	1,1,1-Trichloroethane	10	Ü
56-23-5	Carbontetrachloride	10	U
71-43-2	Benzene	10	UJ
79-01-6	Trichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	Ü
75-27-4	Bromodichloromethane	10	Ū
108-10-1	4-Methyl-2-Pentanone	50	U
10061-02-6	trans-1,3-Dichloropropene	10	Ū
108-88-3	Toluene	10	UJ
10061-01-5	cis-1,3-Dichloropropene	10	Ü
79-00-5	1,1,2-Trichloroethane	10	Ŭ
591-78-6	2-Hexanone	50	Ü
127-18-4	Tetrachloroethene	10	Ü
124-48-1	Dibromochloromethane	10	U
108-90-7	Chlorobenzene	10	U.S
100-41-4	Ethylbenzene	10	UJ
108-38-3	Xylenes (TOTAL)	10	UJ
100-42-5	Styrene	10	ŪĴ
79-34-5	1,1,2,2-Tetrachloroethane	10	U
75-25-2	Bromoform	10	U
156-60-5	trans-1,2-Dichloroethene	10	U

CJ-497

#### _ ____

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1E

Lab Name:	CASVRO	oc		Contrac	t: EMCC	NCNC	OF001	ID
Lab Code:	10145	Cas	se No.: <u>97-3</u>	-158 SAS	No.:	SDO	3 No.: <u>GW</u>	148
Matrix: (soil/	water)	WATER		!	Lab Samp	ole ID: 1	35097 10	
Sample wt/v	ol:	2.5	(g/ml) ML		Lab File II	D: <u>R</u>	3518.D	
Level: (low/r	med)	LOW			Date Rec	eived: _		
% Moisture:	not dec.		<b></b>		Date Anal	yzed: 0	3/22/97	
GC Column:	RTX50	02. ID: 0.5	3 (mm)		Dilution F	actor: 1	.0	
Soil Extract '	Volume		_ (uL)		Soil Aliqu	ot Volum	e:	(uL)
				CONCENTR	U NOITAS	NITS:		
Number TIC:	s found:	0	_	(ug/L or ug/l	(g) <u>U</u>	G/L		
CAS NO.		COMPOU	ND		RT	EST	. CONC.	Q

EPA SAMPLE NO.

OF001S Lab Name: CAS\ROC Contract: EMCON Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: GW14S WATER Matrix: (soil/water) Lab Sample ID: 135096 10 Sample wt/vol: 2.5 (g/ml) ML Lab File ID: R3517.D Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 03/22/97 GC Column: RTX502. ID: 0.53 (mm) Dilution Factor: 1.0 (x10) Soil Extract Volume Soil Aliquot Volume: (uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	10	U
75-01-4	Vinyl Chloride	87	
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
67-64-1	Acetone	50.	US
75-35-4	1,1-Dichloroethene	10	U
75-09-2	Methylene Chloride	10	U
75-15-0	Carbon Disulfide	10	U
75-35-3	1,1-Dichloroethane	140	
78-93-3	2-Butanone	50	UJ
156-59-4	cis-1,2-Dichloroethene	42	
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	U
71-55-6	1,1,1-Trichloroethane	10	Ü
56-23-5	Carbontetrachloride	10	Ū
71-43-2	Benzene	10	UJ
79-01-6	Trichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	Ū
108-10-1	4-Methyl-2-Pentanone	50	U
10061-02-6	trans-1,3-Dichloropropene	10	U
108-88-3	Toluene	10	UJ
10061-01-5	cis-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
591-78-6	2-Hexanone	50	U
127-18-4	Tetrachloroethene	10	U
124-48-1	Dibromochloromethane	10	U
108-90-7	Chlorobenzene	10	US
100-41-4	Ethylbenzene	10	U S
108-38-3	Xylenes (TOTAL)	.10	UJ
100-42-5	Styrene	10	UJ
79-34-5	1,1,2,2-Tetrachloroethane	10	U
75-25-2	Bromoform	10	U
156-60-5	trans-1,2-Dichloroethene	10	U

FORM I VOA

00021

95-4

#### 1E

### VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS OF001S Contract: EMCON Lab Name: CAS\ROC Lab Code: Case No.: 97-3-158 10145 SAS No.: SDG No.: GW14S Matrix: (soil/water) WATER Lab Sample ID: 135096 10 2.5 (g/ml) ML Sample wt/vol: Lab File ID: R3517.D Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 03/22/97 GC Column: <u>RTX502.</u> ID: <u>0.53</u> (mm) Dilution Factor: 1.0 Soil Extract Volume (uL) Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found:

CAS NO. COMPOUND RT EST. CONC. Q

EPA SAMPLE NO.

EPA SAMPLE NO.

**OF002S** 

Q

Lab Name:	CAS\RC	oc		Contract:	EMCON		
Lab Code:	10145	Ca	se No.: <u>97-3-158</u>	SAS No	o.: S	SDG No.: GW14S	<u>.                                    </u>
Matrix: (soil/\	water)	WATER	_	La	b Sample ID:	135099 2.0	
Sample wt/vo	ol:	12.5	(g/ml) ML	La	b File ID:	R3519.D	
Level: (low/r	ned)	LOW	_	Da	te Received:		
% Moisture:	not dec.			Da	te Analyzed:	03/22/97	
GC Column:	RTX5	02. ID: <u>0.</u>	53 (mm)	Dil	ution Factor:	1.0 (x2)	
Soil Extract \	√olume		(uL)	So	il Aliquot Vol	ume:	(uL

COMPOUND

CAS NO.

#### **CONCENTRATION UNITS:**

UG/L

(ug/L or ug/Kg)

74-87-3	Chloromethane	2	U
<u>75-01-4</u>	Vinyl Chloride	2	U
74-83-9	Bromomethane	2	U
75-00-3	Chloroethane	2	U
67-64-1	Acetone	10	U J
75-35-4	1,1-Dichloroethene	2	U
75-09-2	Methylene Chloride	2	U
75-15-0	Carbon Disulfide	2	U
75-35-3	1,1-Dichloroethane	29	
78-93-3	2-Butanone	10	U S
156-59-4	cis-1,2-Dichloroethene	2	J
67-66-3	Chloroform	2	U
107-06-2	1,2-Dichloroethane	2	U
71-55-6	1,1,1-Trichloroethane	5	
56-23-5	Carbontetrachloride	2	U
71-43-2	Benzene	2	UJ
79-01-6	Trichloroethene	8	
78-87-5	1,2-Dichloropropane	2	U
75-27-4	Bromodichloromethane	2	U
108-10-1	4-Methyl-2-Pentanone	10	U
10061-02-6	trans-1,3-Dichloropropene	2	Ū
108-88-3	Toluene	2	UJ
10061-01-5	cis-1,3-Dichloropropene	2	U
79-00-5	1,1,2-Trichloroethane	2	U
591-78-6	2-Hexanone	10	U
127-18-4	Tetrachloroethene	2	U
124-48-1	Dibromochloromethane	2	U
108-90-7	Chlorobenzene	2	UJ
100-41-4	Ethylbenzene	2	U 🗸
108-38-3	Xylenes (TOTAL)	2	U a
100-42-5	Styrene	2	UJ
79-34-5	1,1,2,2-Tetrachloroethane	2	U
75-25-2	Bromoform	2	U
156-60-5	trans-1,2-Dichloroethene	2	U

0-51-11

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

								1 ~		.
Lab Name:	CASVRC	C			Contract:	EMCON	<u> </u>		F002S	•
Lab Code:	10145	Ca	se No.: <u>97</u>	-3-158	SAS N	o.:	_ SD	G No.:	GW14	IS_
Matrix: (soil/v	vater)	WATER	_		La	b Sample	ID: 1	35099 2	2.0	_
Sample wt/vo	ol:	12.5	(g/ml) <u>N</u>	IL	La	b File ID:	F	R3519.D	)	_
Level: (low/n	ned)	LOW	_		Da	ate Receiv	/ed: _			_
% Moisture:	not dec.				Da	ate Analyz	ed: 0	3/22/97	,	_
GC Column:	RTX50	02. ID: <u>0.</u>	53 (mm	)	Di	lution Fac	tor: <u>1</u>	.0		_
Soil Extract \	/olume		_ (uL)		So	oil Aliquot	Volun	ne:		_ (uL)
				CO	NCENTRA	TION UN	ITS:			
Number TICs	s found:	0	_	(ug/	/L or ug/Kg	) <u>UG</u>	<u>L</u>			
CAS NO.		COMPO	DNL			RT	EST	. CONC	<b>5.</b>	Q

EPA SAMPLE NO.

SSFB2R

Lab Name:	CASVRO	DC.			Contract:	EMCON			
Lab Code:	10145	Cas	e No.:	97-3-158	SAS No	o.:	SDG No.:	GW14S	
Matrix: (soil/v	water)	WATER			Lai	b Sample II	D: <u>135241 1</u>	.0	
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lal	b File ID:	R3536.D		
Level: (low/r	ned)	LOW			Da	te Receive	d:		
% Moisture: r	not dec.				Da	te Analyze	d: <u>03/23/97</u>		
GC Column:	RTX5	02. ID: <u>0.5</u>	<u>3</u> (n	nm)	Dil	ution Facto	or: 1.0		
Soil Extract \	√olume		(uL)		So	il Aliquot V	olume:		(uL

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	<del></del>	Q
74-87-3	Chloromethane		1	Ū
75-01-4	Vinyl Chloride		1	U
74-83-9	Bromomethane		1	U
75-00-3	Chloroethane		1	Ū
67-64-1	Acetone		5	UJ
75-35-4	1,1-Dichloroethene		1	U
75-09-2	Methylene Chloride		1	Ü
75-15-0	Carbon Disulfide		1	Ū
75-35-3	1,1-Dichloroethane		1	U
78-93-3	2-Butanone		5	US
156-59-4	cis-1,2-Dichloroethene		1	U
67-66-3	Chloroform		1	Ū
107-06-2	1,2-Dichloroethane		1	Ū
71-55-6	1,1,1-Trichloroethane		1	Ü
56-23-5	Carbontetrachloride		1	Ū
71-43-2	Benzene		1	US
79-01-6	Trichloroethene		1	U
78-87-5	1,2-Dichloropropane		1	Ū
75-27-4	Bromodichloromethane		1	Ū
108-10-1	4-Methyl-2-Pentanone		5	Ū
10061-02-6	trans-1,3-Dichloropropene		1	Ū
108-88-3	Toluene		1	ŪĴ
10061-01-5	cis-1,3-Dichloropropene		1	U
79-00-5	1,1,2-Trichloroethane		1	Ū
591-78-6	2-Hexanone		5	Ū
127-18-4	Tetrachloroethene		1	Ū
124-48-1	Dibromochloromethane		1	Ū
108-90-7	Chlorobenzene		1	Ū,S
100-41-4	Ethylbenzene		1	U.1
108-38-3	Xylenes (TOTAL)		1	UJ
100-42-5	Styrene		1	UJ
79-34-5	1,1,2,2-Tetrachloroethane	1	1	U
75-25-2	Bromoform		1	Ū
156-60-5	trans-1,2-Dichloroethene		1	Ü

1

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SSFB2R

EPA SAMPLE NO.

Lab Name:	CASVRO	oc		·	Contract	: EMCON	1	
Lab Code:	10145	Cas	se No.: <u>97</u>	7-3-158	SAS	lo.:	_ SDG No.: GV	V14S
Matrix: (soil/	water)	WATER	-		L	ab Sample	ID: <u>135241 1.0</u>	
Sample wt/v	ol:	25.0	(g/ml) <u>N</u>	//L	L	ab File ID:	R3536.D	
Level: (low/	med)	LOW	_		D	ate Receiv	ved:	<del></del>
% Moisture:	not dec.				C	ate Analyz	zed: <u>03/23/97</u>	
GC Column:	RTX5	02. ID: 0.	53 (mm	1)	C	ilution Fac	tor: <u>1.0</u>	
Soil Extract	Volume		_ (uL)		S	ioil Aliquot	Volume:	(uL)
Number TIC	s found:	0	_		NCENTR/ L or ug/K	ATION UN g) <u>UG</u>		
CAS NO.		COMPOL	JND			RT	EST. CONC.	Q

EPA SAMPLE NO.

SW004S

Lab Name:	CASIR	oc		Contract:	EMCON	
Lab Code:	10145	Ca:	se No.: <u>97-3-158</u>	SAS No	).:	SDG No.: GW14S
Matrix: (soil/v	water)	WATER		Lal	Sample ID	: 135098 1.0
Sample wt/vo	ol:	25.0	(g/ml) ML	Lal	File ID:	R3530.D
Level: (low/r	ned)	LOW		Da	te Received	:
% Moisture: ı	not dec.			Da	te Analyzed	: 03/23/97
GC Column:	RTX5	02. ID: 0.	53 (mm)	Dil	ution Factor	: <u>1.0</u>
Soil Extract \	Volume		_ (uL)	So	il Aliquot Vo	lume: (uL

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
74-87-3	Chloromethane			1	U
75-01-4	Vinyl Chloride			1	U
74-83-9	Bromomethane			1	U
75-00-3	Chloroethane			1	U
67-64-1	Acetone			5	υS
75-35-4	1,1-Dichloroether	ne		1	U
75-09-2	Methylene Chlori	de		1	U
75-15-0	Carbon Disulfide			1	Ū
75-35-3	1,1-Dichloroethar	ne		1	U
78-93-3	2-Butanone			5	Uゴ
156-59-4	cis-1,2-Dichloroe	thene		4	
67-66-3	Chloroform			1	U
107-06-2	1,2-Dichloroethar	ne		1	U
71-55-6	1,1,1-Trichloroett			1	U
56-23-5	Carbontetrachlor	ide		1	Ū
71-43-2	Benzene			1	U Z
79-01-6	Trichloroethene			4	
78-87-5	1,2-Dichloropropa	ane		1	U
75-27-4	Bromodichlorome			1	Ū
108-10-1	4-Methyl-2-Penta	none		5	Ū
10061-02-6	trans-1,3-Dichlor			1	Ü
108-88-3	Toluene			1	UJ
10061-01-5	cis-1,3-Dichtorop	ropene		1	Ū
79-00-5	1,1,2-Trichloroeti			1	Ü
591-78-6	2-Hexanone			5	U
127-18-4	Tetrachloroethen	е		1	U
124-48-1	Dibromochlorom	ethane		1	U
108-90-7	Chlorobenzene			1	UJ
100-41-4	Ethylbenzene			1	UJ
108-38-3	Xylenes (TOTAL)	)	1	1	UJ
100-42-5	Styrene			1	<del>U 3</del>
79-34-5	1,1,2,2-Tetrachio	roethane		1	Ü
75-25-2	Bromoform			1	Ū
156-60-5	trans-1,2-Dichlor	oethene		1	Ū

C3491

FORM I VOA

95-4

EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name:	CAS\RC	oc			Contract:	EMCON	<u> </u>	3	VVUU45	
Lab Code:	10145	Cas	e No.: <u>97-</u> 3	3-158	SAS No	).:	_ SDC	3 No.:	GW148	<u> </u>
Matrix: (soil/	water)	WATER			Lai	b Sample	ID: <u>1</u>	35098	1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML		Lai	b File ID:	R	3530.D	)	
Level: (low/r	med)	LOW			Da	te Receiv	/ed: _			
% Moisture:	not dec.				Da	te Analyz	ed: 0	3/23/97	<u> </u>	
GC Column:	RTX5	02. ID: 0.5	3 (mm)		Dil	ution Fac	tor: 1	.0		
Soil Extract \	Volume		_ (uL)		So	il Aliquot	Volum	e:		(uL)
				CON	NCENTRAT	TION UNI	ITS:			
Number TIC:	s found:	0	_	(ug/	L or ug/Kg)	<u>UG/</u>	rL	_		
CAS NO.		COMPOU	ND			RT	EST	. CON	<b>c</b> .	Q

EPA SAMPLE NO.

SW006S Lab Name: CAS\ROC Contract: EMCON Case No.: 97-3-158 Lab Code: 10145 SAS No.: SDG No.: GW14S Matrix: (soil/water) WATER Lab Sample ID: 135100 1.0 Sample wt/vol: 25.0 (g/ml) ML Lab File ID: R3522.D LOW Level: (low/med) Date Received: % Moisture: not dec. Date Analyzed: 03/22/97 GC Column: RTX502. ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume (uL) Soil Aliquot Volume: (uL)

COMPOUND

CAS NO.

#### **CONCENTRATION UNITS:**

UG/L

(ug/L or ug/Kg)

	(ug. 1 0: 1g. 1g.	,	_
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	UJ
75-35-4	1,1-Dichloroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	1	U
78-93-3	2-Butanone	5	UJ
156-59-4	cis-1,2-Dichloroethene	5	
67-66-3	Chloroform	0	J
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	UJ
79-01-6	Trichloroethene	6	
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	Ū
10061-02-6	trans-1,3-Dichloropropene	1	U
108-88-3	Toluene	1	UJ
10061-01-5	cis-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	1	UJ
100-41-4	Ethylbenzene	1	US
108-38-3	Xylenes (TOTAL)	1	US
100-42-5	Styrene	1	UJ
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
156-60-5	trans-1,2-Dichloroethene	1	U

Control

00029

## 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

								1	
Lab Name:	CASIRO	<u> </u>	<u>-</u>	Contract	t:	EMCON	<u> </u>	SW000	3S
Lab Code:	10145	Cas	e No.: <u>97-3-1</u>	58 SAS I	No	).:	SD	G No.: <u>GW</u>	148
Matrix: (soil/v	vater) <u></u>	WATER		L	al	o Sample	ID: 1	35100 1.0	
Sample wt/vo	ol: <u>2</u>	25.0	(g/ml) ML	L	al	b File ID:	<u> </u>	R3522.D	
Levei: (low/n	ned) <u>l</u>	LOW		Ε	Da	te Receiv	ed:		
% Moisture: r	not dec.		. <del></del>		)a	te Analyz	ed: C	3/22/97	
GC Column:	RTX502	2. ID: <u>0.5</u>	3 (mm)	מ	Dil	ution Fac	tor: <u>1</u>	.0	
Soil Extract \	/olume _		_ (uL)	\$	So	il Aliquot	Volun	ne:	(uL)
North a Tio	- e al.			CONCENTR ug/L or ug/K					
Number TICs	s rouna:	0	-						- <u>-</u>
CAS NO.		COMPOU	ND			RT	FST	CONC	0

COMPOUND

CAS NO.

EPA SAMPLE NO.

SS01DS

Q

Lab Name:	CAS/RC	C		Contract:	EMCON_	330103
Lab Code:	10145	Cas	se No.: <u>97-3-158</u>	SAS No	o.: S	DG No.: GW14S
Matrix: (soil/v	vater)	SOIL		Lal	b Sample ID:	135116 1.0
Sample wt/vo	ol:	5.0	(g/ml) G	Lai	b File ID:	ZA260.D
Level: (low/n	ned)	LOW		Da	te Received:	
% Moisture: r	not dec.	26.5	<del></del>	Da	te Analyzed:	03/24/97
GC Column:	RTX50	02. ID: 0.5	3 (mm)	Dil	ution Factor:	1.0
Soil Extract V	/olume		- ^(uL)	So	il Aliquot Vol	ume: (u
Level: (low/n % Moisture: r GC Column:	ned) not dec. RTX50	LOW 26.5	53 (mm)	- Da Da Dil	te Received: te Analyzed: ution Factor:	03/24/97

### **CONCENTRATION UNITS:**

UG/KG

(ug/L or ug/Kg)

74-87-3	Chloromethane	14	U
75-01-4	Vinyl chloride	14	U
75-00-3	Chloroethane	14	U
74-83-9	Bromomethane	14	U
67-64-1	Acetone	14	U
75-35-4	1,1-Dichloroethene	14	U
75-09-2	Methylene chloride	3	J
75-15-0	Carbon disulfide	14	U
75-34-3	1,1-Dichloroethane	14	U
78-93-3	2-Butanone	14	U
540-59-0	1,2-Dichloroethene (total)	14	U
67-66-3	Chloroform	14	U
107-06-2	1,2-Dichloroethane	14	U
71-55-6	1,1,1-Trichloroethane	14	U
56-23-5	Carbon tetrachloride	14	U
71-43-2	Benzene	14	U
79-01-6	Trichloroethene	2	J
78-87-5	1,2-Dichloropropane	14	U
75-27-4	Bromodichloromethane	14	U
10061-01-5	cis-1,3-Dichloropropene	14	U
10061-02-6	trans-1,3-Dichloropropene	14	U
79-00-5	1,1,2-Trichloroethane	14	U
124-48-1	Dibromochloromethane	14	C
75-25-2	Bromoform	14	Ü
108-10-1	4-Methyl-2-pentanone	14	U
108-88-3	Toluene	14	U
591-78-6	2-Hexanone	14	U
127-18-4	Tetrachloroethene	14	U
108-90-7	Chlorobenzene	14	U
100-41-4	Ethylbenzene	14	U
1330-20-7	Xylenes (total)	14	U
100-42-5	Styrene	14	U
108-88-3	1,1,2,2-Tetrachloroethane	14	U

کر کرام کامال

PH-4

3/90 . 00031

#### NYSDEC Sample No.:SS01DS

# 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: -Matrix: (soil/water) SOIL
Sample wt/vol: 5.0 (g/mL)G

Sample wt/vol: 5.0 Level (low/med): LOW

% Moisture: 26.5

Column (pack/cap): CAP

Number TIC's found: 2

Contract: EMCON

SAS No.: -- SDG No.:GW14S

Lab Sample ID: 135116 Lab File ID: ZA260 Date Received: 03/14/97 Date Analyzed: 03/24/97

Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
_1	-Unknown-	3.41	12	<b></b>
2. 71238	1-Propanol_	6.56	10	JN
3.			_	
4.	Parible 10h. of oct			
5.				
6.				
7.				
8.				
ำ.				
11. 12.				
11.				
12.				
13.				
14.				
15.				
16.			1	
17.				
18.				
19.				
20.				
21.				
22.			ļ	
23.				
24.				
25.				
24. 25. 26.			<u> </u>	
27.				
28.				
29.				
30.				

FORM I VOA-TIC B-103

**₩**· 00032

COMPOUND

CAS NO.

EPA SAMPLE NO.

Q

_ab Name:	CAS/RC	oc			Contract:	EMCON		550100	
Lab Code:	10145		Case No.:	97-3-158	SAS No	.:	SDC	3 No.: GW14S	
Matrix: (soil/	water)	SOIL			Lat	Sample II	D: <u>1</u>	35119 1.0	
Sample wt/vo	ol:	5.0	(g/ml)	<u>G</u>	Lat	File ID:	<u>z</u>	A261.D	
_evel: (low/r	ned)	LOW	<u>-</u>		Dat	te Receive	d:		
% Moisture: ı	not dec.	21.8			Dat	te Analyzed	d: 0	3/24/97	
GC Column:	RTX50	02. ID:	<u>0.53</u> (r	nm)	Dili	ution Facto	r: <u>1</u>	.0	
Soil Extract \	√olume		(uL)		Soi	il Aliquot V	olum	e:	(uL)

## **CONCENTRATION UNITS:**

UG/KG

(ug/L or ug/Kg)

	(ug/2 0. ug/1(g)	<u> </u>	•
74-87-3	Chloromethane	13	U
75-01-4	Vinyl chloride	13	U
75-00-3	Chloroethane	13	U
74-83-9	Bromomethane	13	U
67-64-1	Acetone	13	U
75-35-4	1,1-Dichloroethene	13	U
75-09-2	Methylene chloride	3	J
75-15-0	Carbon disulfide	13	U
75-34-3	1,1-Dichloroethane	13	U
78-93-3	2-Butanone	13	U
540-59-0	1,2-Dichloroethene (total)	1	J
67-66-3	Chloroform	13	U
107-06-2	1,2-Dichloroethane	13	Ü
71-55-6	1,1,1-Trichtoroethane	13	U
56-23-5	Carbon tetrachloride	13	U
71-43-2	Benzene	13	U
79-01-6	Trichloroethene	5	J
78-87-5	1,2-Dichloropropane	13	Ü
75-27-4	Bromodichtoromethane	13	U
10061-01-5	cis-1,3-Dichloropropene	13	U
10061-02-6	trans-1,3-Dichloropropene	13	Ü
79-00-5	1,1,2-Trichloroethane	13	Ü
124-48-1	Dibromochloromethane	13	U
75-25-2	Bromoform	13	U
108-10-1	4-Methyl-2-pentanone	13	U
108-88-3	Toluene	13	U
591-78-6	2-Hexanone	13	Ü
127-18-4	Tetrachloroethene	13	Ü
108-90-7	Chlorobenzene	13	Ü
100-41-4	Ethylbenzene	13	U
1330-20-7	Xylenes (total)	13	Ü
100-42-5	Styrene	13	U
108-88-3	1,1,2,2-Tetrachloroethane	13	Ü

#### NYSDEC Sample No.:SS01UD

# 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: -Matrix: (soil/water) SOIL
Sample wt/vol: 5.0 (g/mL)G

Level (low/med): LOW % Moisture: 21.8

Column (pack/cap): CAP

Number TIC's found: 1

Contract: EMCON

SAS No.: -- SDG No.:GW14S

Lab Sample ID: 135119
Lab File ID: ZA261
Date Received:03/14/97
Date Analyzed: 03/24/97
Dilution Factor: 1.0
Concentration Units:

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
 l .	Unknown Q	3.37	7.4	J B
2.				
3.			_	
4.		-		
5.				
5.				
7.				
3.				
		1	Ţ i	
•				
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
0.			·	
1.				
2.				
3.				
4				
5				
6.				
7.				
8.				
9.				

FORM I VOA-TIC B-103

EPA SAMPLE NO.

SSOIUS

Lab Name:	CAS/RC	oc			Contract:	EMCON		]
Lab Code:	10145		Case No.:	97-3-158	SAS No	).:	SDG No.: GW145	3
Matrix: (soil/v	vater)	SOIL			Lal	Sample I	D: <u>135118 1.0</u>	
Sample wt/vo	ol:	5.0	(g/ml)	G	Lai	b File ID:	ZA263.D	
Level: (low/n	ned)	LOW			Da	te Received	d:	
% Moisture: r	not dec.	22.8			Da	te Analyzed	i: <u>03/24/97</u>	
GC Column:	RTX50	02. ID:	<u>0.53</u> (n	nm)	Dil	ution Factor	r: <u>1.0</u>	
Soil Extract V	olume		(uL)		So	il Aliquot Vo	olume:	(uL

## **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane	13	U
75-01-4	Vinyl chloride	13	U
75-00-3	Chloroethane	13	U
74-83-9	Bromomethane	13	U
67-64-1	Acetone	2	J
75-35-4	1,1-Dichloroethene	13	U
75-09-2	Methylene chloride	2	J
75-15-0	Carbon disulfide	13	U
75-34-3	1,1-Dichloroethane	13	U
78-93-3	2-Butanone	13	U
540-59-0	1,2-Dichloroethene (total)	2	J
67-66-3	Chloroform	13	U
107-06-2	1,2-Dichloroethane	13	U
71-55-6	1,1,1-Trichloroethane	13	U
56-23-5	Carbon tetrachloride	13	U
71-43-2	Benzene	13	U
79-01-6	Trichloroethene	6	J
78-87-5	1,2-Dichloropropane	13	U
75-27-4	Bromodichloromethane	13	U
10061-01-5	cis-1,3-Dichloropropene	13	U
10061-02-6	trans-1,3-Dichloropropene	13	U
79-00-5	1,1,2-Trichloroethane	13	U
124-48-1	Dibromochloromethane	13	U
75-25-2	Bromoform	13	U
108-10-1	4-Methyl-2-pentanone	13	U
108-88-3	Toluene	13	U
591-78-6	2-Hexanone	13	U
127-18-4	Tetrachloroethene	13	U
108-90-7	Chlorobenzene	13	U
100-41-4	Ethylbenzene	13	U
1330-20-7	Xylenes (total)	13	U
100-42-5	Styrene	13	U
108-88-3	1,1,2,2-Tetrachloroethane	13	Ü

#### NYSDEC Sample No.:SS01US

# 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --Matrix: (soil/water) SOIL

Sample wt/vol: 5.0 (g/mL)G

Level (low/med): LOW % Moisture: 22.8

Column (pack/cap): CAP

Number TIC's found: 2

Contract: EMCON

SAS No.: -- SDG No.:GW14S

Lab Sample ID: 135118 Lab File ID: ZA263

Date Received: 03/14/97 Date Analyzed: 03/24/97

Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1	Unknown K —	3.49	16	<u></u>
2.	Unknown	6.59	8.0	J
3.				
4.				
5.				
_6.				
7.				
8.				
9.				
.0.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20. 21.				
21.				
22.				
23.				
24.				
24. 25. 26.				
26.				
27.				
28.				
29.				
30.				

FORM I VOA-TIC B-103

EPA SAMPLE NO.

Q

Lab Name:	CAS/RC	С		Contract:	EMCON	SS02DS	
Lab Code:	10145	Ca	se No.: <u>97-3-158</u>	SAS No.	: SC	OG No.: GW14S	_
Matrix: (soil/v	vater)	SOIL	_	Lab	Sample ID:	135121 1.0	
Sample wt/vo	ol:	5.0	(g/ml) G	Lab	File ID:	ZA256.D	
Level: (low/n	ned)	LOW	_	Date	e Received:		
% Moisture: r	not dec.	23.7		Date	e Analyzed:	03/24/97	
GC Column:	RTX50	02. ID: 0.	53 (mm)	Dilu	tion Factor.	1.0	
Soil Extract \	/olume		_ (uL)	Soil	Aliquot Volu	me:	(uL)

COMPOUND

CAS NO.

## **CONCENTRATION UNITS:**

UG/KG

(ug/L or ug/Kg)

74-87-3	Chloromethane	13	U
75-01-4	Vinyl chloride	13	U
75-00-3	Chloroethane	21	
74-83-9	Bromomethane	13	U
67 <b>-</b> 64-1	Acetone	4	J
75-35-4	1,1-Dichloroethene	2	J
75-09-2	Methylene chloride	4	J
75-15-0	Carbon disulfide	3	J
75-34-3	1,1-Dichloroethane	22	
78-93-3	2-Butanone	13	U
540-59-0	1,2-Dichloroethene (total)	19	
67-66-3	Chloroform	13	U
107-06-2	1,2-Dichloroethane	13	U
71-55-6	1,1,1-Trichloroethane	13	U
56-23-5	Carbon tetrachloride	13	Ü
71-43-2	Benzene	13	U
79-01-6	Trichloroethene	22	
78-87-5	1,2-Dichloropropane	13	Ü
75-27-4	Bromodichloromethane	13	U
10061-01-5	cis-1,3-Dichloropropene	13	U
10061-02-6	trans-1,3-Dichloropropene	13	U
79-00-5	1,1,2-Trichloroethane	13	Ü
124-48-1	Dibromochloromethane	13	U
75-25-2	Bromoform	13	U
108-10-1	4-Methyl-2-pentanone	13	Ū
108-88-3	Toluene	13	U
591-78-6	2-Hexanone	13	U
127-18-4	Tetrachloroethene	13	U
108-90-7	Chlorobenzene	13	Ū
100-41-4	Ethylbenzene	13	Ü
1330-20-7	Xylenes (total)	13	Ü
100-42-5	Styrene	13	Ü
108-88-3	1,1,2,2-Tetrachioroethane	13	U

3/90

· 00037

#### NYSDEC Sample No.:SS02DS

# 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Con

Lab Code: 10145 Case No.: --

Matrix: (soil/water) SOIL Sample wt/vol: 5.0 (g/mL)G

Level (low/med): LOW % Moisture: 23.7

Column (pack/cap): CAP

column (pack/cap). chi

Number TIC's found: 0

Contract: EMCON

SAS No.: -- SDG No.:GW14S

Lab Sample ID: 135121 Lab File ID: ZA256 Date Received:03/14/97 Date Analyzed: 03/24/97 Dilution Factor: 1.0

Dilution Factor: 1.0
Concentration Units:
(ug/L or ug/Kg) UG/KG

CAS NUMBER COMPOUND NAME RT EST.CONC. Q _____ 2. 3. 4. 5. 6. 8. <u>ə.</u> J. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. <u> 26.</u> 27. 28. <u> 29.</u> 30.

> FORM I VOA-TIC B-103

EPA SAMPLE NO.

Lah Namar CAS/D	00	Contract: EMC	N.	SS02U	JS	
	OC			L		l
Lab Code: 10145	Case No.: 97-3-158	_ SAS No.:	SD	G No.: <u>GW</u>	14S	
Matrix: (soil/water)	SOIL	Lab Samı	ole ID: 1	35123 1.0	<u></u>	
Sample wt/vol:	5.0 (g/ml) G	Lab File I	D: <u>Z</u>	A262.D		
Level: (low/med)	LOW	Date Rec	eived:			
% Moisture: not dec.	23.7	Date Ana	lyzed: 0	3/24/97		
GC Column: RTX5	02. ID: 0.53 (mm)	Dilution F	actor: 1	.0		
Soil Extract Volume	<u> </u>		_	ne:	_	)
Oon Extraor Volumo	(42)	oon / mqa	01 10.4.			•
	CO	NCENTRATION L	INITS:			
CAS NO.		/Lorug/Kg) U			Q	
one ne.	(49.					
74-87-3	Chloromethane			13	U	
75-01-4	Vinyl chloride			13	U	
75-00-3	Chloroethane			11	J	
74-83-9	Bromomethane			13	U	
67-64-1	Acetone			13	U	
75-35-4	1,1-Dichloroethene			13	U	
75-09-2	Methylene chloride			2	J	
75-15-0	Carbon disulfide		110-110	13	U	
75-34-3	1,1-Dichloroethane			10	J	1
78-93-3	2-Butanone			13	U	
540-59-0	1,2-Dichloroethene (to	tal)		13	Ü	
67-66-3	Chloroform			13	U	
107-06-2	1,2-Dichloroethane		· · · · · ·	13	U	
71-55-6	1,1,1-Trichloroethane			13	U	
56-23-5	Carbon tetrachloride			13	Ü	
71-43-2	Benzene			13	Ü	
79-01-6	Trichloroethene		··-	13	Ū	
78-87-5	1,2-Dichloropropane			13	U	1
75-27-4	Bromodichloromethan	Α		13	Ŭ	د چ
10061-01-5	cis-1,3-Dichloropropen			13	ŭ	
10061-02-6	trans-1,3-Dichloroprop			13	Ü	
79-00-5	1,1,2-Trichloroethane			13	Ü	
124-48-1	Dibromochloromethan			13	Ü	
75-25-2	Bromoform			13	Ü	1 2/1/97
108-10-1	4-Methyl-2-pentanone			13	Ü	) )   '
108-88-3	Toluene			13	U	
591-78-6	2-Hexanone			13	Ü	
031-70-0	Z-I ICABIIOTIC			10		

Tetrachloroethene

1,1,2,2-Tetrachloroethane

Chlorobenzene

Ethylbenzene

Xylenes (total)

Styrene

127-18-4

108-90-7

100-41-4

1330-20-7

100-42-5

108-88-3

13

13

13

13

13

13

U

U

U

Ū

U

#### NYSDEC Sample No.:SS02US

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: -Matrix: (soil/water) SOIL
Sample wt/vol: 5.0 (g/mL)G

Level (low/med): LOW % Moisture: 23.7

Column (pack/cap): CAP

Number TIC's found: 1

Contract: EMCON

SAS No.: -- SDG No.:GW14S

Lab Sample ID: 135123 Lab File ID: ZA262 Date Received:03/14/97 Date Analyzed: 03/24/97 Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.	Unknown	6.56	8.1	 J
2.				
3.			-	
4.				
5.				
6.				<del></del>
7.				
8.				
•				
<u>-7.</u>				
11.				
12.				
13.				
14. 15.				
16.				
17.		<del></del>		
18.				
19.	<del></del>			
20.				
21.				
22.				
22. 23. 24.		<del>}</del>		
24.		· · · · · · · · · · · · · · · · · · ·		
25.				
26.				
27.				
28.				
29.				
30.				

FORM I VOA-TIC B-103 5/5 Broad Hollow Hoad Melville, M.Y. 11/4/ (516)694-3040 FAX: (516)420-8436 NYSDG

HZM LAUS, INC.

COLUMBIA ANALYTICAL SERVICES 700 EXCHANGE STREET ROCHESTER, NY 14608

03/17/97 CL99 DATE RECEIVED...
COLLECTED BY...
PROJECT NO....

SOIL

TOTAL SOLIDS 15.1

> mg/kg 27300

LOCATION

DATE COLLECTED

LAB NO.

135116

03/13/97 11:20 GRAB

9707108 ROUTINE

T0C

80.0

22000

135121

03/13/97 13:40 GRAB

9707109 ROUTINE

NYSDOH 10# 10478

ORIGINAL

LABORATORY DIRECTOR

DATE 15SUED 03/24/97

... ormation purmoses only Bonnet for clines

REMARKS:

**▶** · 00041

COPIES TO:

# WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: CAS\ROC Contract: EMCON SAS No.: _____ SDG No.: GW14S 10145 Lab Code: Case No.: 97-3-158

	EPA	SMC1	тот
	SAMPLE NO.	#	OUT
01	VBLK01	97	0
02	OF001S	101	0
03	OF001D	107	0
04	OF002S	108	0
05	GW18SS	107	0
06	GW010S	107	0
07	SW006S	111	0
08	GW014S	95	0
09	GW18DS	94	0

QC LIMITS

SMC1

= SURR2,BFB

(80-120)

# Column to be used to flag recovery values

D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

95-4

^{*} Values outside of contract required QC limits

## 2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

CASVROC Lab Name: Contract: EMCON

SAS No.: SDG No.: GW14S Lab Code: 10145 Case No.: 97-3-158

	EPA	SMC1	тот
	SAMPLE NO.	#	OUT
01	VBLK02	93	0
02	LCS	108	0
03	VBLK02MS	96	0
04	SW004S	100	0
05	SW004SMS	107	0
06	SW004SMSD	114	0
07	GW06DS	112	0
80	OFTB3T	118	0
09	GWTB4T	95	0
10	SSFB2R	90	0
11	CBLK2	116	0

QC LIMITS

SMC1

= SURR2,BFB

(80-120)

# Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

95-4

#### 2B SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: CAS/ROC Contract: EMCON

Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: GW14S

Level: (low/med) LOW

ſ	EPA	SMC1	SMC2	SMC3	тот
	SAMPLE NO.	#	#	#	OUT
01	VBLK03	95	103	109	0
02	VBLK03MS	94	103	105	0
03	SS02DS	89	98	92	0
04	SS02DSMS	100	110	109	0
05	SS02DSMSD	103	110	113	0
06	SS01DS	89	108	88	0
07	SS01UD	97	102	105	0
08	SS02US	95	103	105	0
09	SS01US	95	100	98	0

QC LIMITS

SMC1

= 1,2-Dichloroethane-d4

(70-121)

SMC2

= Toluene-d8

(59-138)

SMC3

= Bromofluorobenzene

(59-113)

# Column to be used to flag recovery values

* Values outside of contract required QC limits

D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-2

Ref 14

3/90

00044

RACER0057575 . .

# 3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CAS\ROC Contract: EMCON

Matrix Spike - EPA Sample No.: SW004S

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC.
1,1-Dichloroethene	5.0	0.0	5.0	100	61 - 145
Benzene	5.0	0.0	5.1	102	76 - 127
Trichloroethene	5.0	4.5	9.8	106	71 - 120
Toluene	5.0	0.0	4.9	98	76 - 125
Chlorobenzene	5.0	0.0	5.1	102	75 - 130

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%		
COMPOUND	(ug/L)	(ug/L)	REC#	RPD#		
1,1-Dichloroethene	5.0	5.3	106	6	14	61 - 145
Benzene	5.0	5.8	116	13 *	11	76 - 127
Trichloroethene	5.0	9.8	106	0	14	71 - 120
Toluene	5.0	4.8	96	2	13	76 - 125
Chlorobenzene	5.0	5.1	102	0	13	75 - 130

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 1 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

COMMENTS:

EPA SAMPLE NO.

Lab Name:	CASVRO	oc			Contract:	EMCON	SW	JU45IVIS	
Lab Code:	10145	Cas	e No.:	97-3-158	SAS No	.: §	DG No.:	GW14S	_
Matrix: (soil/	water)	WATER			Lat	Sample ID:	135098 1	.0MS	
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lai	o File ID:	R3531.D		
Level: (low/r	med)	LOW			Da	te Received:			
% Moisture:	not dec.				Da	te Analyzed:	03/23/97		
GC Column:	RTX5	02. ID: 0.5	<u>i3</u> (r	n <b>m</b> )	Dil	ution Factor:	1.0		
Soil Extract \	Volume		_ (uL)		So	il Aliquot Vol	lume:	<del></del>	(uL)
				CO	NCENTRAT	TION UNITS	:		

		CONCENTION	on Chilo.		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	_	Q
74-87-3	Chloromethane			1	U
75-01-4	Vinyl Chloride			1	U
74-83-9	Bromomethane			1	U
75-00-3	Chloroethane			1	U
67-64-1	Acetone			5	U
75-35-4	1,1-Dichloroether	ne		5	
75-09-2	Methylene Chlori	de		1	U
75-15-0	Carbon Disulfide			1	U
75-35-3	1,1-Dichloroethar	ne		1	U
78-93-3	2-Butanone			5	U
156-59-4	cis-1,2-Dichloroe	thene		4	
67-66-3	Chloroform			0	J
107-06-2	1,2-Dichloroethar	ne		1	U
71-55-6	1,1,1-Trichloroeth	nane		1	U
56-23-5	Carbontetrachlori	de		1	Ū
71-43-2	Benzene			5	
79-01-6	Trichloroethene			10	
78-87-5	1,2-Dichloropropa	ane		1	U
75-27-4	Bromodichlorome			1	U
108-10-1	4-Methyl-2-Penta	none		5	Ū
10061-02-6	trans-1,3-Dichlore			1	Ū
108-88-3	Toluene			5	
10061-01-5	cis-1,3-Dichlorop	ropene		1	Ū
79-00-5	1,1,2-Trichloroett			1	Ū
591-78-6	2-Hexanone			5	U
127-18-4	Tetrachloroethen	е		1	U
124-48-1	Dibromochlorom	ethane		1	U
108-90-7	Chlorobenzene			5	
100-41-4	Ethylbenzene			1	U
108-38-3	Xylenes (TOTAL)			1	Ū
100-42-5	Styrene			1	Ü
79-34-5	1,1,2,2-Tetrachlo	roethane		1	Ü
75-25-2	Bromoform			1	Ü
156-60-5	trans-1,2-Dichlor	oethene		1	Ü

95-4 1 00046

EPA SAMPLE NO.

Lab Name:	CASVRO	OC Contract: EMCON	004SMSD
		Case No.: 97-3-158 SAS No.: SDG No.:	GW14S
Matrix: (soil/			
-			
		25.0 (g/ml) ML Lab File ID: R3532	<u>D</u>
Level: (low/r	med)	LOW Date Received:	
% Moisture:	not dec.	Date Analyzed: 03/23/9	7
GC Column:	RTX50	02. ID: 0.53 (mm) Dilution Factor: 1.0	
Soil Extract \	Volume	(uL) Soil Aliquot Volume:	
COII EXITAGE	VOIGINO	(dc) Con Andaot Volume.	(GL)
		CONCENTRATION UNITS:	
CAS NO	,	COMPOUND (ug/L or ug/Kg) UG/L	Q
CASING	<b>.</b>	COMPOUND (Light of Light Rg)	ď
74-87	-3	Chloromethane 1	U
75-01		Vinyl Chloride 1	U
74-83	-9	Bromomethane 1	U
75-00	-3	Chloroethane 1	U
67-64	-1	Acetone 5	U
75-35	-4	1,1-Dichloroethene 5	
75-09	-2	Methylene Chloride 1	U
75-15	<b>5-0</b>	Carbon Disulfide 1	U
75-35	i-3	1,1-Dichloroethane 1	U
78-93		2-Butanone 5	U
156-5	9-4	cis-1,2-Dichloroethene 4	
67-66		Chloroform 0	J
107-0	6-2	1,2-Dichloroethane 1	U
71-55	5-6	1,1,1-Trichloroethane 1	U
56-23	3-5	Carbontetrachloride 1	U
71-43		Benzene 6	
79-01		Trichloroethene 10	
78-87	<u>'-5</u>	1,2-Dichloropropane 1	U
75-27	<b>'-4</b>	Bromodichloromethane 1	U
108-1		4-Methyl-2-Pentanone 5	U
	1-02-6	trans-1,3-Dichloropropene 1	U
108-8		Toluene 5	
	1-01-5	cis-1,3-Dichloropropene 1	U
79-00		1,1,2-Trichloroethane	U
591-7		2-Hexanone 5	U
127-1		Tetrachloroethene 1	U
124-4		Dibromochloromethane 1	U
108-9		Chlorobenzene 5	
100-4		Ethylbenzene 1	U
108-3		Xylenes (TOTAL) 1	U
100-4		Styrene 1	U
79-34	I-5	1,1,2,2-Tetrachloroethane	U

Bromoform

trans-1,2-Dichloroethene

75-25-2 156-60-5

### 3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

 Lab Name:
 CAS\ROC
 Contract:
 EMCON

 Lab Code:
 10145
 Case No.:
 97-3-158
 SAS No.:
 SDG No.:
 GW14S

Matrix Spike - EPA Sample No.: VBLK02

	SPIKE	SPIKE SAMPLE		MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS	
COMPOUND	(ug/L) (ug/L)		(ug/L)	REC#	REC.	
1,1-Dichloroethene	5.0	0.0	4.6	92	61 - 145	
Benzene	5.0	0.0	5.9	118	76 - 127	
Trichloroethene	5.0	0.0	4.8	96	71 - 120	
Toluene	5.0	0.0	5.0	100	76 - 125	
Chlorobenzene	5.0	0.0	5.3	106	75 - 130	

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 5 out of 5 outside limits

Spike Recovery: 5 out of 10 outside limits

COMMENTS:

FORM III VOA-1

00048

95-4

EPA SAMPLE NO.

VBLK02MS

Lab Name:	CASVRC	)Ċ		Contract:	EMCON		
Lab Code:	10145	Cas	e No.: <u>97-3-158</u>	SAS No	o.:	SDG No.: GW14S	_
Matrix: (soil/v	water)	WATER		Lai	b Sample II	D: VBLK02MS	
Sample wt/vo	ol:	25.0	(g/ml) ML	Lai	b File ID:	R3529.D	
Level: (low/r	ned)	LOW		Da	te Received	d:	
% Moisture: ı	not dec.			Da	te Analyzed	d: <u>03/23/97</u>	
GC Column:	RTX50	02. ID: 0.5	3 (mm)	Dil	ution Factor	r. 1.0	
Soil Extract \	/olume		_ (uL)	So	il Aliquot Vo	olume: (	uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L		Q
74-87-3	Chloromethane		1	U
75-01-4	Vinyl Chloride		1	U
74-83-9	Bromomethane		1	U
75-00-3	Chloroethane		1	U
67-64-1	Acetone		5	Ü
75-35-4	1,1-Dichloroethene		5	
75-09-2	Methylene Chloride		1	U
75-15-0	Carbon Disulfide		1	U
75-35-3	1,1-Dichloroethane		1	U
78-93-3	2-Butanone		5	U
156-59-4	cis-1,2-Dichloroethene		1	U
67-66-3	Chloroform		1	U
107-06-2	1,2-Dichloroethane		1	U
71-55-6	1,1,1-Trichloroethane		1	U
56-23-5	Carbontetrachloride		1	U
71-43-2	Benzene		6	
79-01-6	Trichloroethene		5	
78-87-5	1,2-Dichloropropane		1	U
75-27-4	Bromodichloromethane		1	U
108-10-1	4-Methyl-2-Pentanone		5	Ü
10061-02-6	trans-1,3-Dichloropropene		1	U
108-88-3	Toluene		5	
10061-01-5	cis-1,3-Dichloropropene		1	U
79-00-5	1,1,2-Trichloroethane		1	U
591-78-6	2-Hexanone		5	U
127-18-4	Tetrachloroethene		1	U
124-48-1	Dibromochloromethane		1	U
108-90-7	Chlorobenzene		5	
100-41-4	Ethylbenzene		1	U
108-38-3	Xylenes (TOTAL)		1	U
100-42-5	Styrene		1	Ū
79-34-5	1,1,2,2-Tetrachloroethane		1	Ü
75-25-2	Bromoform		1	Ū
156-60-5	trans-1,2-Dichloroethene		1	Ū

95-4 00049

# 3B SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

 Lab Name:
 CAS/ROC
 Contract:
 EMCON

 Lab Code:
 10145
 Case No.:
 97-3-158
 SAS No.:
 SDG No.:
 GW14S

 Matrix Spike - EPA Sample No.:
 SS02DS
 Level: (low/med)
 LOW

	SPIKE	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC#	REC.
1,1-Dichloroethene	66	1.5	68	100	59 - 172
Benzene	66	0.0	72	109	62 - 137
Trichloroethene	66	22	76	82	66 - 142
Toluene	66	0.0	72	109	59 - 139
Chlorobenzene	66	0.0	70	106	60 - 133

	SPIKE	MSD	MSD		-	
	ADDED	CONCENTRATION	%	%	QCL	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC#	RPD#	RPD	REC.
1,1-Dichloroethene	66	67	100	0	22	59 - 172
Benzene	66	73	111	2	24	62 - 137
Trichloroethene	66	77	83	1	21	66 - 142
Toluene	66	73	111	2	21	59 - 139
Chlorobenzene	66	72	109	3	21	60 - 133

# Column to be used to flag recovery and RPD values with an asterisk

FORM III VOA 2	3/00
COMMENTS:	<b>*</b> · 00050
Spike Recovery: 0 out of 10 outside limits	• •
RPD: 0 out of 5 outside limits	11/14
* Values outside of QC limits	2111

RACER0057581

EPA SAMPLE NO.

SS02DSMS

Lab Name:	CAS/RO	C			Contract:	EMCON		
Lab Code:	10145		Case No.:	97-3-158	SAS No	).:	SDG No.: GW14S	<u>;                                    </u>
Matrix: (soil/w	ater)	SOIL			Lat	b Sample ID	): 135121 1.0MS	
Sample wt/vo	l:	5.0	(g/ml)	G	Lat	b File ID:	ZA257.D	
Level: (low/m	ned)	LOW			Da	te Received	i:	
% Moisture: n	ot dec.	23.7			Da	te Analyzed	1: 03/24/97	
GC Column:	RTX50	2. ID:	0.53 (n	nm)	Dil	ution Factor	r. <u>1.0</u>	
Soil Extract V	olume		(uL)		So	il Aliquot Vo	olume:	(uL

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	_	Q
74-87-3	Chloromethane			13	U
75-01-4	Vinyl chloride			13	U
75-00-3	Chloroethane			17	
74-83-9	Bromomethane			13	U
67-64-1	Acetone			4	J
75-35-4	1,1-Dichloroethen	е		68	
75-09-2	Methylene chloride	е		3	J
75-15-0	Carbon disulfide			2	J
75-34-3	1,1-Dichloroethan	е		21	
78-93-3	2-Butanone			13	U
540-59-0	1,2-Dichloroethen	e (total)		20	
67-66-3	Chloroform			13	U
107-06-2	1,2-Dichloroethan	е		13	U
71-55-6	1,1,1-Trichloroeth	ane		13	U
56-23-5	Carbon tetrachlori	de		13	U
71-43-2	Benzene			72	
79-01-6	Trichloroethene			76	
78-87-5	1,2-Dichloropropa	ne		13	Ū
75-27-4	Bromodichlorome			13	U
10061-01-5	cis-1,3-Dichloropr	opene		13	U
10061-02-6	trans-1,3-Dichloro			13	U
79-00-5	1,1,2-Trichloroeth			13	U
124-48-1	Dibromochlorome	thane		13	U
75-25-2	Bromoform			13	U
108-10-1	4-Methyl-2-pentar	none		13	U
108-88-3	Toluene			72	
591-78-6	2-Hexanone			13	U
127-18-4	Tetrachloroethene	9		13	U
108-90-7	Chlorobenzene			70	
100-41-4	Ethylbenzene			13	U
1330-20-7	Xylenes (total)			13	U
100-42-5	Styrene			13	U
108-88-3	1,1,2,2-Tetrachtor	oethane		13	U

EPA SAMPLE NO.

SS02DSMSD

Lab Name:	CAS/RC	oc		Contract:	EMCON		
Lab Code:	10145	c	case No.: <u>97-3-158</u>	SAS No	.:	SDG No.: GW145	3
Matrix: (soil/\	water)	SOIL		Lat	Sample II	D: <u>135121 1.0MS</u>	
Sample wt/vo	ol:	5.0	(g/ml) G	Lat	File ID:	ZA259.D	
Level: (low/r	ned)	LOW	<u></u>	Dat	te Receive	d:	
% Moisture:	not dec.	23.7	<del></del>	Dat	te Analyzed	d: <u>03/24/97</u>	
GC Column:	RTX50	02. ID: <u>(</u>	0.53 (mm)	Dilt	ution Facto	r: <u>1.0</u>	
Soil Extract \	Volume		(uL)	Soi	l Aliquot Vo	olume:	(uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/l	(g) <u>UG/KG</u>	Q
74-87-3	Chloromethane	13	U
75-01-4	Vinyl chloride	13	٦
75-00-3	Chloroethane	22	
74-83-9	Bromomethane	13	Ú
67-64-1	Acetone	10	J
75-35-4	1,1-Dichloroethene	67	
75-09-2	Methylene chloride	8	J
75-15-0	Carbon disulfide	2	J
75-34-3	1,1-Dichloroethane	26	
78-93-3	2-Butanone	13	U
540-59-0	1,2-Dichloroethene (total)	22	
67-66-3	Chloroform	13	U
107-06-2	1,2-Dichloroethane	13	Ū
71-55-6	1,1,1-Trichloroethane	13	Ü
56-23-5	Carbon tetrachloride	13	Ü
71-43-2	Benzene	73	
79-01-6	Trichloroethene	77	
78-87-5	1,2-Dichloropropane	13	U
75-27-4	Bromodichloromethane	13	Ü
10061-01-5	cis-1,3-Dichloropropene	13	Ü
10061-02-6	trans-1,3-Dichloropropene	13	Ü
79-00-5	1,1,2-Trichloroethane	13	Ü
124-48-1	Dibromochloromethane	13	Ü
75-25-2	Bromoform	13	Ü
108-10-1	4-Methyl-2-pentanone	13	Ü
108-88-3	Toluene	73	
591-78-6	2-Hexanone	13	U
127-18-4	Tetrachloroethene	13	Ū
108-90-7	Chlorobenzene	72	
100-41-4	Ethylbenzene	13	U
1330-20-7	Xylenes (total)	13	U
100-42-5	Styrene	13	Ü
108-88-3	1,1,2,2-Tetrachloroethane	13	<del>U</del>

9414

EPA SAMPLE NO.

VBLK03MS

Lab Name:	CAS/RC	C			Contract:	EMCON			╝
Lab Code:	10145	Cas	se No.: <u>97</u> -	3-158	SAS No	.:	SDG No.:	GW14S	_
Matrix: (soil/w	vater)	SOIL			Lat	Sample II	D: <u>VBLK03</u>	MS	
Sample wt/vo	ot:	5.0	(g/ml) G		Lat	File ID:	ZA255.	)	
Level: (low/m	ned)	LOW			Dat	te Received	d:		
% Moisture: n	not dec.	0			Dat	te Analyzed	d: <u>03/24/97</u>	7	
GC Column:	RTX50	02. ID: 0.5	3 (mm)		Dili	ution Facto	r. <u>1.0</u>		
Soil Extract V	/olume		_ (uL)		Soi	il Aliquot Vo	olume:	(	uL

# **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or	ug/Kg) UG/KG		Q
74-87-3	Chloromethane		10	U
75-01-4	Vinyl chloride		10	U
75-00-3	Chloroethane		10	Ū
74-83-9	Bromomethane		10	U
67-64-1	Acetone		10	U
75-35-4	1,1-Dichloroethene		44	
75-09-2	Methylene chloride		10	U
75-15-0	Carbon disulfide		10	U
75-34-3	1,1-Dichloroethane		10	U
78-93-3	2-Butanone		10	U
540-59-0	1,2-Dichloroethene (total)		10	U
67-66-3	Chloroform		10	U
107-06-2	1,2-Dichloroethane		10	U
71-55-6	1,1,1-Trichloroethane		10	U
56-23-5	Carbon tetrachloride		10	U
71-43-2	Benzene		49	
79-01-6	Trichloroethene		40	
78-87-5	1,2-Dichloropropane		10	U
75-27-4	Bromodichloromethane		10	U
10061-01-5	cis-1,3-Dichloropropene		10	U
10061-02-6	trans-1,3-Dichloropropene		10	U
79-00-5	1,1,2-Trichloroethane		10	U
124-48-1	Dibromochloromethane		10	U
75-25-2	Bromoform		10	U
108-10-1	4-Methyl-2-pentanone		10	Ū
108-88-3	Toluene		50	
591-78-6	2-Hexanone		10	U
127-18-4	Tetrachloroethene		10	U
108-90-7	Chlorobenzene		49	
100-41-4	Ethylbenzene		10	U
1330-20-7	Xylenes (total)		10	U
100-42-5	Styrene		10	Ū
108-88-3	1,1,2,2-Tetrachloroethane		10	U

A4/14

# VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

				VBLK01
Lab Name:	CASVROC	Contract:	EMCON	

Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: GW14S

Lab Sample ID: VBLK01 Lab File ID: R3516.D

Date Analyzed: 03/22/97 Time Analyzed: 15:02 Heated Purge: (Y/N) Ν GC Column: RTX502. ID: 0.53 (mm)

Instrument ID: GCMS#5

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID .	FILE ID	ANALYZED
01	OF001S	135096 10	R3517.D	15:39
02	OF001D	135097 10	R3518.D	16:20
03	OF002S	135099 2.0	R3519.D	17:00
04	GW18SS	135102 10	R3520.D	17:41
05	GW010S	135426 25	R3521.D	18:22
06	SW006S	135100 1.0	R3522.D	19:02
07	GW014S	135101 1.0	R3523.D	19:43
08	GW18DS	135103 1.0	R3524.D	20:23

COMMENTS		
	¥	0005.4

EPA SAMPLE NO.

Lab Name:	CASVRO	С		Contract:	EMCON	VBLK01	
Lab Code:	10145	Cas	e No.: 97-3-158	SAS No	o.: SE	OG No.: GW14S	
Matrix: (soil/	water)	WATER		Lat	b Sample ID:	VBLK01	
Sample wt/v	ol:	25.0	(g/ml) ML	Lal	b File ID:	R3516.D	
Level: (low/i	med)	LOW		Da	te Received:		
% Moisture:	not dec.		<del></del>	Da	te Analyzed:	03/22/97	
GC Column:	RTX5	02. ID: 0.5	3 (mm)	Dil	ution Factor:	1.0	
Soil Extract	Volume		_ (uL)	So	il Aliquot Volu	me:	(uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q		
74-87-3	Chloromethane		1 U		
75-01-4	Vinyl Chloride		1 U		
74-83-9	Bromomethane		1 U		
75-00-3	Chloroethane		1 U		
67-64-1	Acetone		5 U		
75-35-4	1,1-Dichloroethene		1 U		
75-09-2	Methylene Chloride		1 U		
75-15-0	Carbon Disulfide		1 U		
75-35-3	1,1-Dichloroethane		1 U		
78-93-3	2-Butanone		5 U		
156-59-4	cis-1,2-Dichloroethene		1 U		
67-66-3	Chloroform		1 U		
107-06-2	1,2-Dichloroethane		1 U		
71-55-6	1,1,1-Trichloroethane		1 U		
56-23-5	Carbontetrachloride		1 U I		
71-43-2	Benzene		1 05		
79-01-6	Trichloroethene		1 U		
78-87-5	1,2-Dichloropropane		1 U		
75-27-4	Bromodichloromethane		1 U		
108-10-1	4-Methyl-2-Pentanone		5 U		
10061-02-6	trans-1,3-Dichloropropene		1 U /		
108-88-3	Toluene		1 U.F		
10061-01-5	cis-1,3-Dichloropropene		1 U		
79-00-5	1,1,2-Trichloroethane		1 U		
591-78-6	2-Hexanone		5 U		
127-18-4	Tetrachloroethene		1 U		
124-48-1	Dibromochloromethane		1 U		
108-90-7	Chlorobenzene				
100-41-4	Ethylbenzene		1 U.\$		
108-38-3	Xylenes (TOTAL)		1 U.J		
100-42-5	Styrene		1 U \$		
79-34-5	1,1,2,2-Tetrachloroethane				
75-25-2	Bromoform				
156-60-5	trans-1,2-Dichloroethene		1 U		

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	CASVR	oc			Contract:	EMCON		BLRUI	
Lab Code:	10145	Cas	e No.: <u>97-</u> 3	-158	SAS No	).:	_ SDG No.:	GW148	<u>s</u>
Matrix: (soil/	water)	WATER	,		Lal	o Sample	ID: VBLKO	1	
Sample wt/v	ol:	25.0	(g/ml) ML		Lal	b File ID:	R3516.	<u> </u>	
Level: (low/r	med)	LOW			Da	te Receiv	red:		
% Moisture:	not dec.				Da	te Analyz	ed: <u>03/22/9</u>	7	
GC Column:	RTX5	02. ID: 0.5	3 (mm)		Dil	ution Fac	tor: <u>1.0</u>		
Soil Extract	Volume		_ (uL)		So	il Aliquot	Volume:		(uL)
				CO	NCENTRA	TION UNI	ITS:		
Number TIC	s found:	00	_	(ug/	L or ug/Kg)	UG/	<u></u>		
CAS NO.		COMPOL	IND			RT	EST. CON	IC.	Q

#### 4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK02

Lab Name: CAS\ROC

Contract: EMCON

SAS No.: SDG No.: GW14S

Lab Code: Lab File ID:

10145

Case No.: 97-3-158

R3527.D

Lab Sample ID: VBLK02

Date Analyzed: 03/23/97

Time Analyzed: 12:04

GC Column: RTX502. ID: 0.53 (mm)

Heated Purge: (Y/N)

Ν

Instrument ID: GCMS#5

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS	LCS	R3528.D	12:45
02	VBLK02MS	VBLK02MS	R3529.D	13:25
03	SW004S	135098 1.0	R3530.D	14:06
04	SW004SMS	135098 1.0MS	R3531.D	14:46
05	SW004SMSD	135098 1.0MSD	R3532.D	15:27
06	GW06DS	135104 1.0	R3533.D	16:08
07	OFTB3T	135105 1.0	R3534.D	16:48
08	GWTB4T	135427 1.0	R3535.D	19:07
09	SSFB2R	135241 1.0	R3536.D	19:47
10	CBLK2	135257 1.0	R3537.D	20:28

COMMENTS			

EPA SAMPLE NO.

VBLK02

_ab Name: CAS\R	DC		Contract:	EMCON			
ab Code: 10145	Case No.: 9	97-3-158	SAS No.	:	SDG No.:	GW14S	
Matrix: (soil/water)	WATER		Lab	Sample ID	): <u>VBLK02</u>	2	
Sample wt/vol:	25.0 (g/ml)	ML	Lab	File ID:	R3527.	<u> </u>	
_evel: (low/med)	LOW		Date	e Received	d:		
% Moisture: not dec.			Date	e Analyzed	1: 03/23/9	7	
GC Column: RTX5	02. ID: 0.53 (mr	m)	Dilu	tion Factor	r: <u>1.0</u>		
Soil Extract Volume	(uL)		Soil	Aliquot Vo	olume:		(uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
67-64-1	Acetone	5	U
75-35-4	1,1-Dichtoroethene	1	U
75-09-2	Methylene Chloride	1	U
75-15-0	Carbon Disulfide	1	U
75-35-3	1,1-Dichloroethane	1	U
78-93-3	2-Butanone	5	U
156-59-4	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	Ü
56-23-5	Carbontetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
10061-02-6	trans-1,3-Dichloropropene	1	Ū
108-88-3	Toluene	1	Ü
10061-01-5	cis-1,3-Dichloropropene	1	Ü
79-00-5	1,1,2-Trichloroethane	1	U
591-78-6	2-Hexanone	5	U
127-18-4	Tetrachloroethene	1	U
124-48-1	Dibromochloromethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	7
108-38-3	Xylenes (TOTAL)	1	U
100-42-5	Styrene	1	Ü -
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
156-60-5	trans-1,2-Dichloroethene	1	Ü

00052

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		15.417	1114661	DC14111 1C		5.150			
Lab Name:	CASVRO	C			Contract:	EMCON		VBLK	02
Lab Code:	10145	(	Case No.:	97-3-158	SAS No	).:	_ SD	G No.: <u>GW</u>	148
Matrix: (soil/v	water)	WATER	<u> </u>		Lal	o Sample	ID: \	/BLK02	
Sample wt/vo	ol:	25.0	(g/ml	) <u>ML</u>	Lai	b File ID:	F	R3527.D	
Level: (low/r	med)	LOW			Da	te Receiv	/ed: _		
% Moisture:	not dec.				Da	te Analyz	ed: C	3/23/97	
GC Column:	RTX50	2. ID:	0.53 (	mm)	Dil	ution Fac	tor: 1	.0	
Soil Extract \	Volume .		(uL)		So	il Aliquot	Volun	ne:	(uL)
				CO	NCENTRA				
Number TIC:	s found:	0		(ug/	L or ug/Kg)	UG	<u>L</u>		
CAS NO.		COMP	OUND			RT	ES1	CONC.	Q

00059

#### 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CAS\ROC Contract: EMCON

Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: GW14S

Lab File ID (Standard): R3515.D Date Analyzed: 03/22/97

Instrument ID: GCMS#5 Time Analyzed: 11:13

GC Column: RTX502.2 ID: 0.53 (mm) Heated Purge (Y/N): N

		IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
	12 HOUR STD	135552	11.14	206440	13.33	167077	20.28
	UPPER LIMIT	271104	10.64	412880	12.83	334154	19.78
Ī	LOWER LIMIT	67776	11.64	103220	13.83	83539	20.78
	EPA SAMPLE						
	NO.						
01	VBLK01	132134	11.12	205352	13.32	158985	20.25
02	OF001S	118677	11.13	184225	13.32	145448	20.29
03	OF001D	116948	11.14	182628	13.32	149523	20.25
04	OF002S	116606	11.11	183503	13.32	150108	20.29
05	GW18SS	117376	11.13	179960	13.32	145332	20.27
06	GW010S	119648	11.14	187540	13.32	150392	20.27
07	SW006S	121584	11.14	188659	13.34	157956	20.29
08	GW014S	118132	11.16	196693	13.36	145845	20.27
09	GW18DS	115815	11.16	200097	13.36	146215	20.25

IS1	=	Pentafluorobenzene
IS2	=	1,4-Difluorobenzene
IS3	=	d5-Chlorobenzene
1S4 :	=	d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

00060

page 1 of 2

FORM VIII VOA

95-4

[#] Column to be used to flag values outside QC limit with an asterisk.

^{*} Values outside of contract required QC limits

#### 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Contract: EMCON Lab Name: CASVROC Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: GW14S Lab File ID (Standard): Date Analyzed: 03/22/97 R3515.D Instrument ID: GCMS#5 Time Analyzed: 11:13 GC Column: RTX502.2 ID: 0.53 (mm) Heated Purge (Y/N): Ν

_								
		IS4 AREA #	RT #	AREA #	RT #	AREA #	RT #	
	12 HOUR STD	62796	26.13					
	UPPER LIMIT	125592	25.63					
	LOWER LIMIT	31398	26.63					
	EPA SAMPLE							
	NO.							
01	VBLK01	60899	26.14					
02	OF001S	56683	26.15					
03	OF001D	59585	26.17				-	
04	OF002S	59631	26.17					
05	GW18SS	57929	26.17					
06	GW010S	59415	26.16					
07	SW006S	62749	26.13					
08	GW014S	58445	26.14					
09	GW18DS	57683	26.11					

IS1	<ul> <li>Pentafluorobenzene</li> </ul>
IS2	<ul> <li>1,4-Difluorobenzene</li> </ul>
IS3	<ul> <li>d5-Chlorobenzene</li> </ul>
IS4	= d4-1.4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

**DOGS** ii RACER0057592

^{*} Values outside of contract required QC limits

		1A	<b></b>		EPA S	SAMPLE 1	۷0.
Lab Name:		VOLATILE ORGANICS AN DC		EMCON	V	BLK03	
Lab Code:	10145	Case No.: 97-3-1	58 SAS No	.: S	DG No.:	GW14S	
Matrix: (soil/				Sample ID:			
Sample wt/ve	ol:	5.0 (g/ml) G		File ID:			
Level: (low/r		<del>-</del>		te Received:			
•	•						
% Moisture:	пот аес.	0	Da	te Analyzed:	03/24/97	7	
GC Column:	RTX5	02. ID: 0.53 (mm)	Dil	ution Factor:	1.0		
Soil Extract	Volume	(uL)	So	il Aliquot Volu	ıme:		(uL)
		C	CONCENTRAT	TION UNITS:			
CAS NO	<b>)</b> .	COMPOUND (	ug/L or ug/Kg)	UG/KG		Q	
74-87	-3	Chloromethane			10	U	$\neg$
75-01	-4	Vinyl chloride			10	Ü	$\dashv$
75-00	-3	Chloroethane			10	Ū	7
74-83	-9	Bromomethane			10	Ū	_
67-64	-1	Acetone			10	U	_
75-35	-4	1,1-Dichloroethene			10	Ŭ	┪
75-09	-2	Methylene chloride			10	Ū	7
75-15	-0	Carbon disulfide			10	U	7
75-34	-3	1,1-Dichloroethane			10	Ū	7
78-93	-3	2-Butanone			10	Ū	7
540-5	9-0	1,2-Dichloroethene (	total)		10	Ū	_
67-66	-3	Chloroform	***************************************		10	U	$\dashv$
107-0	6-2	1,2-Dichloroethane			10	Ū	$\dashv$
71-55	-6	1,1,1-Trichloroethan	е		10	U	7
56-23	-5	Carbon tetrachloride			10	Ū	$\neg$
71-43	-2	Benzene			10	11	$\neg$

Trichloroethene

Bromoform

2-Hexanone

Tetrachloroethene

Chlorobenzene

Ethylbenzene

Xylenes (total)

Toluene

Styrene

1,2-Dichloropropane

Bromodichloromethane

cis-1,3-Dichloropropene

1,1,2-Trichloroethane

Dibromochloromethane

4-Methyl-2-pentanone

1,1,2,2-Tetrachloroethane

trans-1,3-Dichloropropene

79-01-6

78-87-5

75-27-4

79-00-5

124-48-1

75-25-2

108-10-1

108-88-3

591-78-6

127-18-4

108-90-7

100-41-4

1330-20-7

100-42-5

108-88-3

10061-01-5

10061-02-6

@4/H

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

U

U

U

Ū

Ū

U

U

U

Ū

U

U

U

U

U

3/90 № 00065

# 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

 Lab Name:
 CAS\ROC
 Contract:
 EMCON

 Lab Code:
 10145
 Case No.:
 97-3-158
 SAS No.:
 SDG No.:
 GW14S

 Lab File ID (Standard):
 R3526.D
 Date Analyzed:
 03/23/97

GC Column: RTX502.2 ID: 0.53 (mm) Heated Purge (Y/N): N

Time Analyzed: 11:25

		IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
L		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	126151	11.15	174658	13.33	153485	20.27
Ī	UPPER LIMIT	252302	10.65	349316	12.83	306970	19.77
	LOWER LIMIT	63076	11.65	87329	13.83	76743	20.77
	EPA SAMPLE						
	NO.						
01	VBLK02	123032	11.14	182931	13.33	153332	20.26
02	LCS	108861	11.10	150649	13.29	132896	20.25
03	VBLK02MS	115897	11.09	172117	13.30	139940	20.23
04	SW004S	121332	11.10	189547	13.30	155369	20.23
05	SW004SMS	118412	11.09	164984	13.29	151048	20.24
06	SW004SMSD	119589	11.09	156626	13.29	152085	20.24
07	GW06DS	123242	11.09	159225	13.30	153386	20.23
80	OFTB3T	121548	11.10	159057	13.30	151944	20.23
09	GWTB4T	135745	11.14	201108	13.32	163359	20.25
10	SSFB2R	124252	11.17	201536	13.37	151255	20.28
11	CBLK2	121975	11.14	158281	13.32	150950	20.27

IS1	=	Pentafluorobenzene
IS2	=	1,4-Difluorobenzene
IS3	=	d5-Chlorobenzene
IS4	=	d4-1,4-Dichlorobenzene

Instrument ID: GCMS#5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

page 1 of 2

FORM VIII VOA

95-4

^{*} Values outside of contract required QC limits

#### 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	CAS\ROC			Contract:	EMCON	_	
Lab Code:	10145	Case No.:	97-3-158	SAS No	.: SDG N	o.: <u>GW14S</u>	_
Lab File ID (	Standard):	R3526.D	_		Date Analyzed:	03/23/97	
Instrument II	D: GCMS#5	<u>)</u>			Time Analyzed:	11:25	
GC Column:	RTX502.2	P ID: 0.53	(mm)		Heated Purge (Y	//N): N	

٢		IS4					
		AREA #	RT #	AREA #	RT #	AREA #	RT #
-	12 HOUR STD	57997	26.15			,	
ŀ	UPPER LIMIT	115994	25.65				
-	LOWER LIMIT	28999	26.65				
	EPA SAMPLE						
	NO.						
01	VBLK02	57146	26.10				
02	LCS	53707	26.12				
03	VBLK02MS	55891	26.13				
04	SW004S	62360	26.13				
05	SW004SMS	60848	26.13				
06	SW004SMSD	61787	26.13		,		
07	GW06DS	64149	26.12				
08	OFTB3T	62652	26.07				
09	GWTB4T	62138	26.16				
10	SSFB2R	61326	26.16				
11	CBLK2	60715	26.16		"		

IS1	=	Pentafluorobenzene
IS2	=	1,4-Difluorobenzene
IS3	=	d5-Chlorobenzene
IS4	=	d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

page 2 of 2

FORM VIII VOA

▶ 00063

95-4

^{*} Values outside of contract required QC limits

#### 4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK03

Lab Name:	CAS/ROC		Contract:	EMCON	l			
Lab Code:	10145	Case No.: 97-3-158	SAS No	o.:	SDC	3 No.:	GW14S	
Lab File ID:	ZA254.D		La	b Sample I	D: <u>V</u>	BLK03		_
Date Analyz	ed: 03/24/97		Tin	ne Analyze	ed: 10	0:31		

Instrument ID: GCMS#1

GC Column: RTX502. ID: 0.53 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

Heated Purge: (Y/N)

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	VBLK03MS	VBLK03MS	ZA255.D	11:24
02	SS02DS	135121 1.0	ZA256.D	12:25
03	SS02DSMS	135121 1.0MS	ZA257.D	13:09
04	SS02DSMSD	135121 1.0MSD	ZA259.D	14:34
05	SS01DS	135116 1.0	ZA260.D	15:44
06	SS01UD	135119 1.0	ZA261.D	16:53
07	SS02US	135123 1.0	ZA262.D	17:31
08	SS01US	135118 1.0	ZA263.D	18:14

@4/14

COMMENTS		
· · · · · · · · · · · · · · · · · · ·	100	00064

page 1 of 1

FORM IV VOA

3/90

#### NYSDEC Sample No.: VBLK03

## 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: -Matrix: (soil/water) SOIL
Sample wt/vol: 5.0 (g/mL)G

Level (low/med): LOW

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 1

Contract: EMCON

SAS No.: -- SDG No.:GW14S

Lab Sample ID: VBLK03 Lab File ID: ZA254

Date Received:

Date Analyzed: 03/24/97 Dilution Factor: 1.0 Concentration Units: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
i	Unknown	3.45	13	 J
2.				
3.			-	
4.				
5.				
6.				
7.				
_8.				
٦.				
11. 12.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

#### 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CAS/ROC Contract: EMCON

Lab Code: 10145 Case No.: 97-3-158 SAS No.: SDG No.: GW14S

Lab File ID (Standard): ZA253.D Date Analyzed: 03/24/97

Instrument ID: GCMS#1 Time Analyzed: 09:32

GC Column: RTX502.2 ID: 0.53 (mm) Heated Purge: (Y/N) Y

		IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
Ì	12 HOUR ST	990243	9.03	4544070	10.73	3282427	17.30
	LOWER LIMIT	495122	8.53	2272035	10.23	1641214	16.80
	UPPER LIMIT	1980486	9.53	9088140	11.23	6564854	17.80
	EPA SAMPLE						
	NO.						
01	VBLK03	977675	9.01	4389397	10.76	3224265	17.50
02	VBLK03MS	996837	9.02	4635960	10.72	3290069	17.37
03	SS02DS	914418	9.06	4300954	10.75	3002045	17.32
04	SS02DSMS	827019	9.11	3963465	10.82	2809985	17.42
05	SS02DSMSD	815246	8.96	3816491	10.68	2727514	17.27
06	SS01DS	653982	9.01	2911396	10.73	1857543	17.40
07	SS01UD	838049	9.07	4106645	10.77	2801000	17.54
08	SS02US	853664	9.05	4094237	10.75	2798650	17.49
09	SS01US	783502	9.07	3795247	10.84	2648545	17.54

IS1

= Bromochloromethane

IS2

= 1,4-Difluorobenzene

IS3

= Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

· 00067

page 1 of 1

FORM VIII VOA

^{*} Values outside of contract required QC limits

#### **EMCON**

#### LMC SOIL INVESTIGATION

CAS SUBMISSION #: 9702000163

**SUMMARY PACKAGE** 

Columbia Analytical Services 700 Exchange Street Rochester, NY 14608



#### A FULL SERVICE ENVIRONMENTAL LABORATORY

March 11, 1997

Mr. Curtis Taylor
EMCON
Crossroads Corp. Center
1 International Blvd, Ste. 700
Mahwah, NJ 07495

PROJECT:LMC SOIL INVESTIGATION Submission #:9702000163

Dear Mr. Taylor

Enclosed are the analytical results of the analyses requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at (716) 454-6810.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Mark Wilson

Client Service Manager

Marlowtie

Enc.

EGEIVE MAR 1 7 1997

Environmental Quality
Associates, Inc.
RD #5, Box 800
Middletown, NY 10940

-----

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director prior to report submittal.

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Customer	Laboratory			lytical R			,	
Sample	Sample		NYSDEC 1995 CLP PROTOCOL					
Code	Code	<u> </u>				1		
		*VOA	*BNA	*VOA	*PEST	*METALS	*OTHER	
		GC/MS	GC/MS	GC	PCB			
SB49AS	130619	х	Х					
SB49AD	130620	x	x					
SB50AS	130621	х	х					
SB49BS	130626	х						
SB51AS	130629				X			
SB52AS	130630				Х			
SB52AD	130633				Х			
SB53AS	130635				Х			
SBFBAR	130637	х	X		х			
SBTBAT	130641	х						
							<del></del>	
		<del></del>	<del> </del>					
						-		
			-					
			ļ					
			<b> </b>			-	****	
<del></del>							·	
		-						
					ļ			
			<u></u>					

neck Appropriate Boxes

*CLP, Non-CLP

*HSL, Priority Pollutant

NCF1

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SAMPLE PREPARATION AND ANALYSIS SUMMARY VOA ANALYSES

LABORATORY	MATRIX	DATE	DATE REC'D	LOW LEVEL	DATE
SAMPLE ID		COLLECTED	AT LAB	MED LEVEL	ANALYZED
130619	SOIL	02/11/97	02/12/97	MED	02/20/97
130620	SOIL	02/11/97	02/12/97	MED	02/20/97
130621	SOIL	02/11/97	02/12/97	LOW	02/18/97
130626	SOIL	02/11/97	02/12/97	MED	02/20/97
130637	WATER	02/10/97	02/12/97	LOW	02/20/97
130641	WATER	02/11/97	02/12/97	LOW	02/20/97
					***************************************
1					
NCF5		L	l		F /01

NCF5

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

					, , , , , , , , , , , , , , , , , , ,
SAMPLE ID	MATRIX	ANALYTICAL	EXTRACTION	AUXILARY	DIL/CONC
		PROTOCOL	METHOD	CLEAN UP	FACTOR
130619	SOIL	95-1			1.0
130620	SOIL	95-1			1.0
130621	SOIL	95-1			1.0
130626	SOIL	95-1		· · · · · · · · · · · · · · · · · · ·	1.0
130637	WATER	95-1			1.0
130641	WATER	95-1			1.0
		<u> </u>			
					· · · · · · · · · · · · · · · · · · ·

NCF5

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SAMPLE PREPARATION AND ANALYSIS SUMMARY B/N-A ANALYSES

LABORATORY SAMPLE ID	MATRIX	DATE COLLECTED	DATE REC'D AT LAB	DATE EXTRACTED	DATE ANALYZED
130619	SOIL	02/11/97	02/12/97	02/14/97	02/28/97
130620	SOIL	02/11/97	02/12/97	02/14/97	02/28/97
130621	SOIL	02/11/97	02/12/97	03/04/97	03/05/97
130627	WATER				
130637	WAIEK	02/10/97	02/12/97	02/13/97	02/28/97
	,				

NCF5

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

SAMPLE ID	MATRIX	ANALYTICAL	EXTRACTION	AUXILARY	DIL/CONC
		PROTOCOL	METHOD	CLEAN UP	FACTOR
130619	SOIL	95-2			1.0
130620	SOIL	95-2			1.0
130621	SOIL	95-2			1.0
130637	WATER	95-2			1.0
					······································
			<del></del>	<del> </del>	

NCF5

5/91 🚤

⊢ 00005

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSES

LABORATORY SAMPLE ID	MATRIX	DATE COLLECTED	DATE REC'D AT LAB	DATE EXTRACTED	DATE ANALYZED
130629	SOIL	02/10/97	02/12/97	02/14/97	
130629	SOIL				03/01/97
130633		02/10/97	02/12/97	02/14/97	03/01/97
	SOIL	02/10/97	02/12/97	02/14/97	03/01/97
130635	SOIL	02/10/97	02/12/97	02/14/97	03/01/97
130637	WATER	02/10/97	02/12/97	02/14/97	03/01/97
		:			
				· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·	
-					
1					
-					

NCF5

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

SAMPLE ID	MATRIX	ANALYTICAL	EXTRACTION	AUXILARY	DIL/CONC
		PROTOCOL	METHOD	CLEAN UP	FACTOR
130629	SOIL	95-3			1.0, 10.0
130630	SOIL	95-3			1.0
130633	SOIL	95-3			1.0
130635	SOIL	95-3			1.0, 10.0
130637	WATER	95-3			1.0
					<b> </b>

NCF5

#### CASE NARRATIVE

COMPANY: EMCON Lockheed Martin Corp SUBMISSION #: 9701000163

EMCON soil and water samples were collected on 02/10/97 and 02/11/97 and received at CAS on 02/12/97 in good condition. See the CAS Batching form to cross reference between Client ID and CAS sample numbers.

#### **VOLATILE ORGANICS**

Four soil samples, one field blank and one trip blank were analyzed for Target Compound List (TCL) of volatile organics by method 95-1 from the NYSASP 1995.

Samples SB49AS, SB49AD and SB49BS were analyzed as medium levels due to high levels of target compounds present.

Samples SB50AS and SB49BS (medium level) were analyzed for site specific QC. All matrix spike recoveries and %RPD were within QC Limits. All blank spike recoveries were within QC limits.

All tuning criteria for BFB were met.

The initial and continuing calibration criteria were met for all analytes.

All surrogate standard recoveries were within acceptance limits.

All internal standard areas were within QC Limits.

All samples were analyzed within the holding time as specified in the method.

No other analytical or QC problems were encountered.

#### **SEMIVOLATILE ORGANICS**

Three soil samples and one field blank were analyzed for Target Compound List (TCL) of semivolatile organics by method 95-2 from the NYSASP 1995.

Samples SB50AS was analyzed for site specific QC. All matrix spike recoveries and %RPD were within QC Limits except for the recovery of 4-Nitrophenol in SB50ASMSD. All blank spike recoveries were within QC limits.

The method blank SBLK2 had some low levels (below the CRDL) of target compounds detected which may have been from carryover from glassware that had been contaminated from a previous sample. These compounds were not detected in any associated samples in this SDG.

00008

#### EMCON 97020000163 Page 2

All tuning criteria for DFTPP were met.

The initial and continuing calibration criteria were met for all analytes.

All surrogate standard recoveries were within acceptance limits except for S6 in samples SB49AS and SB49ASRE

All internal standard areas were within QC Limits except for IS6 in samples SB49AS, SB49ASRE, SB50AS and SB50ASRE.

All samples were analyzed within the holding time as specified in the method except for SB05AS which was lost during the GPC cleanup method due to the sample backflushing into the apparatus when it ran out of carrier gas. This sample was reextracted outside of the holding time required.

No other analytical or QC problems were encountered.

#### PESTICIDES/PCBs

Four soil samples and one field blank were analyzed for the Target Compound List of PCBs by Method 95-3 from the NYSASP 1995. Although only PCB's were requested by the client, pesticide results have been reported in order to satisfy all of the QC requirements of the method.

Sample SB51AS was analyzed for site specific QC. All matrix spike recoveries and %RPD were within QC Limits except for the recoveries of gamma-BHC, Endrin and 4-4'-DDT in sample SB51ASMS and 4-4'-DDT in sample SB51ASMSD. The DDT recoveries may have been low due to the high level of DDT in the initial sample compared to the spike level. All blank spike recoveries were within QC limits.

The initial and continuing calibration criteria were met for all analytes.

All surrogate standard recoveries were within QC limits.

All samples were extracted and analyzed within the specified holding times.

No other analytical or QC problems were encountered.

## VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB49AD

Lab Code: 10145 Case No.: 97-2-163 SAS No.: SDG No.: SB49AS

Matrix: (soil/water) SOIL Lab Sample ID: 130620 1250

Lab Name: cas-roc

Sample wt/vol: 4.0 (g/ml) G Lab File ID: R2955.D

Level: (low/med) MED Date Received:

% Moisture: not dec. 25.8 Date Analyzed: 02/20/97

GC Column: RTX502. iD: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume 10000 (uL) Soil Aliquot Volume: 10 (uL)

#### CONCENTRATION UNITS:

Contract: EMCON-M

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane	17000	U
75-01-4	Vinyl chloride	17000	U
75-00-3	Chloroethane	17000	U
74-83-9	Bromomethane	17000	U
67-64-1	Acetone	17000	U
75-35-4	1,1-Dichloroethene	17000	U
75-09-2	Methylene chloride	17000	U
75-15-0	Carbon disulfide	17000	U
75-34-3	1,1-Dichloroethane	21000	
78-93-3	2-Butanone	17000	U J
540-59-0	1,2-Dichloroethene (total)	17000	U
67-66-3	Chloroform	17000	U
107-06-2	1,2-Dichloroethane	17000	U
71-55-6	1,1,1-Trichloroethane	7800	J
56-23-5	Carbon tetrachloride	17000	U
71-43-2	Benzene	17000	U
79-01-6	Trichloroethene	230000	
78-87-5	1,2-Dichloropropane	17000	U
75-27-4	Bromodichloromethane	17000	Ü
10061-01-5	cis-1,3-Dichloropropene	17000	U
10061-02-6	trans-1,3-Dichloropropene	17000	U
79-00-5	1,1,2-Trichloroethane	17000	Ü
124-48-1	Dibromochloromethane	17000	Ü
75-25-2	Bromoform	17000	U
108-10-1	4-Methyl-2-pentanone	17000	U
108-88-3	Toluene	18000	
591-78-6	2-Hexanone	17000	UJ
127-18-4	Tetrachloroethene	17000	U
108-90-7	Chlorobenzene	17000	U
100-41-4	Ethylbenzene	4700	J
1330-20-7	Xylenes (total)	18000	
100-42-5	Styrene	17000	U
108-88-3	1,1,2,2-Tetrachloroethane	17000	U

#### NYSDEC Sample No.: SB49AD

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --Matrix: (soil/water) SOIL

Sample wt/vol: 4.0 (g/mL) G

Level (low/med): MED % Moisture: 25.8

Column (pack/cap): CAP

Number TIC's found: 0

Contract: EMCON

Contract: EMCON S SAS No.: -- SDG No.:SB49AD

Lab Sample ID: 130620 Lab File ID: R2955

Date Received: 02/12/97 Date Analyzed: 02/20/97

Dilution Factor: 1.0 Concentration Units: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.		======	=======	=====
2.				
3.				
4.				
_5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				_
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21. 22.				
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

#### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB49AS

Lab Name:	cas-roc				Contract:	EMCON-M		
Lab Code:	10145		Case No.:	97-2-163	SAS No	).:	SDG No.: SI	B49AS
Matrix: (soil/v	vater)	SOIL			Lat	o Sample ID	: 130619 50	0
Sample wt/vo	ol:	4.0	(g/ml)	G	Lat	o File ID:	R2952.D	·
Level: (low/n	ned)	MED			Da	te Received		
% Moisture: r	not dec.	27			Da	te Analyzed	02/20/97	
GC Column:	RTX50	02. ID:	<u>0.53</u> (n	nm)	Dil	ution Factor	1.0	
Soil Extract \	/olume	10000	(uL)		Soi	il Aliquot Vo	lume: 25	(uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane	6800	U
75-01-4	Vinyl chloride	6800	U
75-00-3	Chloroethane	6800	U
74-83-9	Bromomethane	6800	U
67-64-1	Acetone	14000	
75-35-4	1,1-Dichloroethene	6800	U
75-09-2	Methylene chloride	6800	U
75-15-0	Carbon disulfide	6800	U
75-34-3	1,1-Dichloroethane	28000	
78-93-3	2-Butanone	6800	U 5
540-59-0	1,2-Dichloroethene (total)	1100	J
67-66-3	Chloroform	6800	U
107-06-2	1,2-Dichloroethane	6800	U
71-55-6	1,1,1-Trichloroethane	11000	,,
56-23-5	Carbon tetrachloride	6800	U
71-43-2	Benzene	6800	U
79-01-6	Trichloroethene 280000		<del></del> _
78-87-5	1,2-Dichloropropane	6800	U
75-27-4	Bromodichloromethane	6800	Ū
10061-01-5	cis-1,3-Dichloropropene	6800	Ü
10061-02-6	trans-1,3-Dichloropropene	6800	U
79-00-5	1,1,2-Trichloroethane	6800	Ū
124-48-1	Dibromochloromethane	6800	U
75-25-2	Bromoform	6800	U
108-10-1	4-Methyl-2-pentanone	6800	U
108-88-3	Toluene	27000	
591-78-6	2-Hexanone	6800	U <b>J</b>
127-18-4	Tetrachloroethene	6800	U
108-90-7	Chlorobenzene	6800	Ū
100-41-4	Ethylbenzene	7700	<del> </del>
1330-20-7	Xylenes (total)	30000	
100-42-5	Styrene	6800	U
108-88-3	1,1,2,2-Tetrachloroethane	6800	U

Jar 81/8/97

3/20/97

P 34

#### NYSDEC Sample No.: SB49AS

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --Matrix: (soil/water) SOIL

Sample wt/vol: 4.0 (g/mL) G

Level (low/med): MED % Moisture: 27.0

Column (pack/cap): CAP

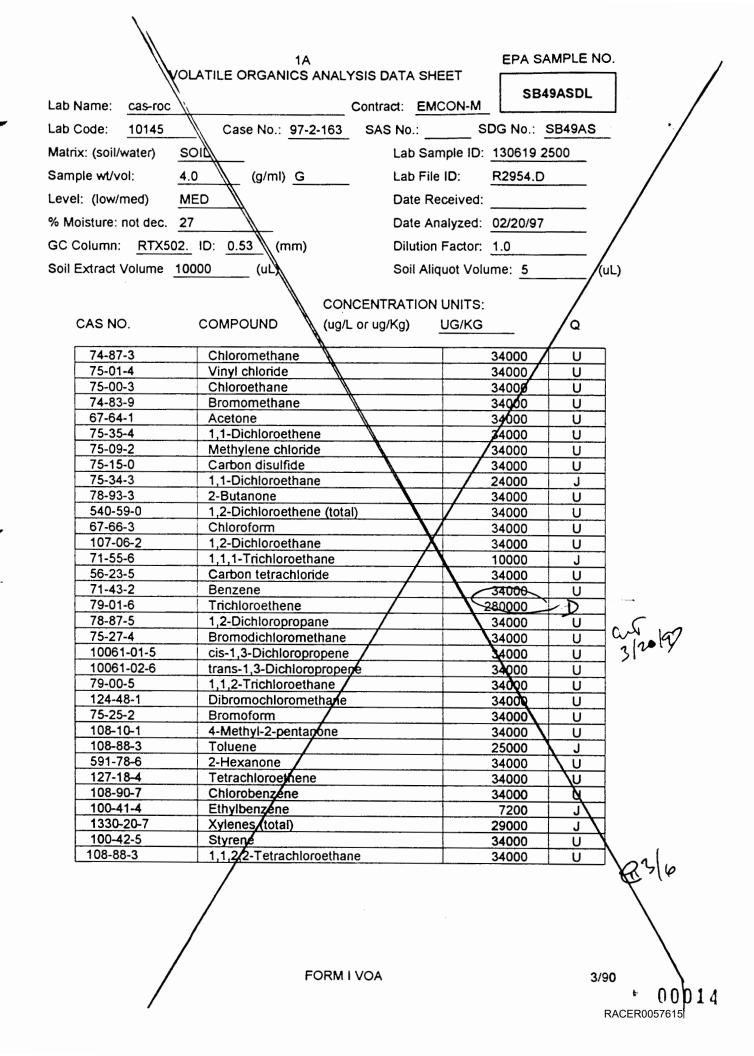
.

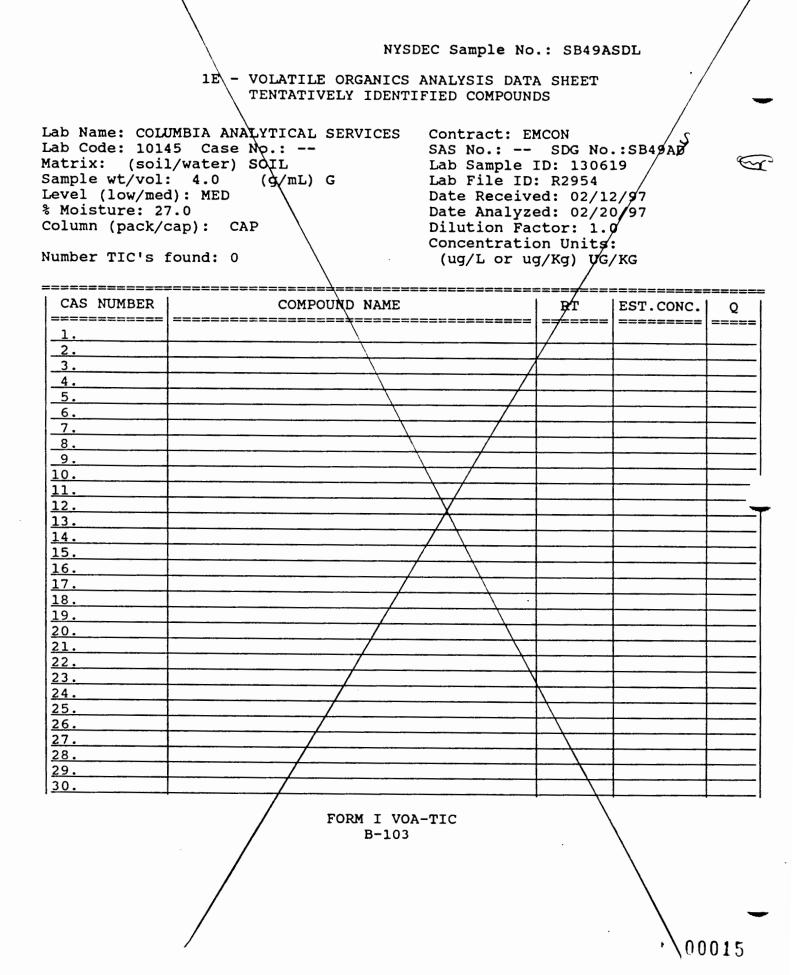
Number TIC's found: 3

Contract: EMCON

SAS No.: -- SDG No.:SB49A

Lab Sample ID: 130619


Lab File ID: R2952


Date Received: 02/12/97 Date Analyzed: 02/20/97

Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1. 592278	Heptane, 2-methyl-	13.10	11000	
2. 111659	Octane	14.34	21000	JN
3.	Unknown	16.37	10000	J
4.				
5.				
6. 7. 8. 9.				Cura ,
7.				3/24/4-
8.				
9.				
110.	***			
11.				
12.				
13.				
14.				
15.				
16.				
15. 16. 17. 18.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
21. 22. 23. 24. 25. 26. 27.				
28.				
		ļ		
29.		<del> </del>		
30.				





### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB49BS

(uL)

Lab Name: cas-roc Contract: EMCON-M Lab Code: 10145 Case No.: 97-2-163 SAS No.: SDG No.: SB49AS Matrix: (soil/water) SOIL Lab Sample ID: 130626 125 Sample wt/vol: 4.0 (g/ml) G Lab File ID: R2956.D Level: (low/med) MED Date Received: % Moisture: not dec. 33.7 Date Analyzed: 02/20/97 GC Column: RTX502. ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume 10000 (uL)

#### **CONCENTRATION UNITS:**

Soil Aliquot Volume: 100

COMPOUND	(v.=1) v=1(/-)	110/1/O.	_
COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
Chloromethane		1900	U
Vinyl chloride		1900	U
Chloroethane		1900	U
Bromomethane		1900	U
Acetone			U
1,1-Dichloroethen	e		U
Methylene chloride	e		U
Carbon disulfide			U
1,1-Dichloroethan	e		J
2-Butanone			Ü 5
1,2-Dichloroethen	e (total)		U
Chloroform			Ü
1,2-Dichloroethan	е		Ü
			U
			Ü
			U
	ne		U
			U
			Ü
			U
			Ü
			Ü
			U
	one		Ü
			J
			$\ddot{\upsilon}$ $\sigma$
			Ü
			Ü
			J
			J
			Ü
	Vinyl chloride Chloroethane Bromomethane Acetone 1,1-Dichloroethen Methylene chloride Carbon disulfide 1,1-Dichloroethane 2-Butanone 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane Carbon tetrachlori Benzene Trichloroethene 1,2-Dichloropropa Bromodichloromet cis-1,3-Dichloropropa trans-1,3-Dichloropropa trans-1,3-Dichloromethane Dibromochloromethane Dibromochloromethane Bromoform 4-Methyl-2-pentan Toluene 2-Hexanone Tetrachloroethene Chlorobenzene Ethylbenzene Xylenes (total)	Chloromethane Vinyl chloride Chloroethane Bromomethane Acetone 1,1-Dichloroethene Methylene chloride Carbon disulfide 1,1-Dichloroethane 2-Butanone 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Bromoform 4-Methyl-2-pentanone Toluene 2-Hexanone Tetrachloroethene Chlorobenzene Ethylbenzene Xylenes (total)	Chloromethane         1900           Vinyl chloride         1900           Chloroethane         1900           Bromomethane         1900           Acetone         1900           1,1-Dichloroethene         1900           Methylene chloride         1900           Carbon disulfide         1900           1,1-Dichloroethane         1200           2-Butanone         1900           1,2-Dichloroethane         1900           1,2-Dichloroethene (total)         1900           1,2-Dichloroethane         1900           1,1,1-Trichloroethane         1900           Carbon tetrachloride         1900           Benzene         1900           Trichloroethene         17000           1,2-Dichloropropane         1900           Bromodichloromethane         1900           cis-1,3-Dichloropropene         1900           trans-1,3-Dichloropropene         1900           1,1,2-Trichloroethane         1900           Dibromochloromethane         1900           Bromoform         1900           4-Methyl-2-pentanone         1900           Toluene         1100           2-Hexanone         1900

#### NYSDEC Sample No.: SB49BS

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: --

Matrix: (soil/water) SOIL

Sample wt/vol: 4.0 (g/mL) G

Level (low/med): MED % Moisture: 33.7

Column (pack/cap): CAP

Number TIC's found: 0

SAS No.: -- SDG No.:SB49AD

Lab Sample ID: 130626

Lab File ID: R2956

Date Received: 02/12/97 Date Analyzed: 02/20/97

Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.			=======	=====
2.				
3.			-	
4.				
4. 5.				
6. İ				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20. 21. 22. 23.				
21.				
22.				
23.				
24.				
25.				
25. 26. 27. 28.				
27.				
28.				
29.				
30.				

#### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB50AS Lab Name: CAS-ROC Contract: EMCON-M Lab Code: SAS No.: SDG No.: SB49AS 10145 Case No.: 97-2-163 Matrix: (soil/water) SOIL Lab Sample ID: 130621 1.0 Sample wt/vol: 5.0 (g/ml) G Lab File ID: AQ708.D Level: (low/med) LOW Date Received: % Moisture: not dec. 19.2 Date Analyzed: 02/18/97 GC Column: RTX502. ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume _____ (uL) Soil Aliquot Volume: (uL)

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane	12	U
75-01-4	Vinyl chloride	12	U
75-00-3	Chloroethane	12	U
74-83-9	Bromomethane	12	U
67-64-1	Acetone	15	
75-35-4	1,1-Dichloroethene	12	U
75-09-2	Methylene chloride	2	J
75-15-0	Carbon disulfide	12	U
75-34-3	1,1-Dichloroethane	5	J
78-93-3	2-Butanone	3	J
540-59-0	1,2-Dichloroethene (total)	3	J
67-66-3	Chloroform	12	U
107-06-2	1,2-Dichloroethane	12	U
71-55-6	1,1,1-Trichloroethane	18	
56-23-5	Carbon tetrachloride	12	U
71-43-2	Benzene	12	U
79-01-6	Trichloroethene	19	
78-87-5	1,2-Dichloropropane	12	U
75-27-4	Bromodichloromethane	12	U
10061-01-5	cis-1,3-Dichloropropene	12	U
10061-02-6	trans-1,3-Dichloropropene	12	U
79-00-5	1,1,2-Trichloroethane	12	U
124-48-1	Dibromochloromethane	12	U
75-25-2	Bromoform	12	U
108-10-1	4-Methyl-2-pentanone	12	U
108-88-3	Toluene	5	J
591-78-6	2-Hexanone	12	U
127-18-4	Tetrachloroethene	11	J
108-90-7	Chlorobenzene	12	U
100-41-4	Ethylbenzene	3	J
1330-20-7	Xylenes (total)	7	J
100-42-5	Styrene	12	U
108-88-3	1,1,2,2-Tetrachloroethane	12	UJ

R3/6

#### NYSDEC Sample No.: SB50AS

## 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: -- Matrix: (soil/water) SOIL

Sample wt/vol: 5.0 (g/mL) G

Level (low/med): LOW

% Moisture: 19.2

Column (pack/cap): CAP

Number TIC's found: 0

Contract: EMCON

SAS No.: -- SDG No.:SB49AD

Lab Sample ID: 130621

Lab File ID: AQ708

Date Received: 02/12/97 Date Analyzed: 02/18/97

Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12. 13.				
14.				
15.				
16.			<del>                                     </del>	
17.				
18.				
19.				
20.				
21.				
21. 22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

#### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	cas-roc			Contract:	EMCON-M	SBFBAR	
Lab Code:	10145	Cas	se No.: 97-2-163	SAS No	.: S	DG No.: SB49AS	
Matrix: (soil/v	water)	WATER		Lat	Sample ID:	130637 1.0	_
Sample wt/vo	ol:	5.0	(g/ml) ML	Lat	File ID:	R2951.D	
Level: (low/n	ned)	LOW		Da	te Received:		
% Moisture: r	not dec.		<del></del>	Da	te Analyzed:	02/20/97	
GC Column:	RTX50	02. ID: 0.5	3 (mm)	Dile	ution Factor:	1.0	
Soil Extract \	/olume		_ (uL)	Soi	il Aliquot Volu	ıme:(	(uL
			•	105117047			

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	10	U
75-01-4	Vinyl chloride	10	U
75-00-3	Chloroethane	10	Ū
74-83-9	Bromomethane	10	U
67-64-1	Acetone	10	Ü
75-35-4	1,1-Dichloroethene	10	Ū
75-09-2	Methylene chloride	10	Ū
75-15-0	Carbon disulfide	10	U
75-34-3	1,1-Dichloroethane	10	U
78-93-3	2-Butanone	10	U <b>5</b>
540-59-0	1,2-Dichloroethene (total)	10	U
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	Ü
71-55-6	1,1,1-Trichloroethane	10	Ü
56-23-5	Carbon tetrachloride	10	Ü
71-43-2	Benzene	10	U
79-01-6	Trichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	Ü
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	Ü
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
124-48-1	Dibromochloromethane	10	Ü
75-25-2	Bromoform	10	U
108-10-1	4-Methyl-2-pentanone	10	U
108-88-3	Toluene	10	Ū
591-78-6	2-Hexanone	10	<u> </u>
127-18-4	Tetrachloroethene	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	Ü
1330-20-7	Xylenes (total)	10	Ü
100-42-5	Styrene	10	U
108-88-3	1,1,2,2-Tetrachloroethane	10	U

#### NYSDEC Sample No.: SBFBAR

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --

Matrix: (soil/water) WATER Sample wt/vol: 5.0 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 0

Contract: EMCON SAS No.: -- SDG No.:SB49AD

Lab Sample ID: 130637

Lab File ID: R2951

Date Received: 02/12/97 Date Analyzed: 02/20/97

Dilution Factor: 1.0 Concentration Units: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.		======	=======	=====
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
16. 17. 18.				
17.				
18.				
19.				
20.				
21.				
22.				
22.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

#### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBTBAT

Lab Name:	cas-roc			Contract:	EMCON-	<u> </u>		
Lab Code:	10145	Cas	se No.: 97-2-163	SAS No	D.:	SDG N	lo.: SB49AS	s
Matrix: (soil/v	water)	WATER		La	b Sample II	D: <u>1306</u>	341 1.0	
Sample wt/vo	ol:	5.0	(g/ml) ML	La	b File ID:	R295	50.D	
Level: (low/r	ned)	LOW		Da	te Receive	d:		
% Moisture: r	not dec.			Da	te Analyze	d: <u>02/2</u>	0/97	
GC Column:	RTX5	02. ID: 0.5	(mm)	Dil	ution Facto	r: <u>1.0</u>		
Soil Extract \	/olume		_ (uL)	So	il Aliquot V	olume:		(uL

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	10	U
75-01-4	Vinyl chloride	10	U
75-00-3	Chloroethane	10	U
74-83-9	Bromomethane	10	U
67-64-1	Acetone	10	U
75-35-4	1,1-Dichloroethene	10	U
75-09-2	Methylene chloride	10	U
75-15-0	Carbon disulfide	10	U
75-34-3	1,1-Dichloroethane	10	U
78-93-3	2-Butanone	10	U 3
540-59-0	1,2-Dichloroethene (total)	10	U
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	U
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon tetrachloride	10	U
71-43-2	Benzene	10	U
79-01-6	Trichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
124-48-1	Dibromochloromethane	10	U
75-25-2	Bromoform	10	U
108-10-1	4-Methyl-2-pentanone	10	U
108-88-3	Toluene	10	U
591-78-6	2-Hexanone	10	03
127-18-4	Tetrachloroethene	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	U
1330-20-7	Xylenes (total)	10	Ü
100-42-5	Styrene	. 10	U
108-88-3	1,1,2,2-Tetrachloroethane	10	U

and Silver

yrolan

C 46

#### NYSDEC Sample No.: SBTBAT

#### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --Matrix: (soil/water) WATER

Sample wt/vol: 5.0 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 1

Contract: EMCON

SAS No.: -- SDG No.:SB49AD

Lab Sample ID: 130641 Lab File ID: R2950

Date Received: 02/12/97 Date Analyzed: 02/20/97 Dilution Factor: 1.0

Concentration Units: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.	Unknown	6.81	5.6	
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				7
13.				
14.				
15.				
16. 17.				
17.				
18.				
19.				
20. 21.				
21.				
22.				
23.				
24. 25.				
25.				
26.				
27.				
28.				
29.				
30.				

#### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB49AD

Lab Name:	Columbi	a Analy	tical Service	ces	Contract:	EMCON		
Lab Code:	10145		Case No.:	9702-163	SAS No	o.: s	DG No.: S	B49AS
Matrix: (soil/v	vater)	SOIL			La	b Sample ID:	130620	
Sample wt/vo	ol:	30	(g/ml)	G	Lal	b File ID:	DL270.D	
Level: (low/n	ned)	LOW			Da	te Received:	02/12/97	
% Moisture:	26		decanted:(	(N/Y)	N Da	te Extracted:	02/14/97	
Concentrated	Extract	Volume	e: <u>500</u>	(uL)	Da	te Analyzed:	02/28/97	
Injection Volu	ıme: <u>2</u> .	0 (ul	L)		Dil	ution Factor:	1.0	
GPC Cleanup	p: (Y/N)	Y	pH: 8	3.2				

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
108-95-2	Phenol		450	U
111-44-4	bis(-2-Chloroethyl)Et	her	450	U
95-57-8	2-Chlorophenol		450	U
541-73-1	1,3-Dichlorobenzene		450	U
106-46-7	1,4-Dichlorobenzene		450	U
95-50-1	1,2-Dichlorobenzene		450	Ú
108-60-1	2,2'-oxybis(1-Chloro	propane)	450	U
95-48-7	2-Methylphenol		110	J
621-64-7	N-Nitroso-Di-n-propy	lamine	54	J
67-72-1	Hexachloroethane		450	U
106-44-5	4-Methylphenol		160	J
98-95-3	Nitrobenzene		450	U
78-59-1	Isophorone		450	U
88-75-5	2-Nitrophenol		450	Ü
105-67-9	2,4-Dimethylphenol		450	Ü
111-91-1	bis(-2-Chloroethoxy)	Methane	450	U
120-83-2	2,4-Dichlorophenol		450	Ü
120-82-1	1,2,4-Trichlorobenze	ne	450	U
91-20-3	Naphthalene		450	Ū
106-47-8	4-Chloroaniline		450	U
87-68-3	Hexachlorobutadiene		450	U
59-50-7	4-Chloro-3-methylph		450	Ū
91-57-6	2-Methylnaphthalene		450	U
77-47-4	Hexachlorocyclopent		450	U
88-06-2	2,4,6-Trichloropheno		450	U
95-95-4	2,4,5-Trichloropheno	l	1100	U
91-58-7	2-Chloronaphthalene		450	U
88-74-4	2-Nitroaniline		1100	U
208-96-8	Acenaphthylene		450	U
131-11-3	Dimethyl Phthalate		450	U
606-20-2	2,6-Dinitrotoluene		450	U
83-32-9	Acenaphthene		450	U
99-09-2	3-Nitroaniline		1100	U
51-28-5	2,4-Dinitrophenol		1100	U
132-64-9	Dibenzofuran		450	U
121-14-2	2,4-Dinitrotoluene		450	U
100-02-7	4-Nitrophenol		1100	U

#### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name	Columbia A	nalytical Services	Contra	d EMC	:ON	SB	49AD	
						2 No	CRACAC	٠.
Lab Code:	10145	Case No.: 970	2-163 SAS	NO.:		5 NO.: 3	3B49A3	-
Matrix: (soil/w	vater) <u>SC</u>	PIL		Lab Sam	ple ID: 1	30620		
Sample wt/vo	ol: <u>30</u>	(g/ml) G		Lab File	ID: D	L270.D		
Level: (low/m				Date Red	ceived: 0	2/12/97		
% Moisture:	26	decanted:(Y/N)	N	Date Ext	racted: 0	2/14/97		
Concentrated	Extract Vol	ume: 500 (uL)		Date Ana	alyzed: 0	2/28/97		
Injection Volu	me: 2.0	(uL)		Dilution I	Factor: 1	.0		
		Y pH: 8.2			_			
Gre Cleanup	). (1/14)	T pn. 6.2	<del></del>					
			co	NCENTR	ATION U	NITS:		
CAS NO	).	COMPOUND	(ug	/L or ua/K	(g) UG/I	(G	Q	
					<u> </u>			
86-73-	7	Fluorene				450	U	
7005-7	2-3	4-Chlorophenyl-pl	henylether			450	U	
84-66-2	2	Diethylphthalate				450	U	
100-01	-6	4-Nitroaniline				1100	U	
534-52	-1	4,6-Dinitro-2-meth	nylphenol			1100	U	
86-30-6	6	N-Nitrosodipheny				450	U	
101-55	-3	4-Bromophenyl-pl				450	U	
118-74		Hexachlorobenze				450	U	
87-86-		Pentachloropheno	ol			1100	U	
85-01-		Phenanthrene				450	U	
120-12		Anthracene				450	U	
86-74-8		Carbazole				450	U	_
84-74-2		Di-n-Butylphthala	le			1900	U	CLA
206-44		Fluoranthene				450	U	3/24/97
129-00		Pyrene				450	U	3/2
85-68-		Butyl benzyl phtha	alate			450	U	
91-94-		3,3'-Dichlorobenz				450	Ū	
56-55-		Benzo(a)Anthrace				450	U	
218-01		Chrysene				450	Ü	
117-81		Bis(2-Ethylhexyl)	Phthalate		450	100	سر ک	
117-84								
205-99		Di-n-octyl phthala Benzo(b)fluoranth				450 450	U	
207-08		Benzo(k)Fluorant				450	Ü	
50-32-	<del>,, , , , , , , , , , , , , , , , , , ,</del>		nelle			450	U	
193-39		Benzo(a)Pyrene	)					
53-70-		Indeno(1,2,3-cd)F				450	U	
		Dibenz(a,h)anthra				450		
191-24	-2	Benzo(g,h,i)Peryl	ene			450	U	

NYSDEC Sample No: SB49AD

#### 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: --SAS No.: -- SDG No.:SB49AS

Matrix: (soil/water) SOIL Sample wt/vol: 30 (g/mL) G

Level (low/med): LOW

% Moisture: 26

Extraction: (SepF/Cont/Sonc)SONC

GPC Cleanup (Y/N) pH
Number TIC's found: 23

Lab Sample ID: 130620 Lab File ID: DL270 Date Received: 02/12/97 Date Extracted:02/14/97 Date Analyzed: 02/28/97 Dilution Factor: 1.0

Concentration Units: (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q =====
1.	Unknown	6.90	9800	JD
2.	Unknown	7.28	570	<del>JB</del>
3.	Unknown	8.24	11000	J
4.	Unknown	8.41	320	JB
5.	Unknown	8.61	510	J
6.	Unknewn	8.76	780	JB-
7.	<del>Unknown</del>	9.00	1800	JB
8.	Unknown	9.24	340	<del>JD</del>
9.	Unknown	9.87	390	J
10.	Unknown	10.30	780	JB-
11.	Unknown	10.72	1700	J
12.	Unknown	11.95	370	J,
13. 544763	Hexadecane	17.73	640	Jø
14. 629787	Heptadecane	18.60	440	JΝ
15.	Unknown Hydrocarbon	19.41	310	J
16. 629925	Nonadecane	20.18	410	JN
17.	Unknown	20.28	340	J
18.	Unknown Hydrocarbon	21.60	340	J
19.	Unknown Hydrocarbon	22.26	340	J
20.	Unknown Hydrocarbon	22.90	330	J
21.	Unknown Hydrocarbon	24.14	330	J
22.	Unknown Hydrocarbon	25.54	360	J
23.	Unknown Hydrocarbon	27.28	300	J
24.				
25.				
26.				
27.				
28.				
29.				
30.				

FORM I SV-TIC NYSDEC B-78

#### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	Columbia A	nalytical Servic	es (	Contract:	EMCON	S	B49AS
		Case No.:				DG No.:	SB49AS
Matrix: (soil/	water) SC	DIL		Lat	Sample ID:	130619	
Sample wt/ve	ol: 30	(g/ml)	G	Lat	File ID:	DL269.E	)
Level: (low/r				Dat	e Received:	02/12/97	·
% Moisture:	27	decanted:(	Y/N) N	Dat	e Extracted:	02/14/97	,
Concentrated	d Extract Vol	ume: 500	(uL)	— Dat	e Analyzed:	02/28/97	,
Injection Vol	ume: 2.0	(uL)		Dilu	ition Factor:	1.0	
		Y pH: 8	.6				
		<u> </u>					
				CONC	ENTRATION	UNITS:	
CAS NO	).	COMPOUND		(ug/L o	rug/Kg) <u>U(</u>	3/KG	_ Q
108-95	5-2	Phenol				460	U
111-44		bis(-2-Chloro	thyi)Ether			460	Ü
95-57-		2-Chlorophen				460	Ü
541-73		1,3-Dichlorob				460	Ū
106-46		1,4-Dichlorob				460	Ü
95-50-		1,2-Dichlorob				460	Ū
108-60		2,2'-oxybis(1-		ane)		460	U
95-48-		2-Methylphen		arie)	<del></del>	110	J
621-64		N-Nitroso-Di-		ne		460	Ü
67-72-		Hexachloroet		116		460	Ü
106-44		4-Methylphen				160	J
98-95-		Nitrobenzene				460	Ü
78-59-		Isophorone				460	U U
88-75-		2-Nitrophenol		-		460	U
105-67		2,4-Dimethylp			<del></del>	460	U
111-9		bis(-2-Chloro		200		460	U
120-83		2,4-Dichlorop		iane		460	<del>, U</del>
120-82		1,2,4-Trichlor				460	U
91-20-		Naphthalene	benzene		· · · · · · · · · · · · · · · · · · ·	460	Ü
106-47		4-Chloroanilin		<del></del>		460	<del>: U</del>
87-68-		Hexachlorobu				460	U
59-50-		4-Chloro-3-m				460	U
91-57-		2-Methylnaph			<del></del>	460	Ü
77-47-		Hexachlorocy		ne .	·	460	U
88-06-		2,4,6-Trichlor		110		460	U
95-95-		2,4,5-Trichlor			<del>i</del>	1100	Ü
91-58-		2-Chloronaph		-	<u> </u>	460	T U
88-74-		2-Nitroaniline	maiche		i	1100	Ü
208-96		Acenaphthyle	ne			460	Ü
131-1		Dimethyl Phth				460	<del>  0</del>
606-20		2,6-Dinitrotolu				460	Ü
83-32-		Acenaphthen				460	Ü
99-09-		3-Nitroaniline				1100	U
51-28-		2,4-Dinitrophe				1100	Ū
132-64		Dibenzofuran			i	460	Ü

2,4-Dinitrotoluene

4-Nitrophenol

121-14-2

100-02-7

U

Ū

460

1100

## 1C E SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	Columb	oia Analytical Services	Contract: EMC	ON	S	B49AS	
		Case No.: 9702-16			No ·	SB49AS	
			_			0540710	•
Matrix: (soil/v	vater)	SOIL	Lab Sam	ple ID: 13	30619	<del></del>	
Sample wt/vo	ol:	30 (g/ml) G	Lab File	ID: <u>D</u>	L269.D	)	
Level: (low/n	ned)	LOW	Date Red	ceived: 02	2/12/97	<u>,                                     </u>	
% Moisture:	27	decanted:(Y/N)	N Date Ext	racted: 02	2/14/97	,	
Concentrated	Extract	Volume: 500 (uL)	Date Ana	alyzed: 02	2/28/97	·	
Injection Volu	ıme: 2	2.0 (uL)	Dilution f	Factor: 1.	0		
	'	Y pH: 8.6		_			
			CONCENTR	ATION UN	UTC:		
						_	
CAS NO	<b>)</b> .	COMPOUND	(ug/L or ug/K	.g) <u>UG/k</u>	(G	_ Q	
86-73-	7	Fluorene			460	U	
7005-7		4-Chlorophenyl-pheny	lether		460	U	
84-66-		Diethylphthalate			460	Ü	
100-01		4-Nitroaniline			100	U	
534-52		4,6-Dinitro-2-methylph	enol		100	U	
86-30-		N-Nitrosodiphenylamir			460	U	
101-55		4-Bromophenyl-pheny			460	U	
118-74		Hexachlorobenzene			460	U	
87-86-		Pentachlorophenol		1	100	U	
85-01-		Phenanthrene			460	U	
120-12		Anthracene			460	U	
86-74-		Carbazole			460	U	
84-74-	2	Di-n-Butylphthalate		460		USE	C
206-44	l-0	Fluoranthene			460	U	3/26/9
129-00	)-0	Pyrene			460	U	>1 .
85-68-	7	Butyl benzyl phthalate			460	U	
91-94-	1	3,3'-Dichlorobenzidine			460	U	
56-55-	3	Benzo(a)Anthracene			460	U	
218-01	-9	Chrysene			460	U	
117-81	-7	Bis(2-Ethylhexyl)Phtha	alate	460	<del>-110-</del>	ひょ	<u>.</u>
117-84	I-O	Di-n-octyl phthalate			460	U	7
205-99		Benzo(b)fluoranthene			460	U	
207-08	3-9	Benzo(k)Fluoranthene			460	U	$\succ \kappa$
50-32-	8	Benzo(a)Pyrene			460	U-	1 ,
193-39	)-5	Indeno(1,2,3-cd)Pyren	е		460	<u> </u>	
53-70-	3	Dibenz(a,h)anthracene			460	<del></del>	
191-24	-2	Benzo(g,h,i)Perylene		_	460	<del>U</del>	7

NYSDEC Sample No: SB49AS

## 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: -- SDG No.:SB49AS

Matrix: (soil/water) SOIL

Sample wt/vol: 30 (g/mL) G

Lab File ID: DL269

Level (low/mod): LOW

Date Received: 03/13/

Level (low/med): LOW

% Moisture: 27

Extraction: (SepF/Cont/Sonc)SONC

GPC Cleanup (Y/N)

Date Received: 02/12/97

Date Extracted:02/14/97

Date Analyzed: 02/28/97

Dilution Factor: 1.0

Number TIC's found: 23 Concentration Units:

(ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q	
1.	-Unknown	-6.83	2200	JB	
2.	Unknown	7.25	330	JB	١,
3.	Unknown	8.22	7700	J	<u>'</u> ا
4.	Unknown	8.72	430	JB'	ĺ
5.	-Unknown	9.24	1300	JB	
6. 556672	Cyclotetrasiloxane, octamethyl-	9.54	540	J	
7.	Unknown	10.71	1100	JN	
8.	Unknown	11.73	430	J	
9. 629629	Pentadecane	16.80	360	J	
10. 544763	Hexadecane	17.73	530	JF	_
11. 629787	Heptadecane	18.60	470	JN	
12.	Unknown Hydrocarbon	20.18	370	J	
13.	Unknown Hydrocarbon	21.60	350	J	l
14.	Unknown Hydrocarbon	22.90	320	J	l
15.	Unknown Hydrocarbon	24.14	360	J	l
16.	Unknown Hydrocarbon	25.53	400	J	
17.	Unknown Hydrocarbon	27.27	1200	J	
18.	Unknown Hydrocarbon	28.33	660	J <b>y</b>	
19.	Unknown	28.68	910		ĺ
20.	Unknown Hydrocarbon	29.59	800	J	3
21.	Unknown	29.98	420	J	3
22.	Unknown Hydrocarbon	31.08	500	J	
23.	Unknown Hydrocarbon	32.84	330	J	
24.					
25.		ļ		ļ	
26.					
27.		ļ		<u> </u>	
28.				ļ	
29.				<b></b>	
30.				<u> </u>	

FORM I SV-TIC NYSDEC B-78

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB49ASRE

Lad Name:	Columb	ia Analy	tical Services	Conti	ract:	EMCON	
Lab Code:	10145		Case No.: 9702-163	S SA	S No.	.: S	DG No.: SB49AS
Matrix: (soil/v	water)	SOIL		_	Lab	Sample ID:	130619RE
Sample wt/vo	ol:	30	(g/ml) G	_	Lab	File ID:	DL280.D
Level: (low/n	ned)	LOW			Date	e Received:	02/12/97
% Moisture:	27		decanted:(Y/N)	٧	Dat	e Extracted:	02/14/97
Concentrated	Extract	Volume	: <u>500</u> (uL)		Dat	e Analyzed:	03/05/97
njection Volume: 2.0 (uL) Dilution Factor: 1.0							
GPC Cleanup: (Y/N) Y pH: 8.6							

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
108-95-2	Phenol		460	U
111-44-4	bis(-2-Chloroethyl)Eth	ner	460	U
95-57-8	2-Chlorophenol		460	U
541-73-1	1.3-Dichlorobenzene		460	U
106-46-7	1,4-Dichlorobenzene		460	U
95-50-1	1,2-Dichlorobenzene		460	U
108-60-1	2.2'-oxybis(1-Chlorop	ropane)	460	U 5
95-48-7	2-Methylphenol		110	J
621-64-7	N-Nitroso-Di-n-propyl	amine	460	UJ
67-72-1	Hexachloroethane		460	
106-44-5	4-Methylphenol		140	J
98-95-3	Nitrobenzene		460	
78-59-1	Isophorone		460	U J
88-75-5	2-Nitrophenol		460	U
105-67-9	2,4-Dimethylphenol		460	U
111-91-1	bis(-2-Chloroethoxy)N	Methane	460	U
120-83-2	2.4-Dichlorophenol		460	U
120-82-1	1,2,4-Trichlorobenzer	ne	460	U
91-20-3	Naphthalene		460	U
106-47-8	4-Chloroaniline		460	U
87-68-3	Hexachlorobutadiene		460	UJ
59-50-7	4-Chloro-3-methylphe	enol	460	U
91-57-6	2-Methylnaphthalene		460	U
77-47-4	Hexachlorocyclopenta	adiene	460	U
88-06-2	2,4,6-Trichlorophenol		460	U
95-95-4	2,4,5-Trichlorophenol		1100	U
91-58-7	2-Chloronaphthalene		460	U
88-74-4	2-Nitroaniline		1100	UJ
208-96-8	Acenaphthylene		460	U
131-11-3	Dimethyl Phthalate		460	U
606-20-2	2,6-Dinitrotoluene		460	U
83-32-9	Acenaphthene		460	U
99-09-2	3-Nitroaniline		1100	U
51-28-5	2,4-Dinitrophenol		1100	U
132-64-9	Dibenzofuran		460	U
121-14-2	2,4-Dinitrotoluene		460	U
100-02-7	4-Nitrophenol		1100	UJ

Cv3/26/97

#### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		SB49ASRE
Lab Name: Colur	nbia Analytical Services Contract:	EMCON
Lab Code: 1014	Case No.: 9702-163 SAS No	.: SDG No.: <u>SB49AS</u>
Matrix: (soil/water)	SOIL Lat	b Sample ID: 130619RE
Sample wt/vol:		D File ID: DL280.D
•		
Level: (low/med)	LOW	te Received: <u>02/12/97</u>
% Moisture:2	decanted:(Y/N) N Date	te Extracted: 02/14/97
Concentrated Extra	ct Volume: 500 (uL) Dat	te Analyzed: 03/05/97
Injection Volume:	2.0 (uL) Dilu	ution Factor: 1.0
	) Y pH: 8.6	
	CONC	ENTRATION UNITS:
CAS NO.	COMPOUND (ug/L or	rug/Kg) <u>UG/KG</u> Q
86-73-7	Fluorene	460 U
7005-72-3	4-Chlorophenyl-phenylether	460 U
84-66-2	Diethylphthalate	460 U
100-01-6	4-Nitroaniline	1100 U
534-52-1	4,6-Dinitro-2-methylphenol	1100 U
86-30-6	N-Nitrosodiphenylamine	460 U
101-55-3	4-Bromophenyl-phenylether	460 U
118-74-1	Hexachlorobenzene	460 U
87-86-5	Pentachlorophenol	1100 U
85-01-8	Phenanthrene	460 U
120-12-7	Anthracene	460 U
86-74-8	Carbazole	460 U
84-74-2	Di-n-Butylphthalate	4444
206-44-0	Fluoranthene	460 U 2/14/97
129-00-0	Pyrene	460 U 3
85-68-7	Butyl benzyl phthalate	460 U
91-94-1	3,3'-Dichlorobenzidine	460 U
56-55-3	Benzo(a)Anthracene	460 U
218-01-9	Chrysene	460 U
117-81-7	Bis(2-Ethylhexyl)Phthalate	460138 UX
117-84-0	Di-n-octyl phthalate	<del>- 460 U- U-</del>
205-99-2	Benzo(b)fluoranthene	460 U ( P
207-08-9	Benzo(k)Fluoranthene	460 4
50-32-8	Benzo(a)Pyrene	<del>-460 U-</del>
193-39-5	Indeno(1,2,3-cd)Pyrene	-460 U-
53-70-3	Dibenz(a,h)anthracene	-460 U-
101.24.2	Penzo(a h i)Penylana	460

NYSDEC Sample No: SB49ASRE

### 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: --SAS No.: -- SDG No.:SB49AS

Matrix: (soil/water) SOIL Lab Sample ID: 130619RE

Sample wt/vol: 30 (g/mL) G Lab File ID: DL280

Date Received: 02/12/97 Level (low/med): LOW

Date Extracted: 02/14/97 % Moisture: 27

Extraction: (SepF/Cont/Sonc)SONC GPC Cleanup (Y/N) pH Date Analyzed: 03/05/97

Dilution Factor: 1.0 Number TIC's found: 23 Concentration Units:

(ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q	
1.	Unknown	6.81	1300	JB	2
2.	Unknown	7.23	500	J <b>y</b>	
3	Unknown	8.20	8100	J	
4	Unknown	8.69	430	J	_
5.	Unknown	9.20	1300	J 8	IR
6. 556672	Cyclotetrasiloxane, octamethyl-	9.51	1100	JN	
7.	Unknown	10.68	1100	J	
8.	Unknown	11.71	490	J	
9. 629629	Pentadecane	16.77	370	JN	
10. 544763	Hexadecane	17.70	550	JB'N	4
11. 629787	Heptadecane	18.57	510	JN	
12.	Unknown Hydrocarbon	20.15	390	J	l
13	Unknown Hydrocarbon	22.24	360	J	
14.	Unknown Hydrocarbon	24.11	480	J	
15.	Unknown Hydrocarbon	25.50	410	J	
16.	Unknown	27.06	470	J	
17.	Unknown Hydrocarbon	27.22	1800	J	
18.	Unknown Hydrocarbon	28.28	990	JB	
19	Unknown	28.63	910	J	C-
20.	Unknown Hydrocarbon	29.53	1200	J	3/20
21.	Unknown	29.90	660	J_	''
22.	Unknown Hydrocarbon	31.00	680	J	1
23.	Unknown Hydrocarbon	32.74	440	J	
2.4 .					
25					İ
26.					
27					
28.					
29					
30.					İ

FORM I SV-TIC NYSDEC B-78

### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	Columb	ia Analyt	ical Sen	vices	Co	ntract:	<b>EMCON</b>			DOUNG	
Lab Code:	10145		Case No	o.: <u>9</u> 702-16	_ 33 \$	SAS No	).:	SDC	3 No.:	SB49A	s_
Matrix: (soil/	water)	SOIL				Lat	b Sample ID	: <u>1</u> 3	30621		
Sample wt/v	ol:	30	(g/n	nl) <u>G</u>		Lai	b File ID:	D	L283.C		
Level: (low/r	med)	LOW				Da	te Received	: 02	2/12/97	7	
% Moisture:	19		decante	d:(Y/N)	N	Da	te Extracted	0:	3/04/97		
Concentrated	d Extract	Volume:	500	_ (uL)		Da	te Analyzed	0	3/05/97	7	
Injection Vol	ume: <u>2</u>	.0 (uL)				Dil	ution Factor	: <u>1</u> .	.0		
GPC Cleanu	p: (Y/N)	Y	_ pH:	8.2							
						CONC	ENTRATION	1U 1	NITS:		

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
108-95-2	Phenol		410	U
111-44-4	bis(-2-Chloroethyl)Ethe	٢	410	U
95-57-8	2-Chlorophenol		410	U
541-73-1	1,3-Dichlorobenzene		410	U
106-46-7	1,4-Dichlorobenzene		410	U
95-50-1	1,2-Dichlorobenzene		410	U
108-60-1	2,2'-oxybis(1-Chloropro	pane)	410	U
95-48-7	2-Methylphenol	•	410	U
621-64-7	N-Nitroso-Di-n-propylar	nine	410	U
67-72-1	Hexachloroethane		410	U
106-44-5	4-Methylphenol		410	U
98-95-3	Nitrobenzene	;	410	U
78-59-1	Isophorone		410	U
88-75-5	2-Nitrophenol		410	U
105-67-9	2,4-Dimethylphenol	:	410	U
111-91-1	bis(-2-Chloroethoxy)Me	thane	410	U
120-83-2	2,4-Dichlorophenol		410	U
120-82-1	1,2,4-Trichlorobenzene		410	U
91-20-3	Naphthalene		410	U
106-47-8	4-Chloroaniline		410	U
87-68-3	Hexachlorobutadiene		410	U
59-50-7	4-Chloro-3-methylphen	ol	410	U
91-57-6	2-Methylnaphthalene		410	U
77-47-4	Hexachlorocyclopentad	iene	410	U
88-06-2	2,4,6-Trichlorophenol	1	410	U
95-95-4	2,4,5-Trichlorophenol		1000	U
91-58-7	2-Chloronaphthalene		410	U
88-74-4	2-Nitroaniline		1000	U
208-96-8	Acenaphthylene		410	U
131-11-3	Dimethyl Phthalate		410	Ų
606-20-2	2,6-Dinitrotoluene		410	U
83-32-9	Acenaphthene		410	U
99-09-2	3-Nitroaniline		1000	U
51-28-5	2,4-Dinitrophenol		1000	U
132-64-9	Dibenzofuran		410	U
121-14-2	2,4-Dinitrotoluene		410	U
100-02-7	4-Nitrophenol		1000	U _

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Columbia Analytical Services Contract: EMCON SB50AS

 Matrix: (soil/water)
 SOIL
 Lab Sample ID: 130621

 Sample wt/vol:
 30 (g/ml) G
 Lab File ID: DL283.D

Level: (low/med) LOW Date Received: 02/12/97

% Moisture: ___19 ___ decanted:(Y/N) N Date Extracted: 03/04/97

Concentrated Extract Volume: 500 (uL) Date Analyzed: 03/05/97
Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) ___ Y __ pH: 8.2___

CAS NO.	COMPOUND (ug/L or ug/	Kg) <u>UG/KG</u>	Q	
86-73-7	Fluorene	410	U	7
7005-72-3	4-Chlorophenyl-phenylether	410	Ū	
84-66-2	Diethylphthalate	45	J	
100-01-6	4-Nitroaniline	1000	U	i
534-52-1	4,6-Dinitro-2-methylphenol	1000	U	İ
86-30-6	N-Nitrosodiphenylamine	410	Ū	
101-55-3	4-Bromophenyl-phenylether	410	U	
118-74-1	Hexachlorobenzene	410	U	
87-86-5	Pentachlorophenol	1000	Ū	
85-01-8	Phenanthrene	410	U	<b>I</b>
120-12-7	Anthracene	410	U	5 3
86-74-8	Carbazole	410	U	
84-74-2	Di-n-Butylphthalate	250	J	
206-44-0	Fluoranthene	410	U	
129-00-0	Pyrene	410	U	1
85-68-7	Butyl benzyl phthalate	410	U	
91-94-1	3,3'-Dichlorobenzidine	410	U	
56-55-3	Benzo(a)Anthracene	410	U	
218-01-9	Chrysene	410	U	1000 197
117-81-7	Bis(2-Ethylhexyl)Phthalate	4/0150	UJ	Cul 12/27
117-84-0	Di-n-octyl phthalate	410	Ū	7
205-99-2	Benzo(b)fluoranthene	410	U	
207-08-9	Benzo(k)Fluoranthene	410	U	} J
50-32-8	Benzo(a)Pyrene	410	U	د ح
193-39-5	Indeno(1,2,3-cd)Pyrene	410	U	
53-70-3	Dibenz(a,h)anthracene	410	Ü	
191-24-2	Benzo(g,h,i)Perylene	410	U	/

NYSDEC Sample No: SB50AS

### 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: --SAS No.: -- SDG No.:SB49AS

Lab Sample ID: 130621 Matrix: (soil/water) SOIL Sample wt/vol: 30 (g/mL) G Lab File ID: DL283

Level (low/med): LOW Date Received: 02/12/97

% Moisture: 19 Date Extracted: 03/04/97 Date Analyzed: 03/05/97

Extraction: (SepF/Cont/Sonc)SONC
GPC Cleanup (Y/N) pH
Number TIC's found: 25 Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.	Unknown probable Awar- contempte	6.95	21000	J-
2. 3074713	Heptane, 2,3-dimethyl-	7.14	790	JN
3. 922281	Heptane, 3,4-dimethyl-	7.20	630	JN
4. 2216344	Octane, 4-methyl-	7.27	830	JN
5. 1072055	Heptane, 2,6-dimethyl-	7.31	380	JN
6.	Unknown	7.92	110	J
7.	Unknown	7.96	130	J
8.	Unknown	7.96	130	J
9.	Unknown	8.28	130	J J
10.	Unknown	8.39	360	
11.	Unknown	9.11	180	JB
12.	Unknown	9.22	1500	J
13.	Unknown	10.26	120	J
14.	Unknown Hydrocarbon	11.63	130	J
15. <del>541026</del>	- Cyclopentasilozane	12.33	310	JB
16.	Unknown	12.83	170	J
17.	Unknown	14.47	310	JB-
18	Unknown	16.27	130	JB
19.	Unknown	17.56	91	J
20.	Unknown Hydrocarbon	25.50	110	J (
21.	Unknown Hydrocarbon	26.30	120	Ĵ
22.	Unknown Hydrocarbon	27.23	320	J
23.	Unknown Hydrocarbon	28.30	130	J
24.	Unknown Hydrocarbon	29.54	250	J
25.	Unknown Hydrocarbon	32.76	95	J
26.				
27.				
28.				
29.				
30.		I	1	I

FORM I SV-TIC NYSDEC B-78

### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Colum	ibia Analytical Services Contr	act: EMCON	SB50ASRE	
	Case No.: 9702-163 SA		3 No · SB49AS	_
				•
Matrix: (soil/water)	SOIL	Lab Sample ID: 1	30021RE	
Sample wt/vol:	30 (g/ml) G	Lab File ID: D	L284.D	
Level: (low/med)	LOW	Date Received: 0	2/12/97	
% Moisture: 1	9 decanted:(Y/N) N	Date Extracted: 0	3/04/97	
Concentrated Extra	ct Volume: 500 (uL)	Date Analyzed: 0	3/05/97	
Injection Volume:	2.0 (uL)	Dilution Factor: 1	.0	
	Y pH: 8.2	_		
Or O oleanap. (1714	, pri. <u>5.2</u>			
	Co	ONCENTRATION U	NITS:	
CAS NO.	COMPOUND (U	g/L or ug/Kg) <u>UG/</u>	KGQ	
108-95-2	Phenol	!	410 U	7
111-44-4	bis(-2-Chloroethyl)Ether	!	410 U	
95-57-8	2-Chlorophenol		410 U	
541-73-1	1,3-Dichlorobenzene		410 U	
106-46-7	1,4-Dichlorobenzene		410 U	
95-50-1	1,2-Dichlorobenzene		410 U	
108-60-1	2,2'-oxybis(1-Chloropropane)		410 U	
95-48-7	2-Methylphenol	4	410 U	
621-64-7	N-Nitroso-Di-n-propylamine		410 U	
67-72-1	Hexachloroethane		410 U	
106-44-5	4-Methylphenol		410 U	
98-95-3	Nitrobenzene		410 U	
78-59-1	Isophorone		410 U	
88-75-5	2-Nitrophenol		410 U	
105-67-9	2,4-Dimethylphenol		410 U	
111-91-1	bis(-2-Chloroethoxy)Methane		410 U	
120-83-2	2,4-Dichlorophenol		410 U	
120-82-1	1,2,4-Trichlorobenzene		410 U	
91-20-3	Naphthalene		410 U	7 )
106-47-8	4-Chloroaniline		410 U	A.
87-68-3	Hexachlorobutadiene		410 U	
59-50-7	4-Chloro-3-methylphenol		410 U	
91-57-6	2-Methylnaphthalene		410 U	
77-47-4	Hexachlorocyclopentadiene		410 U	
88-06-2	2,4,6-Trichlorophenol		410 U	
95-95-4	2,4,5-Trichlorophenol	1	1000 U	
91-58-7	2-Chloronaphthalene		410 U	
88-74-4	2-Nitroaniline		1000 U	
208-96-8	Acenaphthylene		410 U	
131-11-3	Dimethyl Phthalate		410 U	( )
606-20-2	2,6-Dinitrotoluene		410 U	( )
83-32-9	Acenaphthene		410 U	Cyne la
99-09-2	3-Nitroaniline		1000 U	) )
51-28-5	2,4-Dinitrophenol		1000 U	
132-64-9	Dibenzofuran		410 U	
121-14-2	2,4-Dinitrotoluene		410 U	
100-02-7	4-Nitrophenol		1000 U	

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Columbia	a Analytical Services C	ontract: EMC	ON S	B50ASRE	
Lab Code: 10145	Case No.: 9702-163	SAS No.:	SDG No.:	SB49AS_	
Matrix: (soil/water)	SOIL	Lab Sam	ple ID: 130621	IRE	
Sample wt/vol:			D: DL284.		
Level: (low/med)			eived: 02/12/9		
% Moisture:19_	<del>-</del> ' <del></del>	_ Date Extr	acted: 03/04/9	97	
Concentrated Extract \	Volume: <u>500</u> (uL)	Date Ana	lyzed: 03/05/9	97	
Injection Volume: 2.0	0 (uL)	Dilution F	actor: 1.0		
GPC Cleanup: (Y/N)			-		
Or O Olcanap. (1714)	1 pri. 0.2				
		CONCENTRA	ATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg	g) UG/KG	Q	
86-73-7	Fluorene		410	U	
7005-72-3	4-Chlorophenyl-phenyleth	er	410	U	
84-66-2	Diethylphthalate		47	J	
100-01-6	4-Nitroaniline	<u>_</u>	1000	U	
534-52-1	4,6-Dinitro-2-methylpheno	ol	1000	U	
86-30-6	N-Nitrosodiphenylamine		410	U	
101-55-3	4-Bromophenyl-phenyleth	er	410	U	
118-74-1	Hexachlorobenzene		410	U	
87-86-5	Pentachiorophenol		1000	U	<b> </b>
85-01-8	Phenanthrene		410	U	1
120-12-7	Anthracene		410	U	
86-74-8	Carbazole		410	Ü	
84-74-2	Di-n-Butylphthalate		250	J	
206-44-0	Fluoranthene		410	Ü	
129-00-0	Pyrene		410	U	
85-68-7	Butyl benzyl phthalate		410	Ü	
91-94-1	3,3'-Dichlorobenzidine		410	U	
56-55-3	Benzo(a)Anthracene		410	Ü	
218-01-9	Chrysene		410	U	
117-81-7	Bis(2-Ethylhexyl)Phthalate	3	410140		197
117-84-0	Di-n-octyl phthalate		410		321/97
205-99-2	Benzo(b)fluoranthene		410	U	•
207-08-9	Benzo(k)Fluoranthene		410		-
50-32-8	Benzo(a)Pyrene		410	<del>     </del>	, U
193-39-5	Indeno(1,2,3-cd)Pyrene		410	<del></del>	
53-70-3	Dibenz(a,h)anthracene			U	
191-24-2			410	U )	1
131-24-2	Benzo(g,h,i)Perylene		410	<u> </u>	

NYSDEC Sample No: SB50ASRE

### 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: --SAS No.: -- SDG No.:SB49AS

Lab Sample ID: 130621RE Matrix: (soil/water) SOIL

Sample wt/vol: 30 (g/mL) G Lab File ID: DL284 Level (low/med): LOW

Date Received: 02/12/97 % Moisture: 19 Date Extracted: 03/04/97

Extraction: (SepF/Cont/Sonc)SONC Date Analyzed: 03/05/97 GPC Cleanup (Y/N) Dilution Factor: 1.0 рH

Number TIC's found: 22 Concentration Units: (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q	-
1.	Unknown Probable Aldel Condonsate	6.95	20000	===== 	1
2. 3074713	Heptane, 2,3-dimethyl-	7.14	780	JN	'
3. 922281	Heptane, 3,4-dimethyl-	7.20	610	JN	
4. 2216344	Octane, 4-methyl-	7.27	830	JN	
_5	Unknown Hydrocarbon	7.31	410	J	
6.	Unknown	7.93	110	J	
7	Unknown	7.97	120	J	
8.	Unknown	8.28	140	J	ĺ
9.	Unknown	8.39	370	J	
10.	Unknown	9.12	160	JE	
11.	Unknown	9.22	1500	J	
12.	Unknown	10.26	220	J	
13.	Unknown	10.84	98	J	
14.	Unknown	11.63	97	J	
15.	Unknown	12.83	170	J	
16.	Unknown	14.46	92	JB	1
17.	Unknown Hydrocarbon	25.50	120	J	'
18.	Unknown Hydrocarbon	26.31	120	J	C
19.	Unknown Hydrocarbon	27.23	330	J	3
20.	Unknown Hydrocarbon	28.29	160	J	יק
21	Unknown Hydrocarbon	29.54	260	J	
22.	Unknown Hydrocarbon	32.75	94	J	
23.					
24.					
25					
26.					
27.					
28.					
29.					
30.					

FORM I SV-TIC NYSDEC B-78

### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBFBAR
--------

lab Name: C	olumbia A	nalytical Services	Contract:	EMCON	) SE	SEBAR
_		Case No.: 9702-163			DG No :	SR49AS
Matrix: (soil/wat			_	b Sample ID:		
		) (g/ml) ML	-	b File ID:		
Level: (low/me	d) <u>LO</u>	<u>W</u>	Da	te Received:	02/12/97	
% Moisture: _		decanted:(Y/N)N	N Da	te Extracted:	02/13/97	
Concentrated E	xtract Vol	ume: 1000 (uL)	 Da	te Analyzed:	02/28/97	
Injection Volum	ne: 20	(ul.)	Dil	ution Factor:	1.0	
			<b>.</b>	<b></b>		
GPC Cleanup:	(Y/N)	N pH:				
			CONC	ENTRATION	UNITS:	
CAS NO.		COMPOUND		rug/Kg) U		Q
CAS 140.		COMPOUND	(ug/L 0	ug/kg) o	3/1	. ~
108-95-2		Phenol			11	U
111-44-4		bis(-2-Chloroethyl)Ethe	r		11	U
95-57-8		2-Chlorophenol			11	U
541-73-1		1,3-Dichlorobenzene			11	U
106-46-7		1,4-Dichlorobenzene		i	11	U
95-50-1		1,2-Dichlorobenzene		;	11	Ū
108-60-1		2,2'-oxybis(1-Chloropro	pane)		11	U
95-48-7		2-Methylphenol	<u> </u>		11	U
621-64-7		N-Nitroso-Di-n-propylar	nine		11	U
67-72-1		Hexachloroethane			11	Ū
106-44-5		4-Methylphenol			11	Ū
98-95-3		Nitrobenzene			11	Ū
78-59-1		Isophorone		!	11	U
88-75-5	·	2-Nitrophenol		i	11	Ū
105-67-9		2,4-Dimethylphenol			11	U
111-91-1		bis(-2-Chloroethoxy)Me	thane		11	U
120-83-2		2,4-Dichlorophenol		-	11	U
120-82-1		1,2,4-Trichlorobenzene		i	· 11	U
91-20-3		Naphthalene			11	Ü
106-47-8	}	4-Chloroaniline			11	Ü
87-68-3		Hexachlorobutadiene			11	Ü
59-50-7		4-Chloro-3-methylphen	ol		11	Ū
91-57-6		2-Methylnaphthalene	<u> </u>		11	Ū
77-47-4		Hexachlorocyclopentad	iene		11	Ü
88-06-2		2,4,6-Trichlorophenol			11	U
95-95-4		2,4,5-Trichlorophenol			26	Ū
91-58-7		2-Chloronaphthalene			11	Ū
88-74-4		2-Nitroaniline			26	U
208-96-8	}	Acenaphthylene			11	U
131-11-3		Dimethyl Phthalate			11	Ū
606-20-2		2,6-Dinitrotoluene			11	Ū
83-32-9		Acenaphthene			11	Ū
99-09-2		3-Nitroaniline			26	Ū
51-28-5	-	2,4-Dinitrophenol			26	U
132-64-9	1	Dibenzofuran		<del>-  </del>	11	Ū

2,4-Dinitrotoluene

4-Nitrophenol

121-14-2

100-02-7

11

Ū

#### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1 ah Name	Columb	ia Analytical Services	Contract: 1	EMCON	SE	BFBAR
Lab Code:					2 No :	CRADAS
Lab Code:	10145	Case No.: 9702-16	5A5 NO.:		<b>3</b> INU	3D49A3
Matrix: (soil/	water)	WATER	Lab	Sample ID: 1	30637	
Sample wt/v	of:	950 (g/ml) ML	Lab	File ID: D	L266.D	
Level: (low/	med)	LOW	Date	Received: 0	2/12/97	
% Moisture:		decanted:(Y/N)	N Date	Extracted: 0	2/13/97	
Concentrate	d Extract	Volume: 1000 (uL)	Date	Analyzed: 0	2/28/97	
Injection Vol		<del></del>		ion Factor: 1.		
		<del></del>		_	-	
GPC Cleanu	p. (1/N)	N pH:				
			CONCE	NTRATION U	NITS:	
CAS NO	<b>D</b> .	COMPOUND	(ug/L or	ug/Kg) UG/L	_	Q
				J J,		-
86-73		Fluorene		:	11	U
7005-	72-3	4-Chlorophenyl-pheny	lether		11	U
84-66	-2	Diethylphthalate			11	U
100-0	1-6	4-Nitroaniline			26	U
534-5	2-1	4,6-Dinitro-2-methylph	nenol		26	U
86-30	-6	N-Nitrosodiphenylami			11	U
101-5		4-Bromophenyl-pheny			11	U
118-7		Hexachlorobenzene			11	U
87-86		Pentachlorophenol			26	U
85-01-	-8	Phenanthrene			11	U
120-1	2-7	Anthracene			11	U
86-74		Carbazole			11	U
84-74	-2	Di-n-Butylphthalate			11	U
206-4	4-0	Fluoranthene			11	U
129-0	0-0	Pyrene		i	11	U
85-68		Butyl benzyl phthalate	•		11	U
91-94		3,3'-Dichlorobenzidine			11	Ū
56-55		Benzo(a)Anthracene			11	Ü
218-0		Chrysene			11	Ū
117-8		Bis(2-Ethylhexyl)Phth	alate		2	J
117-8		Di-n-octyl phthalate			11	Ū
205-9		Benzo(b)fluoranthene			11	Ū
207-0		Benzo(k)Fluoranthene			11	U
50-32-		Benzo(a)Pyrene			11	Ü

Indeno(1,2,3-cd)Pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)Perylene

193-39-5

191-24-2

53-70-3

U

U

U

11

11

11

#### NYSDEC Sample No: SBFBAR

#### 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: --SAS No.: -- SDG No.:SB49AS

Lab Sample ID: 130637 Lab File ID: DL266 Matrix: (soil/water) SOIL Sample wt/vol: 950 (g/mL) ML

Date Received: 02/12/97 Level (low/med): LOW

% Moisture: Date Extracted: 02/13/97

Date Analyzed: 02/28/97 Extraction: (SepF/Cont/Sonc)SEPF GPC Cleanup (Y/N) pH Dilution Factor: 1.0 Number TIC's found: 1 Concentration Units: (ug/L or ug/Kg)UG/L

CAS NUMBER COMPOUND NAME RT EST.CONC. Q ====== | ====== | ===== Unknown 13.23 6.2 JВ 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

FORM I SV-TIC NYSDEC B-78

EPA SAMPLE NO.

SB51AS Lab Name: Columbia Analytical Services Contract: EMCON SAS No.: SDG No.: SB49AS 10145 Case No.: 9702-163 Lab Code: Matrix: (soil/water) SOIL Lab Sample ID: 130629 30 Sample wt/vol: (g/ml) G Lab File ID: FH844.D Date Received: 02/12/97 % Moisture: 18 decanted:(Y/N) Ν Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 02/14/97 Concentrated Extract Volume: 5000 (uL) Date Analyzed: 03/01/97 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) Y pH: 8.3 Sulfur Cleanup: (Y/N)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
319-84-6	alpha-BHC		2.0	U
58-89-9	gamma-BHC (Lindane)	i	2.0	U
76-44-8	Heptachlor		2.0	U
309-00-2	Aldrin		2.0	U
319-85-7	beta-BHC	]	2.0	U
319-86-8	delta-BHC		2.0	U
1024-57-3	Heptachlor Epoxide		2.0	Ü
959-98-8	Endosulfan I	i	2.0	U
5103-74-2	gamma-Chlordane		2.0	U
5103-71-9	alpha-Chlordane	i	2.0	U
72-55-9	4,4'-DDE	!	39	
60-57-1	Dieldrin		4.1	U
72-20-8	Endrin		4.1	U
33213-65-9	Endosulfan II		4.1	U
72-54-8	4,4'-DDD		4.1	U
50-29-3	4,4'-DDT		140	E
7421-36-3	Endrin Aldehyde	1	4.1	U
1031-07-8	Endosulfan Sulfate		4.1	· U
72-43-5	Methoxychlor		20	U
53494-70-5	Endrin Ketone		4.1	U
12674-11-2	Aroclor-1016		41	U
11104-28-2	Arocior-1221		81	U
11141-16-5	Aroclor-1232		41	U
53469-21-9	Aroclor-1242		41	Ü
12672-29-6	Aroclor-1248		41	U
11097-69-1	Aroclor-1254		41	U
11096-82-5	Aroclor-1260		41	U
8001-35-2	Toxaphene		200	J

EPA SAMPLE NO.

SB51ASDL

_ab Name:	Columb	ia Analytical	Servic	es	Contract:	EMCON		
_ab Code:	10145	Case	No.:	9702-163	SAS No	.: s	DG No.: <u>SB4</u>	9AS
Matrix: (soil/v	vater)	SOIL			Lat	Sample ID:	130629 1/10	
Sample wt/vo	ol:	30	(g/ml)	G	Lai	File ID:	FH838.D	
% Moisture:	18	dec	anted:(	Y/N)	N Da	te Received:	02/12/97	
Extraction: (S	SepF/Cor	nt/Sonc) S	ONC		Da	te Extracted:	02/14/97	
Concentrated	i Extract	Volume: 50	00	(uL)	Da	te Analyzed:	03/01/97	
Injection Volu	ume: 1.0	0 (uL)			Dil	ution Factor:	10.0	
GPC Cleanu	p: (Y/N)	Y	рН: <u>8</u>	.3	Su	lfur Cleanup:	(Y/N) Y	-

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
319-84-6	alpha-BHC		20	U
58-89-9	gamma-BHC (Lindane)		20	U
76-44-8	Heptachlor		20	U
309-00-2	Aldrin		20	U
319-85-7	beta-BHC		20	U
319-86-8	delta-BHC		20	U
1024-57-3	Heptachlor Epoxide		20	U
959-98-8	Endosulfan I		20	U
5103-74-2	gamma-Chlordane		20	U
5103-71-9	alpha-Chlordane		20	U
72-55-9	4,4'-DDE		26	JOP
60-57-1	Dieldrin		41	U
72-20-8	Endrin		41	U
33213-65-9	Endosulfan II		41	U
72-54-8	4,4'-DDD	!	41	U
50-29-3	4,4'-DDT		120	DP
7421-36-3	Endrin Aldehyde		41	U
1031-07-8	Endosulfan Sulfate		41	U
72-43-5	Methoxychlor		200	U
53494-70-5	Endrin Ketone		41	U
12674-11-2	Aroclor-1016		410	U
11104-28-2	Aroclor-1221		810	U
11141-16-5	Aroclor-1232		410	U
53469-21-9	Aroclor-1242		410	Ų
12672-29-6	Aroclor-1248		410	U
11097-69-1	Aroclor-1254		410	U
11096-82-5	Aroclor-1260		410	U
8001-35-2	Toxaphene		2000	U

EPA SAMPLE NO.

Kerisal 4/20/97 SB52AD

Lab Name: Columbia Analytical Services Contract: EMCON SAS No.: SDG No.: SB49AS Lab Code: 10145 Case No.: 9702-163 Matrix: (soil/water) SOIL Lab Sample ID: 130633 30 Sample wt/vol: (g/ml) G Lab File ID: FH842.D 12 Date Received: 02/12/97 % Moisture: decanted:(Y/N) Ν Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 02/14/97 Concentrated Extract Volume: 5000 (uL) Date Analyzed: 03/01/97 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) Y pH: 8.9 Sulfur Cleanup: (Y/N)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
319-84-6	alpha-BHC		1.9	U
58-89-9	gamma-BHC (Lindane)		1.9	U
76-44-8	Heptachlor		1.9	U
309-00-2	Aldrin		1.9	Ü
319-85-7	ceta-BHC		1.9	U
319-86-8	delta-BHC		1.9	U
1024-57-3	Heptachlor Epoxide		1.9	U
959-98-8	Endosulfan I		1.9	U
5103-74-2	gamma-Chlordane	;	1.9	U
5103-71-9	alpha-Chlordane		1.9	U
72-55-9	4,4'-DDE		3.8	Ų
60-57-1	Dieldrin		3.8	U
72-20-8	Endrin		3.8	U
33213-65-9	Endosulfan II		3.8	U
72-54-8	4,4'-DDD		3.8	U
50-29-3	4,4'-DDT		3.8	U
7421-36-3	Endrin Aldehyde		3.8	U
1031-07-8	Endosulfan Sulfate		3.8	U
72-43-5	Methoxychior		19	U
53494-70-5	Endrin Ketone		3.8	Ų
12674-11-2	Aroclor-1016		38	U
11104-28-2	Arodor-1221		76	Ų
11141-16-5	Aroclor-1232		38	U
53489-21-9	Aroclor-1242		38	Ù
12672-29-6	Arodor-1248		38	U
11097-69-1	Aroclor-1254		38	כ
11096-82-5	AL STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE ST	29	10	
8001-35-2	oxaphene		190	U



EPA SAMPLE NO.

SB52AD

Lab Name:	Columbi	a Analytic	al Servi	ces	Contra	ct: _l	EMCON		
Lab Code:	10145	Ca	se No.:	9702-163	SAS	No.:	s	DG No.:	SB49AS
Matrix: (soil/w	vater)	SOIL	_			Lab	Sample ID:	130633	
Sample wt/vo	ol:	30	_ (g/ml	) <u>G</u>	_	Lab	File ID:	FH842.D	
% Moisture:	12	de	canted:	(Y/N)	N	Date	Received:	02/12/97	
Extraction: (S	SepF/Con	t/Sonc)	SONC			Date	Extracted:	02/14/97	
Concentrated	Extract	Volume: <u>s</u>	000	(uL)		Date	Analyzed:	03/01/97	
Injection Volu	me: <u>1.0</u>	(uL)				Dilut	tion Factor:	1.0	
GPC Cleanup	p: <b>(Y/N)</b>	Y	pH:	8.9		Sulfi	ur Cleanup:	(Y/N)	Y

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
319-84-6	alpha-BHC		1.9	U
58-89-9	gamma-BHC (Lindane)		1.9	U
76-44-8	Heptachlor		1.9	U
309-00-2	Aldrin		1.9	U
319-85-7	beta-BHC		1.9	U
319-86-8	delta-BHC		1.9	U
1024-57-3	Heptachlor Epoxide		1.9	U
959-98-8	Endosulfan I		1.9	U
5103-74-2	gamma-Chlordane		1.9	U
5103-71-9	alpha-Chlordane		1.9	U
72-55-9	4,4'-DDE		3.8	U
60-57-1	Dieldrin		3.8	U
72-20-8	Endrin		3.8	U
33213-65-9	Endosulfan II		10	Р
72-54-8	4,4'-DDD	1	3.8	U
50-29-3	4,4'-DDT		3.8-13-	u
7421-36-3	Endrin Aldehyde		7.8 6.2	Pu
1031-07-8	Endosulfan Sulfate		3.8	U
72-43-5	Methoxychlor		19	U
53494-70-5	Endrin Ketone		3.8	U
12674-11-2	Aroclor-1016		38	U
11104-28-2	Aroclor-1221		76	U
11141-16-5	Arocior-1232		38	U
53469-21-9	Aroclor-1242		38	U
12672-29-6	Aroclor-1248		38	U
11097-69-1	Aroclor-1254		38	U
11096-82-5	Aroclor-1260	2	-90 <del>-38</del>	<del></del>
8001-35-2	Toxaphene		190	U

Ort 197

00044

3/90

EPA SAMPLE NO.

SB52AS

201,5-R

ab Name:	Columb	nia Analytical	Servi	ces	Contract	EMCON		SB5ZA5		_
.ab Code:	10145	Case	e No.:	9702-163	SAS N	lo.:	SDG	No.: 5	B49AS	
Matrix: (soil/	water)	SOIL			Li	ab Sample I	D: <u>13</u> 0	0630		
Sample wt/ve	ol:	30	(g/ជា[	) <u>G</u>	_ La	ab File ID:	FH	841.D		
% Moisture:	13	dec	anted:	(Y/N)	N D	ate Receive	d: <u>02</u> /	12/97		
Extraction: (S	SepF/Co	nt/Sonc) S	ONC		D	ate Extracte	d: <u>02/</u>	14/97		
Concentrated	1 Extract	Volume: 50	000	(uL)	D	ate Analyze	d: <u>03/</u>	01/97		
njection Vol	ume: <u>1.</u>	0 (uL)			D	ilution Facto	or. 1.0			
SPC Cleanu	p: (Y/N)	Y	pH:	8.7	s	ulfur Cleanu	(p: (Y/N	<b>V</b> )	Y	

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
319-84-6	alpha-BHC		1.9	Ų
58-89-9	gamma-BHC (Lindane)		1.9	Ü
76-44-8	Heptachlor		1.9	U
309-00-2	Aldrin		1.9	U
319-85-7	peta-BHC		1.9	U
319-86-8	delta-BHC		1.9	U
1024-57-3	Heptachlor Epoxide		1.9	U
959-98-8	Endosulfan I		1.9	U
5103-74-2	gamma-Chlordane		1.9	U
5103-71-9	alpha-Chlordane		1.9	Ų
72-55-9	4,4'-DDE		3.8	U
60-57-1	Dieldrin		3.8	U
72-20-8	Endrin		3.8	U
33213-65-9	Endosulfan II		3.8	U
72-54-8	41,4'-DDD		3.8	U
50-29-3	4,4'-DDT		3.8	U
7421-36-3	Endrin Aldehyde		3.8	U
1031-07-8	Endosulfan Sulfate		3.8	U
72-43-5	Methoxychlor		19	U
53494-70-5	Endrin Ketone		3.8	U
12674-11-2	Aroclor-1016		38	U
11104-28-2	Arocior-1221		77	U
11141-16-5	Aroclor-1232		38	U
53469-21-9	Arodor-1242		38	U
12672-29-6	Aroclor-1248		38	U
11097-89-1	Aroclor-1254		38_	U
11096-82-5		2	30	
8001-35-2	Toxaphene		190	U

Cut

EPA SAMPLE NO.

SB52AS

Lab Name:	Columbia.	Analytical Serv	ices	Contract:	EMCON	_
Lab Code:	10145	Case No.:	9702-163	SASN	o.: S	DG No.: SB49AS
Matrix: (soil/v	vater) <u>S</u>	OIL		Li	ab Sample ID:	130630
Sample wt/vo	ol: <u>3</u>	0 (g/m	l) <u>G</u>	L	ab File ID:	FH841.D
% Moisture:	13	decanted	:(Y/N)	<u>N</u> D	ate Received:	02/12/97
Extraction: (S	SepF/Cont/s	Sonc) SONC		D	ate Extracted:	02/14/97
Concentrated	Extract Vo	olume: 5000	(uL)	D	ate Analyzed:	03/01/97
Injection Volu	ıme: <u>1.0</u>	_ (uL)		D	ilution Factor:	1.0
GPC Cleanu	p: (Y/N)	Y pH:	8.7	s	ulfur Cleanup:	(Y/N) <u>Y</u>

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
319-84-6	alpha-BHC		1.9	U
58-89-9	gamma-BHC (Lindane)		1.9	U
76-44-8	Heptachlor		1.9	U
309-00-2	Aldrin		1.9	U
319-85-7	beta-BHC		1.9	U
319-86-8	delta-BHC		1.9	U
1024-57-3	Heptachlor Epoxide		1.9	U
959-98-8	Endosulfan I		1.9	U
5103-74-2	gamma-Chlordane		1.9	U
5103-71-9	alpha-Chlordane		1.9	U
72-55-9	4,4'-DDE		1.9 -1.0 -	<del></del>
60-57-1	Dieldrin		3.8	U
72-20-8	Endrin		3.8	U
33213-65-9	Endosulfan II		3.8	U
72-54-8	4,4'-DDD		3.8	U
50-29-3	4,4'-DDT	!	3.8 -9.3	<del></del>
7421-36-3	Endrin Aldehyde		3.8 45.1	-7-W
1031-07-8	Endosulfan Sulfate		3.8	U
72-43-5	Methoxychlor		19	U
53494-70-5	Endrin Ketone		3.8	U
12674-11-2	Aroclor-1016		38	U
11104-28-2	Aroclor-1221		77	U
11141-16-5	Aroclor-1232		38	U
53469-21-9	Aroclor-1242		38	U
12672-29-6	Aroclor-1248		38	U
11097-69-1	Aroclor-1254		38	U
11096-82-5	Aroclor-1260	2	-30 <del>-38</del>	<del></del>
8001-35-2	Toxaphene		190	U

Cypr197

ai

EPA SAMPLE NO.

SB53AS

Lab Name:	Columb	ia Analyt	ical Servi	ces	C	ontract:	EMCON	_	
Lab Code:	10145		ase No.:	9702-1	63	SAS No	.:	SDG No.:	SB49AS
Matrix: (soil/v	vater)	SOIL				Lai	Sample ID	: <u>130635</u>	
Sample wt/vo	ol:	30	(g/ml	) <u>G</u>		Lai	o File ID:	FH847.D	)
% Moisture:	18		decanted:	(Y/N)	N	_ Da	te Received	1: 02/12/97	
Extraction: (S	SepF/Cor	nt/Sonc)	SONC			Da	te Extracted	1: 02/14/97	
Concentrated	Extract	Volume:	5000	(uL)		Da	te Analyzed	: 03/01/97	
Injection Volu	ıme: <u>1.</u> 0	0 (uL)	)			Dil	ution Factor	1.0	
GPC Cleanu	p: (Y/N)	Y	pH:	8.4		Su	lfur Cleanup	): (Y/N)	Υ

### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q	
319-84-6	alpha-BHC		2.0	Ü	
58-89-9	gamma-BHC (Lindane)		2.0	U	
76-44-8	Heptachlor		2.0	U	
309-00-2	Aldrin		2.0	U	
319-85-7	beta-BHC		2.0	U	
319-86-8	delta-BHC		2.0	U	
1024-57-3	Heptachlor Epoxide		2.0	U	
959-98-8	Endosulfan I		2.0	U	
5103-74-2	gamma-Chlordane		2.0	U	
5103-71-9	alpha-Chlordane		2.0	U	
72-55-9	4,4'-DDE		27		
60-57-1	Dieldrin		4.1	U	
72-20-8	Endrin		4.1	U	
33213-65-9	Endosulfan II		4.1	U	
72-54-8	4,4'-DDD		3.6	JP	
50-29-3	4,4'-DDT		96	EP	
7421-36-3	Endrin Aldehyde		4.1	U	
1031-07-8	Endosulfan Sulfate		4.1	U	
72-43-5	Methoxychlor		20	U	
53494-70-5	Endrin Ketone		4.1	U	
12674-11-2	Aroclor-1016		41	U	
11104-28-2	Aroclor-1221		81	U	
11141-16-5	Aroclor-1232		41	U	
53469-21-9	Aroclor-1242		41	U	
12672-29-6	Aroclor-1248		41	U	
11097-69-1	Aroclor-1254		41	U	
11096-82-5	Aroclor-1260		41	U	
8001-35-2	Toxaphene		200	U	

RACER0057649

EPA SAMPLE NO.

SB53ASDL

Lab Name:	Columb	ia Analytic	al Servi	ces	_ Co	ntract:	EMCON		
Lab Code:	10145	Ca	se No.:	9702-16	3 8	SAS No	.: s	DG No.: SB4	9AS
Matrix: (soil/v	vater)	SOIL	-			Lat	Sample ID:	130635 1/10	
Sample wt/vo	ol:	30	_ (g/mi	) <u>G</u>	_	Lat	File ID:	FH843.D	
% Moisture:	18	de	canted:	(Y/N) _	N	Dat	e Received:	02/12/97	
Extraction: (S	SepF/Cor	nt/Sonc)	SONC			Dat	e Extracted:	02/14/97	_
Concentrated	Extract	Volume: 5	5000	(uL)		Dat	e Analyzed:	03/01/97	
Injection Volu	ıme: <u>1.0</u>	0 (uL)				Dilu	ution Factor:	10.0	
GPC Cleanup	p: <b>(Y/N)</b>	Y	pH:	8.4		Sul	fur Cleanup:	(Y/N)Y	-

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
319-84-6	alpha-BHC		20	U
58-89-9	gamma-BHC (Lindane)		20	U
76-44-8	Heptachlor		20	U
309-00-2	Aldrin		20	U
319-85-7	beta-BHC		20	U
319-86-8	delta-BHC		20	U
1024-57-3	Heptachlor Epoxide		20	U
959-98-8	Endosulfan i		20	U
5103-74-2	gamma-Chlordane		20	U
5103-71-9	alpha-Chlordane		20	U
72-55-9	4,4'-DDE		11	JDR
60-57-1	Dieldrin		41	U
72-20-8	Endrin		41	U
33213-65-9	Endosulfan II		41	U
72-54-8	4,4'-DDD		6.8	JDP
50-29-3	4,4'-DDT	1	110	DP
7421-36-3	Endrin Aldehyde		41	U
1031-07-8	Endosulfan Sulfate		41	U
72-43-5	Methoxychlor		200	U
53494-70-5	Endrin Ketone		41	U
12674-11-2	Aroclor-1016		410	U
11104-28-2	Aroclor-1221		810	U
11141-16-5	Aroclor-1232		410	U
53469-21-9	Aroclor-1242		410	U
12672-29-6	Aroclor-1248		410	U
11097-69-1	Aroclor-1254		410	J
11096-82-5	Aroclor-1260		410	U
8001-35-2	Toxaphene		2000	U

EPA SAMPLE NO.

SBFBAR

Lab Name:	Columbi	a Analytic	al Servic	ces	_ c	ontract:	EMCON	_	
Lab Code:	10145	Cas	se No.:	9702-1	33_	SAS No	).:	SDG No.:	SB49AS
Matrix: (soil/v	vater)	WATER	_			Lal	Sample ID	130637	
Sample wt/vo	ol:	1000	(g/ml)	ML_		Lai	b File ID:	FH835.	)
% Moisture:		de	canted:	(Y/N) _	N	Da	te Received	i: <u>02/12/9</u> 7	7
Extraction: (S	SepF/Con	t/Sonc)	SEPF			Da	te Extracted	1: 02/14/97	7
Concentrated	Extract	Volume: 1	0000	(uL)		Da	te Analyzed	: 03/01/9	7
Injection Volu	me: <u>1.0</u>	(uL)				Dil	ution Factor	: <u>1.0</u>	
GPC Cleanup	p: <b>(Y/N)</b>	N	pH:			Su	lfur Cleanup	): <b>(Y/N)</b> _	Y

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
319-84-6	alpha-BHC		0.050	U
58-89-9	gamma-BHC (Lindane)		0.050	U
76-44-8	Heptachlor		0.050	U
309-00-2	Aldrin		0.050	U
319-85-7	beta-BHC		0.050	U
319-86-8	delta-BHC		0.050	U
1024-57-3	Heptachlor Epoxide		0.050	U
959-98-8	Endosulfan I		0.050	U
5103-74-2	gamma-Chlordane		0.050	U
5103-71-9	alpha-Chlordane		0.050	U
72-55-9	4,4'-DDE		0.10	U
60-57-1	Dieldrin		0.10	U
72-20-8	Endrin		0.10	U
33213-65-9	Endosulfan II		0.10	U
72-54-8	4,4'-DDD		0.10	U
50-29-3	4,4'-DDT		0.10	U
7421-36-3	Endrin Aldehyde	1	0.10	U
1031-07-8	Endosulfan Sulfate	i	0.10	U
72-43-5	Methoxychlor		0.50	U
53494-70-5	Endrin Ketone		0.10	U
12674-11-2	Aroclor-1016		1.0	U
11104-28-2	Aroclor-1221		2.0	U
11141-16-5	Aroclor-1232		1.0	U
53469-21-9	Aroclor-1242		1.0	U
12672-29-6	Aroclor-1248		1.0	U
11097-69-1	Aroclor-1254		1.0	U
11096-82-5	Aroclor-1260		1.0	U
8001-35-2	Toxaphene		5.0	U

# 2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: cas-roc Contract: EMCON-MAHWA

	EPA	SMC1	SMC2	SMC3	тот
	SAMPLE NO.	#	#	#	OUT
01	VBLK03	99	102	98	0
02	SBTBAT	94	96	92	0
03	SBFBAR	96	100	94	0

QC LIMITS

SMC1

= 1,2-Dichloroethane-d4

(76-114)

SMC2

= Toluene-d8

(88-110)

SMC3

= Bromofluorobenzene

(86-115)

# Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

A3/4

3/90

00049

# 2B SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: CAS-ROC Contract: EMCON-MAHWA

Level: (low/med) LOW

	EPA	SMC1	SMC2	SMC3	тот
	SAMPLE NO.	#	#	#	OUT
01	VBLK01	95	97	107	0
02	VBLK01MS	94	102	110	0
03	SB50AS	101	104	102	0
04	SB50ASMS	98	113	99	0
05	SB50ASMSD	102	108	98	0

QC LIMITS

SMC1

= 1,2-Dichloroethane-d4

(70-121)

SMC2

= Toluene-d8

(59-138)

SMC3

= Bromofluorobenzene

(59-113)

# Column to be used to flag recovery values

* Values outside of contract required QC limits

D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-2

3/90

### 2B SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: cas-roc Contract: EMCON-MAHWA

Level: (low/med) MED

-	EPA	SMC1	SMC2	SMC3	тот
	SAMPLE NO.	#	#	#	OUT
01	VBLK02	110	101	96	0
02	VBLK02MS	94	99	93	0
03	SB49AS	100	103	101	0
04	SB49ASDL	99	99	93	0
05	SB49AD	95	98	95	0
06	SB49BS	98	100	94	0
07	SB49BSMS	102	101	95	0
08	SB49BSMSD	99	97	97	0

QC LIMITS

 SMC1
 = 1,2-Dichloroethane-d4
 (70-121)

 SMC2
 = Toluene-d8
 (59-113)

 SMC3
 = Bromofluorobenzene
 (59-113)

A316

# Column to be used to flag recovery values

* Values outside of contract required QC limits

D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-2

3/90

00051

# 2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Columbia Analytical Services Contract: EMCON

	EPA	S1	S2	S3	S4	S5	S6	S7	S8	TOT
	SAMPLE NO.	(2FP) #	(PHL) #	#	#	(NBZ) #	(FBP) #	#	(TPH) #	OUT
01	SBLK1	82	87	88	73	88	88	95	93	0
02	SBFBAR	87	91	94	82	94	94	94	90	0

				QC LIMITS
S1	(2FP)	=	2-Fluorophenol	(21-110)
S2	[PHL]	=	Phenol-d6	(10-110)
S3		=	2-Chlorophenol-d4	(33-110)
S4		=	1,2-Dichlorobenzene-d4	(16-110)
S5	(NBZ)	=	Nitrobenzene-d5	(35-114)
S6	(FBP)	=	2-Fluorobiphenyl	(43-116)
S7		=	2,4,6-Tribromophenol	(10-123)
S8	(TPH)	=	Terphenyl-d14	(33-141)

# Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D Surrogate diluted out

#### 2D SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Columbia Analytical Services Contract: EMCON

Level: (low/med) LOW

	EPA	S1	S2	S3	S4	S5	S6	<b>S7</b>	S8	TOT
	SAMPLE NO.	(2FP) #	[PHL] #	#	#	(NBZ) #	(FBP) #	#	(TPH) #	OUT
01	SBLK2	109	108	109	82	97	102	100	95	0
02	SBLK2MS	93	92	93	70	84	89	89	86	0
03	SB49AS	98	83	99	69	92	131 *	116	102	1
04	SB49AD	87	96	98	74	91	95	88	91	0
05	SB50ASMS	99	99	103	79	95	98	88	93	0
06	SB50ASMSD	105	104	107	80	98	101	102	101	0
07	SB49ASRE	104	82	99	67	86	(131 * )	108	104	1
08	SBLK3	50	47	54	49	48	61	57	72	0
09	SB50AS	75	63	73	57	58	81	78	75	0
. 10	SB50ASRE	74	62	72	56	58	81	78	75	0

				QC LIMITS
S1	(2FP)	=	2-Fluorophenol	(25-121)
S2	[PHL]	=	Phenol-d6	(24-113)
S3		=	2-Chlorophenol-d4	(20-130)
<b>S4</b>		=	1,2-Dichlorobenzene-d4	(20-130)
S5	(NBZ)	=	Nitrobenzene-d5	(23-120)
S6	(FBP)	=	2-Fluorobiphenyl	(30-115)
S7		=	2,4,6-Tribromophenol	(19-122)
S8	(TPH)	=	Terphenyl-d14	(18-137)

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D Surrogate diluted out

#### 2E WATER PESTICIDE SURROGATE RECOVERY

Lab Name: Columbia Analytical Services

Contract: EMCON

Lab Code:

10145

Case No.: 9702-163

SAS No.: SDG No.: SB49AS

GC Column (1) : DB-1701

ID: 0.32 (mm)

GC Column (2): DB-17

ID: 0.32 (mm)

	EPA	TCX 1	TCX 2	DCB 1	DCB 2	тот
	SAMPLE NO.	%REC#	%REC#	%REC#	%REC#	OUT
01	PBLK1	104	66	100	87	0
02	SBFBAR	91	57	111	94	0

**ADVISORY** 

QC LIMITS

TCX Tetrachloro-m-xylene (30-150)

DCB

Decachlorobiphenyl

(30-150)

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D Surrogate diluted out

### 2F SOIL PESTICIDE SURROGATE RECOVERY

Lab Name: Columbia Analytical Services Contract: EMCON

GC Column (1): DB-1701 ID: 0.32 (mm) GC Column (2): DB-17 ID: 0.32 (mm)

_						
	EPA	TCX 1	TCX 2	DCB 1	DCB 2	TOT
	SAMPLE NO.	%REC#	%REC#	%REC#	%REC#	OUT
01	PBLK2	72	57	143	75	0
02	PBLK2MS	79	66	97	77	0
03	SB51ASDL	119 12 D	99 10 D	8180	22525 DX	10
04	SB52AS	55	64	94	50	0
05	SB52AD	55	63	71	47	0
06	SB53ASDL	00x 10)	86.80	72/1D	224 22 DX	18
07	SB51AS	83	80	82	144	0
08	SB51ASMS	58	46	77	102	0
09	SB51ASMSD	73	65	84	118	0
10	SB53AS	70	69	85	100	0

TEB 3/4/97

**ADVISORY** 

QC LIMITS

TCX = Tetrachloro-m-xylene

(30-150)

DCB = Decachlorobiphenyl

(30-150)

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D Surrogate diluted out

# 3B SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CAS-ROC Contract: EMCON-MAHWA

Matrix Spike - EPA Sample No.: SB50AS Level: (low/med) LOW

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC#	QC LIMITS REC.
1,1-Dichloroethene	62	0.0	69	111	59 - 172
Benzene	62	0.0	66	106	62 - 137
Trichloroethene	62	19	64	73	66 - 142
Toluene	62	4.6	78	118	59 - 139
Chlorobenzene	62	0.0	63	102	60 - 133

	SPIKE ADDED	MSD CONCENTRATION	MSD %	%	QC L	.IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC#	RPD#	RPD	REC.
1,1-Dichloroethene	62	71	115	4	22	59 - 172
Benzene	62	70	113	6	24	62 - 137
Trichloroethene	62	72	85	15	21	66 - 142
Toluene	62	77	116	2	21	59 - 139
Chlorobenzene	62	65	105	3	21	60 - 133

es spo

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

COMMENTS:

## **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

_ab Name:	CAS-RC	С		Contract:	EMCON-M	SB50ASMS	
Lab Code:	10145	Cas	se No.: 97-2-16	3 SAS No	o.: s	DG No.: SB49AS	
Matrix: (soil/\	water)	SOIL		La	b Sample ID:	130621 1.0MS	
Sample wt/v	ol:	5.0	(g/ml) G	La	b File ID:	AQ709.D	
Level: (low/r	med)	LOW		Da	ite Received:	***	
% Moisture:	not dec.	19.2		Da	ite Analyzed:	02/18/97	
GC Column:	RTX50	02. ID: 0.5	3 (mm)	Di	lution Factor:	1.0	
Soil Extract \	Volume		_ (uL)	So	oil Aliquot Vol	ume:	(uL)

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane	12	U
75-01-4	Vinyl chloride	12	U
75-00-3	Chloroethane	12	U
74-83-9	Bromomethane	12	U
67-64-1	Acetone	13	
75-35-4	1,1-Dichloroethene	69	
75-09-2	Methylene chloride	2	J
75-15-0	Carbon disulfide	12	U
75-34-3	1,1-Dichloroethane	5	J
78-93-3	2-Butanone	3	J
540-59 <b>-0</b>	1,2-Dichloroethene (total)	4	J
67-66-3	Chloroform	12	U
107-06-2	1,2-Dichloroethane	12	U
71-55-6	1,1,1-Trichloroethane	21	
56-23-5	Carbon tetrachloride	12	U
71-43-2	Benzene	66	
79-01-6	Trichloroethene	64	
78-87-5	1,2-Dichloropropane	12	U
75-27-4	Bromodichloromethane	12	U
10061-01-5	cis-1,3-Dichloropropene	12	U
10061-02-6	trans-1,3-Dichloropropene	12	U
79-00-5	1,1,2-Trichloroethane	12	U
124-48-1	Dibromochloromethane	12	U
75-25-2	Bromoform	12	U
108-10-1	4-Methyl-2-pentanone	12	U
108-88-3	Toluene	78	
591-78-6	2-Hexanone	12	U
127-18-4	Tetrachloroethene	15	
108-90-7	Chlorobenzene	63	
100-41-4	Ethylbenzene	3	J
1330-20-7	Xylenes (total)	6	J
100-42-5	Styrene	12	J
108-88-3	1,1,2,2-Tetrachloroethane	12	U

#### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB50ASMSD Lab Name: CAS-ROC Contract: EMCON-M SAS No.: SDG No.: SB49AS Case No.: 97-2-163 Lab Code: 10145 SOIL Lab Sample ID: 130621 1.0MS Matrix: (soil/water) Sample wt/vol: 5.0 (g/ml) G Lab File ID: AQ710.D Level: (low/med) LOW Date Received: Date Analyzed: 02/18/97 % Moisture: not dec. 19.2 GC Column: RTX502. ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume (uL) Soil Aliquot Volume:

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	U <b>G</b> /KG	Q
74-87-3	Chloromethane	12	U
75-01-4	Vinyl chloride	12	U
75-00-3	Chloroethane	12	U
74-83-9	Bromomethane	12	U
67-64-1	Acetone	17	
75-35-4	1,1-Dichloroethene	71	
75-09-2	Methylene chloride	2	J
75-15-0	Carbon disulfide	12	U
75-34-3	1,1-Dichloroethane	4	J
78-93-3	2-Butanone	4	J
540-59-0	1,2-Dichloroethene (total)	2	J
67-66-3	Chloroform	12	U
107-06-2	1,2-Dichloroethane	12	U
71-55-6	1,1,1-Trichloroethane	16	
56-23-5	Carbon tetrachloride	12	U
71-43-2	Benzene	70	
79-01-6	Trichloroethene	72	
78-87-5	1,2-Dichloropropane	12	U
75-27-4	Bromodichloromethane	12	U
10061-01-5	cis-1,3-Dichloropropene	12	U
10061-02-6	trans-1,3-Dichloropropene	12	U
79-00-5	1,1,2-Trichloroethane	12	U
124-48-1	Dibromochloromethane	12	U
75-25-2	Bromoform	12	U
108-10-1	4-Methyl-2-pentanone	12	U
108-88-3	Toluene	77	
591-78-6	2-Hexanone	12	U
127-18-4	Tetrachloroethene	15	
108-90-7	Chlorobenzene	65	
100-41-4	Ethylbenzene	6	J
1330-20-7	Xylenes (total)	20	
100-42-5	Styrene	12	U
108-88-3	1,1,2,2-Tetrachloroethane	12	U

en 44

### 3B SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	cas-roc			Contract:	EMCON-MAHWA	
Lab Code:	10145	Case No.:	97-2-163	SAS No	.: SDG No.	: SB49AS_
Matrix Spike	- EPA Sample N	lo.: SB49	BS		Level: (low/med)	MED

	SPIKE	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC#	REC.
1,1-Dichloroethene	9400	0.0	10000	106	59 - 172
Benzene	9400	0.0	9400	100	62 - 137
Trichloroethene	9400	17000	24000	74	66 - 142
Toluene	9400	1100	11000	101	59 - 139
Chlorobenzene	9400	0.0	9300	99	60 - 133

	SPIKE	MSD CONCENTRATION	MSD %	%	QC I	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC#	RPD#	RPD	REC.
1,1-Dichloroethene	9400	9600	102	4	22	59 - 172
Benzene	9400	9700	103	3	24	62 - 137
Trichloroethene	9400	24000	74	0	21	66 - 142
Toluene	9400	10000	95	10	21	59 - 139
Chlorobenzene	9400	8900	95	4	21	60 - 133

# Column to be used to flag recover	y and RPD values with an asterisk
-------------------------------------	-----------------------------------

* Values outside of QC limits

RPD: 0 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

COMMENTS:

97/6

FORM III VOA-2

3/90

### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB49BSMS

Lab Name:	cas-roc			Contract:	EMCON-M	3D43D3W3	
Lab Code:	10145		Case No.: <u>97-2-163</u>	SAS No	.: sc	OG No.: SB49AS	
Matrix: (soil/	water)	SOIL		Lat	Sample ID:	130626 125MS	
Sample wt/v	ol:	4.0	(g/ml) G	Lat	File ID:	R2957.D	
Level: (low/r	med)	MED		Dat	e Received:		
% Moisture:	not dec.	33.7		Dat	e Analyzed:	02/20/97	
GC Column:	RTX50	<u>)2.</u> ID:	<u>0.53</u> (mm)	Dilt	ution Factor:	1.0	
Soil Extract V	<b>V</b> olume	10000	(uL)	Soi	l Aliquot Volui	me: 100	(uL)

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane	1900	U
75-01-4	Vinyl chloride	1900	U
75-00-3	Chloroethane	1900	U
74-83-9	Bromomethane	1900	U
67-64-1	Acetone	1900	U
75-35-4	1,1-Dichloroethene	10000	
75-09-2	Methylene chloride	1900	U
75-15-0	Carbon disulfide	1900	U
75-34-3	1,1-Dichloroethane	1300	J
78-93-3	2-Butanone	1900	U
540-59-0	1,2-Dichloroethene (total)	1900	U
67-66-3	Chloroform	1900	U
107-06-2	1,2-Dichloroethane	1900	U
71-55-6	1,1,1-Trichloroethane	1900	U
56-23-5	Carbon tetrachloride	1900	U
71-43-2	Benzene	9400	
79-01-6	Trichloroethene	24000	
78-87-5	1,2-Dichloropropane	1900	U
75-27-4	Bromodichloromethane	1900	U
10061-01-5	cis-1,3-Dichloropropene	1900	U
10061-02-6	trans-1,3-Dichloropropene	1900	U
79-00-5	1,1,2-Trichloroethane	1900	U
124-48-1	Dibromochloromethane	1900	U
75-25-2	Bromoform	1900	U
108-10-1	4-Methyl-2-pentanone	1900	Ū
108-88-3	Toluene	11000	
591-78-6	2-Hexanone	1900	U
127-18-4	Tetrachloroethene	1900	U
108-90-7	Chlorobenzene	9300	
100-41-4	Ethylbenzene	260	J
1330-20-7	Xylenes (total)	1100	J
100-42-5	Styrene	1900	U
108-88-3	1,1,2,2-Tetrachloroethane	1900	Ū

a 6/3/6

### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB49BSMSD

Lab Name: cas-roc Contract: EMCON-M Case No.: 97-2-163 Lab Code: 10145 SAS No.: SDG No.: SB49AS Matrix: (soil/water) SOIL Lab Sample ID: 130626 125MS Sample wt/vol: 4.0 (g/ml) G R2958.D Lab File ID: Level: (low/med) Date Received: MED % Moisture: not dec. 33.7 Date Analyzed: 02/20/97 GC Column: RTX502. ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume 10000 (uL) Soil Aliquot Volume: 100 (uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane	1900	U
75-01-4	Vinyl chloride	1900	U
75-00-3	Chloroethane	1900	U
74-83-9	Bromomethane	1900	U
67-64-1	Acetone	1900	U
75-35-4	1,1-Dichloroethene	9600	
75-09-2	Methylene chloride	1900	U
75-15-0	Carbon disulfide	1900	U
75-34-3	1,1-Dichloroethane	1200	J
78-93-3	2-Butanone	1900	Ü
540-59-0	1,2-Dichloroethene (total)	1900	U
67-66-3	Chloroform	1900	٦
107-06-2	1,2-Dichloroethane	1900	U
71-55-6	1,1,1-Trichloroethane	1900	U
56-23-5	Carbon tetrachloride	1900	U
71-43-2	Benzene	9700	
79-01-6	Trichloroethene	24000	
78-87-5	1,2-Dichloropropane	1900	U
75-27-4	Bromodichloromethane	1900	U
10061-01-5	cis-1,3-Dichloropropene	1900	U
10061-02-6	trans-1,3-Dichloropropene	1900	U
79-00-5	1,1,2-Trichloroethane	1900	Ü
124-48-1	Dibromochloromethane	1900	Ū
75-25-2	Bromoform	1900	U
108-10-1	4-Methyl-2-pentanone	1900	U
108-88-3	Toluene	10000	
591-78-6	2-Hexanone	1900	U
127-18-4	Tetrachloroethene	1900	٦
108-90-7	Chlorobenzene	8900	
100-41-4	Ethylbenzene	260	J
1330-20-7	Xylenes (total)	1200	J
100-42-5	Styrene	1900	Ü
108-88-3	1,1,2,2-Tetrachloroethane	1900	Ü

R13/6

### 3B SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

 Lab Name:
 CAS-ROC
 Contract:
 EMCON-MAHWA

 Lab Code:
 10145
 Case No.:
 97-2-163
 SAS No.:
 SDG No.:
 SB49AS

 Matrix Spike - EPA Sample No.:
 VBLK01
 Level: (low/med)
 LOW

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC#	REC.
1,1-Dichloroethene	50	0.0	54	108	59 - 172
Benzene	50	0.0	53	106	62 - 137
Trichloroethene	50	0.0	37	74	66 - 142
Toluene	50	0.0	52	104	59 - 139
Chlorobenzene	50	0.0	52	104	60 - 133

# Column to be used to flag recovery and RPD values with an asterisk

Values outside of QC limits
 RPD: 5 out of 5 outside limits

Spike Recovery: 5 out of 10 outside limits

COMMENTS:

## 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		, 05			0.0 5/11/		• '	VP	I WA4140	.
Lab Name:	CAS-RO	oc			Contract:	EMC	M-NC	L	LK01MS	
Lab Code:	10145	Cas	se No.: <u>97-2</u>	-163	SAS No	·.:	s	DG No.:	SB49AS	3_
Matrix: (soil/	water)	SOIL			Lat	Samı	ple ID:	VBLK01	MS	
Sample wt/v	ol:	5.0	(g/ml) G		Lat	File I	D:	AQ707.	<u> </u>	
Level: (low/	med)	LOW	_		Dat	te Rec	eived:			
% Moisture:	not dec.	0			Da	te Ana	lyzed:	02/18/97	7	
GC Column:	RTX50	02. ID: 0.5	53 (mm)		Dile	ution F	actor:	1.0		
Soil Extract	Volume		 (uL)		Soi	il Aliqu	ot Volu	me:		(uL)
	•		•							
				CON	CENTRAT	LION (	JNITS:			
CAS NO	<b>)</b> .	COMP	DUND	(ug/L	. or ug/Kg)	<u>u</u>	G/KG		Q	
74-87	7-3	Chlore	omethane			Т		10	U	
75-01	-4	Vinyl	chloride					10	U	$\neg$
75-00			oethane					10	U	
74-83	3-9	Brom	omethane					10	U	
67-64	l-1	Aceto	ne					10	U	
75-35	5-4	1,1-D	ichloroethen	е				54		
75-09		Methy	lene chloride	е				10	U	
75-15	5-0	Carbo	n disulfide					10	U	
75-34		1,1-D	ichloroethan	е				10	U	
78-93	3-3	2-But	anone					10	U	
540-5	59-0	1,2-D	ichloroethen	e (tota	1)			10	U	
67-66	3-3	Chlon	oform					10	U	
107-0			ichloroethan					10	U	
	5-6		Trichloroeth					10	U	
56-23		Carbo	on tetrachlori	de				10	U	
71-43		Benze						53		
79-01			oroethene					37		
78-87			ichloropropa					10	U	
75-27		Brom	odichlorome	thane				10	U	
	1-01-5		3-Dichloropro					10	U	
	1-02-6		1,3-Dichloro		ne			10	U	
79-00			Trichloroeth			i		10	U	
	<del>18-1</del>		mochlorome	thane				10	U	
75-25			oform					10	U	
108-			thyl-2-pentan	one				10	U	
108-8	38-3	Tolue	ne					52		1

95/4

υ

U

U

U

U

U

10

10

52

10

10

10

10

591-78-6

127-18-4

108-90-7

100-41-4

1330-20-7

100-42-5

108-88-3

2-Hexanone

Tetrachloroethene

1,1,2,2-Tetrachloroethane

Chlorobenzene

Ethylbenzene

Xylenes (total)

Styrene

### 3B SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	cas-roc		Contract: E	EMCON-MAHWA	
Lab Code:	10145	Case No.: 97-2-163	SAS No.:	SDG No.:	SB49AS
Matrix Spike	- EPA Sample I	No.: VBLK02		Level: (low/med)	MED

	SPIKE	SAMPLE	MS	MS	QC
1	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC#	REC.
1,1-Dichloroethene	6200	0.0	6300	102	59 - 172
Benzene	6200	0.0	6100	98	62 - 137
Trichloroethene	6200	0.0	6200	100	66 - 142
Toluene	6200	0.0	6000	97	59 - 139
Chlorobenzene	6200	0.0	6000	97	60 - 133

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits	
RPD: 5 out of 5 outside limits	P21
Spike Recovery: 5 out of 10 outside limits	<i>₩</i> 714
COMMENTS:	
FORM III VOA-2	

3/90

## VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLK02MS

Lab Name:	cas-roc			Contract:	EMCON-	M L
Lab Code:	10145		Case No.: 97-2-1	63 SAS No	o.:	SDG No.: SB49AS
Matrix: (soil/v	vater)	SOIL		La	b Sample II	D: VBLK02MS
Sample wt/vo	ol:	4.0	(g/ml) G	La	b File ID:	R2948.D
Level: (low/n	ned)	MED		Da	ite Receive	d:
% Moisture: r	not dec.	0		Da	ite An <b>alyz</b> e	d: <u>02/20/97</u>
GC Column:	RTX50	02. ID:	0.53 (mm)	Di	lution Facto	or: 1.0
Soil Extract V	/olume	10000	(uL)	So	il Aliquot V	olume: 100 (

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane	1200	U
75-01-4	Vinyl chloride	1200	U
75-00-3	Chloroethane	1200	J
74-83-9	Bromomethane	1200	U
67-64-1	Acetone	1200	U
75-35-4	1,1-Dichloroethene	6300	
75-09-2	Methylene chloride	1200	U
75-15-0	Carbon disulfide	1200	U
75-34-3	1,1-Dichloroethane	1200	U
78-93-3	2-Butanone	1200	C
540-59-0	1,2-Dichloroethene (total)	1200	U
67-66-3	Chloroform	1200	U
107-06-2	1,2-Dichloroethane	1200	U
71-55-6	1,1,1-Trichloroethane	1200	C
56-23-5	Carbon tetrachloride	1200	U
71-43-2	Benzene	6100	
79-01-6	Trichloroethene	6200	
78-87-5	1,2-Dichloropropane	1200	U
75-27-4	Bromodichloromethane	1200	U
10061-01-5	cis-1,3-Dichloropropene	1200	U
10061-02-6	trans-1,3-Dichloropropene	1200	U
79-00-5	1,1,2-Trichloroethane	1200	U
124-48-1	Dibromochloromethane	1200	U
75-25-2	Bromoform	1200	U
108-10-1	4-Methyl-2-pentanone	1200	U
108-88-3	Toluene	6000	
591-78-6	2-Hexanone	1200	U
127-18-4	Tetrachloroethene	1200	U
108-90-7	Chlorobenzene	6000	
100-41-4	Ethylbenzene	1200	U
1330-20-7	Xylenes (total)	1200	U
100-42-5	Styrene	1200	U
108-88-3	1,1,2,2-Tetrachloroethane	1200	U

@3/6

#### 3D SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	Columbia Analy	tical Services	Contract:	EMCON		
Lab Code:	10145	Case No.: 9702-163	SAS No	o.: SE	OG No.:	SB49AS
Matrix Spike	- EPA Sample N	No.: SB50AS		Level: (low/	/med)	LOW

	SPIKE	SAMPLE	MS	MS	Q		
	ADDED	CONCENTRATION	CONCENTRATION		LIM	LIMITS	
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC#	RE	REC.	
Phenol	3100	0.0	2200	71	26 -	90	
2-Chlorophenol	3100	0.0	2300	74	25 -	102	
1,4-Dichlorobenzene	2100	0.0	1300	62	28 -	104	
N-Nitroso-Di-n-propylamine	2100	0.0	1400	67	41 -	126	
1,2,4-Trichlorobenzene	2100	0.0	1600	76	38 -	107	
4-Chloro-3-methylphenol	3100	0.0	2200	71	26 -	103	
Acenaphthene	2100	0.0	1500	71	31 -	137	
2,4-Dinitrotoluene	2100	0.0	1700	81	28 -	89	
4-Nitrophenol (3100)	(2100)	0.0	2300	(74)110	11 -	114	
Pentachlorophenol	3100	0.0	2400	77	17 -	109	
Pyrene	2100	0.0	1400	67	35 -	142	

	$\sqcap$	SPIKE	MSD	MSD				
		ADDED	CONCENTRATION	%	%	QC L	IMITS	
COMPOUND		(ug/Kg)	(ug/Kg)	REC#	RPD#	RPD	REC.	
Phenol		3100	2300	74	4	35	26 - 90	
2-Chlorophenol		3100	2400	77	4	50	25 - 102	
1,4-Dichlorobenzene		2100	1400	67	8	27	28 - 104	
N-Nitroso-Di-n-propylamine		2100	1400	67	0	38	41 - 126	
1,2,4-Trichlorobenzene		2100	1600	76	0	23	38 - 107	
4-Chloro-3-methylphenol	1	3100	2300	74	4	33	26 - 103	
Acenaphthene	7	2100	1600	76	7	19	31 - 137	
2,4-Dinitrotoluene		2100	1800	86	6	47	28 - 89	
4-Nitrophenol (3100)		2100	2700	(87)129+	16	50	11- 114	
Pentachlorophenol		3100	2700	87	12	47	17- 109	
Pyrene		2100	1600	76	13	36	35 - 142	

refer to comments in validation Marretire (re: spike conc.

# Column to be used to flag recovery and RPD values with an asterisk

* \	√alues	outside	of	OC	limits
-----	--------	---------	----	----	--------

RPD: 0 out of 11 outside limits

Spike Recovery: 1 out of 22 outside limits

COMMENTS:

and

### **1B** SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	Columb	ia Analy	tical Servi	ces	Contract:	EMCON	3630831113
Lab Code:	10145		Case No.:	9702-163	SAS No	.: S	DG No.: SB49AS
Matrix: (soil/v	vater)	SOIL			- Lal	Sample ID:	130621MS
Sample wt/vo	ol:	30	(g/ml)	) <u>G</u>	Lat	File ID:	DL272.D
Level: (low/n	ned)	LOW			Da	te Received:	02/12/97
% Moisture:	19		decanted:	(Y/N)	I Da	te Extracted:	02/14/97
Concentrated	Extract	Volume	: <u>500</u>	(uL)	Da	te Analyzed:	02/28/97
Injection Volu	ıme: <u>2</u>	.0 (uL	.)		Dil	ution Factor:	1.0
GPC Cleanup	o: (Y/N)	Y	pH: 8	3.2			
					CONC	ENTRATION	UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
108-95-2	Phenol		2200	
111-44-4	bis(-2-Chloroethyl)Et	her	410	U
95-57-8	2-Chlorophenol		2300	
541-73-1	1,3-Dichlorobenzene		410	U
106-46-7	1,4-Dichlorobenzene		1300	
95-50-1	1,2-Dichlorobenzene		410	U
108-60-1	2,2'-oxybis(1-Chlorog		410	Ü
95-48-7	2-Methylphenol		410	U
621-64-7	N-Nitroso-Di-n-propy	lamine	1400	
67-72-1	Hexachloroethane		410	U
106-44-5	4-Methylphenol		410	U
98-95-3	Nitrobenzene		410	U
78-59-1	Isophorone		410	U
88-75-5	2-Nitrophenol		410	U
105-67-9	2,4-Dimethylphenol		410	U
111-91-1	bis(-2-Chloroethoxy)	Methane	410	U
120-83-2	2,4-Dichlorophenol		410	U
120-82-1	1,2,4-Trichlorobenze	ne	1600	
91-20-3	Naphthalene		410	U
106-47-8	4-Chloroaniline		410	Ū
87-68-3	Hexachlorobutadiene		410	U
59-50-7	4-Chloro-3-methylph	enol	2200	
91-57-6	2-Methylnaphthalene		410	U
77-47-4	Hexachlorocyclopent	adiene	410	U
88-06-2	2,4,6-Trichloropheno		410	U
95-95-4	2,4,5-Trichloropheno		1000	U
91-58-7	2-Chloronaphthalene		410	U
88-74-4	2-Nitroaniline		1000	U
208-96-8	Acenaphthylene		410	U
131-11-3	Dimethyl Phthalate		410	Ų
606-20-2	2,6-Dinitrotoluene		410	U
83-32-9	Acenaphthene		1500	
99-09-2	3-Nitroaniline		1000	U
51-28-5	2,4-Dinitrophenol		1000	U
132-64-9	Dibenzofuran		410	U
121-14-2	2,4-Dinitrotoluene		1700	
100-02-7	4-Nitrophenol		2300	

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB50ASMS

Lab Name:	Columb	ia Analy	tical Service	ces	Contract:	EMCON	SBSUASMS
Lab Code:	10145		Case No.:	9702-163	SAS No	o.: S	DG No.: SB49AS
Matrix: (soil/	water)	SOIL			Lai	b Sample ID:	130621MS
Sample wt/v	ol:	30	(g/ml)	) <u>G</u>	Lai	b File ID:	DL272.D
Level: (low/r	med)	LOW			Da	te Received:	02/12/97
% Moisture:	19		decanted:	(Y/N) <u> </u>	N Da	te Extracted:	02/14/97
Concentrated	d Extract	Volume	: 500	(uL)	Da	te Analyzed:	02/28/97
Injection Vol	ume: 2	.0 (ul	-)		Dil	ution Factor:	1.0
GPC Cleanu	p: <b>(</b> Y/ <b>N</b> )	Y	pH: 8	3.2			
					CONC	ENTRATION	UNITS:
040416							

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
86-73-7	Fluorene	<u>i</u>	410	U
7005-72-3	4-Chlorophenyl-phenyleth	er	410	U
84-66-2	Diethylphthalate		410	U
100-01-6	4-Nitroaniline		1000	U
534-52-1	4,6-Dinitro-2-methylpheno	1	1000	U
86-30-6	N-Nitrosodiphenylamine		410	U
101-55-3	4-Bromophenyl-phenyleth	er	410	U
118-74-1	Hexachlorobenzene		410	U
87-86-5	Pentachlorophenol		2400	
85-01-8	Phenanthrene		410	U
120-12-7	Anthracene		410	U
86-74-8	Carbazole		410	U
84-74-2	Di-n-Butylphthalate		2200	В
206-44-0	Fluoranthene		410	U
129-00-0	Pyrene		1400	В
85-68-7	Butyl benzyl phthalate		410	U
91-94-1	3,3'-Dichlorobenzidine		410	U
56-55-3	Benzo(a)Anthracene		410	U
218-01-9	Chrysene		410	U
117-81-7	Bis(2-Ethylhexyl)Phthalate		110	J
117-84-0	Di-n-octyl phthalate		410	U
205-99-2	Benzo(b)fluoranthene		410	U
207-08-9	Benzo(k)Fluoranthene		410	U
50-32-8	Benzo(a)Pyrene		410	U
193-39-5	Indeno(1,2,3-cd)Pyrene		410	U
53-70-3	Dibenz(a,h)anthracene		410	U
191-24-2	Benzo(g,h,i)Perylene		410	U

### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

OCIVITY	OBTILE ONGAINGO ANAI			SB50ASMSD
Lab Name: Columbia	Analytical Services C	contract: EMC		3B30K3NI3D
Lab Code: 10145	Case No.: 9702-163	SAS No.:	SDG N	o.: SB49AS
Matrix: (soil/water) S	OIL	Lab Sam	nple ID: 1306	21MSD
Sample wt/vol: 30	) (g/ml) G	Lab File	ID: DL2	73.D
Level: (low/med) Lo		Date Re	ceived: 02/1	2/97
	decanted:(Y/N) N		racted: 02/1	
	· · · · · · · · · · · · · · · · · · ·	_	<del></del>	
Concentrated Extract Vo	<del></del>		alyzed: <u>03/0</u>	1/9/
Injection Volume: 2.0	_ (uL)	Dilution	Factor: 1.0	
GPC Cleanup: (Y/N)	Y pH: 8.2			
		CONCENTE	A TION! ! !N!!T	·o.
010110	00110011110		ATION UNIT	
CAS NO.	COMPOUND	(ug/L or ug/K	(g) <u>UG/KG</u>	Q
108-95-2	Phenol		230	00
111-44-4	bis(-2-Chloroethyl)Ether		41	
95-57-8	2-Chlorophenol		240	00
541-73-1	1,3-Dichlorobenzene		41	
106-46-7	1,4-Dichlorobenzene		140	00
95-50-1	1,2-Dichlorobenzene		41	0 U
108-60-1	2,2'-oxybis(1-Chloropropa	ine)	41	0 U
95-48-7	2-Methylphenol		41	
621-64-7	N-Nitroso-Di-n-propylami	ne	140	
67-72-1	Hexachloroethane		41	
106-44-5	4-Methylphenol		41	
98-95-3	Nitrobenzene		41	
78-59-1	Isophorone		41	
88-75-5	2-Nitrophenol		41	
105-67-9	2,4-Dimethylphenol		41	
111-91-1	bis(-2-Chloroethoxy)Meth	ane	41	
120-83-2	2,4-Dichlorophenol		41	
120-82-1	1,2,4-Trichlorobenzene		160	
91-20-3 106-47-8	Naphthalene 4 Chloroppiline		41	
87-68-3	4-Chloroaniline		41	
59-50-7	Hexachlorobutadiene 4-Chloro-3-methylphenol		230	
91-57-6	2-Methylnaphthalene		41	
77-47-4	Hexachlorocyclopentadie	ne .	41	
88-06-2	2,4,6-Trichlorophenol	110	41	
95-95-4	2,4,5-Trichlorophenol		100	
91-58-7	2-Chloronaphthalene		41	
88-74-4	2-Nitroaniline		100	
208-96-8	Acenaphthylene		41	
131-11-3	Dimethyl Phthalate		41	

2,6-Dinitrotoluene

2,4-Dinitrophenol

2,4-Dinitrotoluene

Acenaphthene

3-Nitroaniline

Dibenzofuran

4-Nitrophenol

606-20-2

83-32-9

99-09-2

51-28-5

132-64-9

121-14-2

100-02-7

U

U

U

U

410

1600

1000

1000

1800

2700

410

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	Columb	ia Analytical Services	(	Contract:	EMCON		SB50A	SMSD
Lab Code:	10145	Case No.: 97		SAS No		SDG	No.: SB	49AS
Matrix: (soil/\	water)	SOIL		Lat	Sample ID	): <u>13</u>	0621MSE	)
Sample wt/vo	ol:	30 (g/ml) G	)	Lat	File ID:	DL	273.D	
Level: (low/r	ned)	LOW		Da	te Received	1: 02	/12/97	
% Moisture:	19	decanted:(Y/f	N) N	Da	te Extracted	1: <u>02</u>	/14/97	
Concentrated	d Extract	Volume: <u>500</u> (u	L)	Da	te Analyzed	: <u>03</u>	/01/97	
Injection Volu	ume: <u>2</u>	<u>0</u> (uL)		Dile	ution Factor	: <u>1.0</u>	0	
GPC Cleanu	p: (Y/N)	Y pH: 8.2						
				CONC	ENTRATIO	N UN	ITS:	
CAS NO	<b>)</b> .	COMPOUND		(ug/L o	rug/Kg) <u>l</u>	JG/K	G	Q
86-73-	7	Fluorene					410	U

CAS NO.	COMPOUND (ug/L of ug	g/kg) UG/kG	Q
86-73-7	Fluorene	410	U
7005-72-3	4-Chlorophenyl-phenylether	410	U
84-66-2	Diethylphthalate	410	U
100-01-6	4-Nitroaniline	1000	U
534-52-1	4,6-Dinitro-2-methylphenol	1000	U
86-30-6	N-Nitrosodiphenylamine	410	U
101-55-3	4-Bromophenyl-phenylether	410	U
118-74-1	Hexachlorobenzene	410	U
87-86-5	Pentachlorophenol	2700	
85-01-8	Phenanthrene	410	U
120-12-7	Anthracene	410	U
86-74-8	Carbazole	410	U
84-74-2	Di-n-Butylphthalate	220	JB
206-44-0	Fluoranthene	410	U
129-00-0	Pyrene	1600	В
85-68-7	Butyl benzyl phthalate	410	U
91-94-1	3,3'-Dichlorobenzidine	410	U
56-55-3	Benzo(a)Anthracene	410	U
218-01-9	Chrysene	410	U
117-81-7	Bis(2-Ethylhexyl)Phthalate	110	J
117-84-0	Di-n-octyl phthalate	410	U
205-99-2	Benzo(b)fluoranthene	410	U
207-08-9	Benzo(k)Fluoranthene	410	U
50-32-8	Benzo(a)Pyrene	410	U
193-39-5	Indeno(1,2,3-cd)Pyrene	410	U
53-70-3	Dibenz(a,h)anthracene	410	U
191-24-2	Benzo(g,h,i)Perylene	410	U

### 3D SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Columbia Analytical Services Contract: EMCON

Lab Code: 10145 Case No.: 9702-163 SAS No.: SDG No.: SB49AS

Matrix Spike - EPA Sample No.: SBLK2 Level: (low/med) LOW

	SPIKE	SAMPLE	MS	MS	Q	2	
	ADDED	CONCENTRATION	CONCENTRATION	%	LIM	LIMITS REC.	
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC#	RE		
Phenol	2500	0.0	1700	68	26 -	90	
2-Chlorophenol	2500	0.0	1800	72	25-	102	
1,4-Dichlorobenzene	1700	0.0	1000	59	28 -	104	
N-Nitroso-Di-n-propylamine	1700	0.0	1000	59	41 -	126	
1,2,4-Trichlorobenzene	1700	0.0	1100	65	38 -	107	
4-Chloro-3-methylphenol	2500	0.0	1600	64	26-	103	
Acenaphthene	1700	0.0	1100	65	31 -	137	
2,4-Dinitrotoluene	1700	0.0	1200	71	28 -	89	
4-Nitrophenol (2500)	(1700)	0.0	1600	(64)94	11 -	114	
Pentachlorophenol	2500	0.0	1800	72	17 -	109	
Pyrene	1700	120	1000	53	35 -	142	



# Column to be used to flag recovery and RPD values with an asterisk

*	۷	'alue	S 01	utsid	e of	QC	limits
---	---	-------	------	-------	------	----	--------

RPD: out of outside limits

Spike Recovery: O out of 11 outside limits

COMMENTS:

### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLK2MS

		Contract: EMCON	
Lab Code: 10145	Case No.: 9702-163	SAS No.: S	DG No.: SB49AS
Matrix: (soil/water)	SOIL	Lab Sample ID:	SBLK2MS
Sample wt/vol:	30 (g/ml) G	Lab File ID:	DL268.D
Level: (low/med)	LOW	Date Received:	02/12/97
% Moisture: 0	decanted:(Y/N)N	Date Extracted:	02/14/97
Concentrated Extrac	t Volume: 500 (uL)	Date Analyzed:	02/28/97
Injection Volume: 2	2.0 (uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N)	YpH:		

### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
108-95-2	Phenol		1700	
111-44-4	bis(-2-Chloroethyl)Eth	er	330	U
95-57-8	2-Chlorophenol		1800	
541-73-1	1,3-Dichlorobenzene		330	U
106-46-7	1,4-Dichlorobenzene		1000	
95-50-1	1,2-Dichlorobenzene		330	U
108-60-1	2,2'-oxybis(1-Chloropi	ropane)	330	U
95-48-7	2-Methylphenol		330	U
621-64-7	N-Nitroso-Di-n-propyla	amine	1000	
67-72-1	Hexachloroethane		330	U
106-44-5	4-Methylphenol		330	U
98-95-3	Nitrobenzene		330	Ü
78-59-1	Isophorone		330	Ū
88-75-5	2-Nitrophenol		330	U
105-67-9	2,4-Dimethylphenol		330	Ū
111-91-1	bis(-2-Chloroethoxy)M	lethane	330	U
120-83-2	2,4-Dichlorophenol		330	Ü
120-82-1	1,2,4-Trichlorobenzen	e	1100	
91-20-3	Naphthalene		330	U
106-47-8	4-Chloroaniline		330	U
87-68-3	Hexachlorobutadiene		330	U
59-50-7	4-Chloro-3-methylphe	nol	1600	
91-57-6	2-Methylnaphthalene	***	330	U
77-47-4	Hexachlorocyclopenta	diene	330	Ü
88-06-2	2,4,6-Trichlorophenol		330	U
95-95-4	2,4,5-Trichlorophenol		830	U
91-58-7	2-Chloronaphthalene		330	U
88-74-4	2-Nitroaniline		830	U
208-96-8	Acenaphthylene		330	U
131-11-3	Dimethyl Phthalate		330	U
606-20-2	2,6-Dinitrotoluene		330	U
83-32-9	Acenaphthene		1100	
99-09-2	3-Nitroaniline		830	U
51-28-5	2,4-Dinitrophenol		830	U
132-64-9	Dibenzofuran		330	Ü
121-14-2	2,4-Dinitrotoluene		1200	
100-02-7	4-Nitrophenol		1600	

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLK2MS

Lab Name:	Columb	ia Analy	tical Service	es	Contract:	EMCON		
Lab Code:	10145		Case No.:	9702-163	SAS No	o.: S	DG No.:	SB49AS
Matrix: (soil/v	water)	SOIL		-	Lal	b Sample ID:	SBLK2N	IS
Sample wt/vo	ol:	30	(g/ml)	G	Lal	b File ID:	DL268.D	)
Level: (low/r	ned)	LOW			Da	te Received:	02/12/97	·
% Moisture:	0		decanted:(	//N)N	Da	te Extracted:	02/14/97	,
Concentrated	Extract	Volume	500	(uL)	Da	te Analyzed:	02/28/97	
Injection Volu	ıme: <u>2</u> .	.0 (uL	)		Dil	ution Factor:	1.0	
GPC Cleanu	p: <b>(Y/N)</b>	Y	pH:	<del></del>				

### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
86-73-7	Fluorene	<del></del>	330	U
7005-72-3	4-Chlorophenyl-phenylethe	er	330	U
84-66-2	Diethylphthalate		330	U
100-01-6	4-Nitroaniline	· ·	830	U
534-52-1	4,6-Dinitro-2-methylpheno		830	U
86-30-6	N-Nitrosodiphenylamine	1	330	U
101-55-3	4-Bromophenyl-phenylethe	er	330	U
118-74-1	Hexachlorobenzene		330	U
87-86-5	Pentachlorophenol		1800	
85-01-8	Phenanthrene		330	U
120-12-7	Anthracene		330	U
86-74-8	Carbazole		330	U
84-74-2	Di-n-Butylphthalate		1500	В
206-44-0	Fluoranthene		330	U
129-00-0	Pyrene		1000	В
85-68-7	Butyl benzyl phthalate		330	U
91-94-1	3,3'-Dichlorobenzidine		330	Ū
56-55-3	Benzo(a)Anthracene		330	Ü
218-01-9	Chrysene	;	330	U
117-81-7	Bis(2-Ethylhexyl)Phthalate		34	J
117-84-0	Di-n-octyl phthalate		330	Ū
205-99-2	Benzo(b)fluoranthene		330	U
207-08-9	Benzo(k)Fluoranthene		330	Ū
50-32-8	Benzo(a)Pyrene		330	Ū
193-39-5	Indeno(1,2,3-cd)Pyrene	:	330	U
53-70-3	Dibenz(a,h)anthracene	and and and and and and and and and and	330	Ü
191-24-2	Benzo(g,h,i)Perylene		330	Ü

### 4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name:	CAS-ROC		Contract:	EMCON-M	VBLK01
Lab Code:	10145	Case No.: 97-2-163	SAS No	).: SD	G No.: SB49AS

 Lab Code:
 10145
 Case No.:
 97-2-163
 SAS No.:
 SDG No.:
 SB49AS

 Lab File ID:
 AQ706.D
 Lab Sample ID:
 VBLK01

Date Analyzed: 02/18/97 Time Analyzed: 17:59

GC Column: RTX502. ID: 0.53 (mm) Heated Purge: (Y/N) Y

Instrument ID: GCMS#1

### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	VBLK01MS	VBLK01MS	AQ707.D	19:28
02	SB50AS	130621 1.0	AQ708.D	20:07
03[	SB50ASMS	130621 1.0MS	AQ709.D	20:44
04	SB50ASMSD	130621 1.0MSD	AQ710.D	21:21

**७**५७

COMMENTS		

### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

ah A	la	OAC D	20	Santanati El	MCONIM	V	BLK01
יו טוב.	varrie.	10115	Case No.: 97-2-163	ONCACL E	NICOI+NI (		CD4046
Matrix	x: (soil/	water)	SOIL	Lab S	ample ID: V	BLK01	
Samp	ole wt/v	ol:	5.0 (g/ml) G	Lab F	ile ID: A	Q706.E	<u> </u>
_evel	: (low/i	med)	LOW	Date F	Received: _		
% <b>M</b> c	oisture:	not dec.	0	Date A	Analyzed: 0	2/18/97	<u> </u>
				Dilutio	on Factor: 1	.0	
Soil F	extract '	Volume	(uL)	Soil A	 liauot Volum	e:	(uL)
	2000		(/	-		-	(/
			CONC	CENTRATIO	N UNITS:		
(	CAS NO	Ο.	COMPOUND (ug/L	or ug/Kg)	UG/KG		Q
_		4					
L	74-87		Chloromethane			10	U
	75-01		Vinyl chloride			10	U
L	75-00	)-3	Chloroethane			10	U
L	74-83	3-9	Bromomethane			10	U
	67-64	1-1	Acetone			10	U
Γ	75-35	5-4	1,1-Dichloroethene			10	U
	75-09	9-2	Methylene chloride			10	U
Ī	75-15	5-0	Carbon disulfide			10	U
	75-34		1,1-Dichloroethane			10	U
	78-93		2-Butanone			10	U
Ī		59-0	1,2-Dichloroethene (total)	)		10	U
ı	67-66		Chloroform			10	U
ı		06-2	1,2-Dichloroethane			10	Ü
1		5-6	1,1,1-Trichloroethane			10	Ü
1		3-5				10	Ü
ŀ	<del></del>	3-2	Benzene			10	Ü
ŀ		1-6	Trichloroethene			10	Ü
ł		7-5				10	U
ŀ		7-4				10	Ü
ł		1-01-5		<del></del>		10	Ü
ŀ		1-01-5				10	U
ŀ				<u>e</u>			U
}	79-00 124-4		1,1,2-Trichloroethane Dibromochloromethane			10 10	Ü
}							U
	75-25 108-1		Bromoform 4-Methyl-2-pentanone			10	
ł						10	U
}	108-8		Toluene			10	U
	591-7		2-Hexanone			10	U
	127-		Tetrachloroethene			10	U
	108-9		Chlorobenzene			10	U
	100-4		Ethylbenzene			10	U
	1330	-20-7	Xylenes (total)			10	U

A3/4

10

10

100-42-5

108-88-3

Styrene

1,1,2,2-Tetrachioroethane

### NYSDEC Sample No.: VBLK01

# 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --Matrix: (soil/water) SOIL

Sample wt/vol: 5.0 (g/mL) G

Level (low/med): LOW

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 1

Contract: EMCON

SAS No.: -- SDG No.:SB49AD

Lab Sample ID: VBLK01
Lab File ID: AQ706
Date Received: --

Date Analyzed: 02/18/97 Dilution Factor: 1.0

Concentration Units: (ug/L or ug/Kg) UG/KG

CAS NUMBER		COMPOUND NAME	RT	EST.CONC.	Q
1.	Unknown	probable coz (m/z 44)	2.55	43	J
2.					
_ 3.		- Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction	<u> </u>		
4.					
5.					
_6.					
7.					
8.					
9.					
10.					
11.					
12.					
13.					
14.	<u> </u>				
15. 16.					
17.					
18.					
19.					
20.					
21.			ļ <del></del>		
22.					
23.					
<u>24.</u> 25.					
26.					
27.					
28.					
			<del> </del>		
<u>29.</u> 30.					
30.					

FORM I VOA-TIC B-103

#### 4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK02

Lab Name:	cas-roc		Contract:	EMCON-M	VBLRUZ
Lab Code:	10145	Case No.: 97-2-163	SAS No	.: SI	DG No.: SB49AS
Lab File ID:	R2947.D		Lai	Sample iD:	VBLK02
Date Analyze	ed: 02/20/97		Tin	ne Analyzed:	11:51
GC Column:	RTX502. ID:	0.53 (mm)	He	eated Purge: (	(Y/N) <u>N</u>
Instrument IC	C: GCMS#5				

### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	VBLK02MS	VBLK02MS	R2948.D	12:34
02	SB49AS	130619 500	R2952.D	14:57
03	SB49ASDL	130619 2500	R2954.D	16:27
04	SB49AD	130620 1250	R2955.D	17:06
05	SB49BS	130626 125	R2956.D	17:41
06	SB49BSMS	130626 125MS	R2957.D	18:18
07	SB49BSMSD	130626 125MSD	R2958.D	18:52

COMMENTS	C13/6
	<del></del>

page 1 of 1

FORM IV VOA

· 3/90 0 0 7 7

### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLK02

Lab Name:	cas-roc				Contract:	EMCON-M	1 <u> </u>	VDLI(02	
Lab Code:	10145		Case No.:	97-2-163	SAS No	.:	SDG N	lo.: SB49A	S
Matrix: (soil/v	water)	SOIL			Lab	Sample IE	: VBL	.K02	
Sample wt/vo	ol:	4.0	(g/ml)	G	Lab	File ID:	R29	47.D	
Level: (low/m	ned)	MED			Dat	e Received	i:		
% Moisture: r	not dec.	0			Dat	te Analyzed	: <u>02/2</u>	0/97	
GC Column:	RTX50	)2. ID:	0.53 (n	nm)	Dilu	ution Factor	: 1.0		
Soil Extract \	/olume	10000	(uL)		Soi	l Aliquot Vo	lume.	100	(ul

### CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane	1200	U
75-01 <b>-4</b>	Vinyl chloride	1200	C
75-00-3	Chloroethane	1200	U
74-83-9	Bromomethane	1200	U
67-64-1	Acetone	1200	U
75-35-4	1,1-Dichloroethene	1200	U
75-09-2	Methylene chloride	1200	U
75-15-0	Carbon disulfide	1200	U
75-34-3	1,1-Dichloroethane	1200	U
78-93-3	2-Butanone	1200	U
540-59-0	1,2-Dichloroethene (total)	1200	U
67-66-3	Chloroform	1200	U
107-06-2	1,2-Dichloroethane	1200	U
71-55-6	1,1,1-Trichloroethane	1200	U
56-23-5	Carbon tetrachloride	1200	U
71-43-2	Benzene	1200	Ü
79-01-6	Trichloroethene	1200	Ū
78-87-5	1,2-Dichloropropane	1200	U
75-27-4	Bromodichloromethane	1200	Ü
10061-01-5	cis-1,3-Dichloropropene	1200	Ū
10061-02-6	trans-1,3-Dichloropropene	1200	Ü
79-00-5	1,1,2-Trichloroethane	1200	Ū
124-48-1	Dibromochloromethane	1200	Ū
75-25-2	Bromoform	1200	Ū
108-10-1	4-Methyl-2-pentanone	1200	Ū
108-88-3	Toluene	1200	Ü
591-78-6	2-Hexanone	1200	Ū
127-18-4	Tetrachloroethene	1200	Ü
108-90-7	Chlorobenzene	1200	Ü
100-41-4	Ethylbenzene	1200	Ü
1330-20-7	Xylenes (total)	1200	Ū
100-42-5	Styrene	1200	Ū
108-88-3	1,1,2,2-Tetrachloroethane	1200	Ü

@ 3/0

#### NYSDEC Sample No.: VBLK02

### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --

Matrix: (soil/water) SOIL

Sample wt/vol: 4.0 (g/mL) G

Level (low/med): MED

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 0

Contract: EMCON Contract: EMCON S SAS No.: -- SDG No.:SB49Ap

Lab Sample ID: VBLK02 Lab File ID: R2947

Date Received: --Date Analyzed: 02/20/97

Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.			=======	====
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				•
13.				
14. 15. 16.				
15.				
16.				
17.	- Variation - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Control - Co			
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25. 26.				
26.				
27.				
28.				
29.				
30.				

FORM I VOA-TIC B-103

### **VOLATILE METHOD BLANK SUMMARY**

EPA SAMPLE NO.

Lab Name:	cas-roc.		Contract:	EMCON-M	VBLK03
Lab Code:	10145	Case No.: 97-2-163	SAS No	o.:SD0	G No.: SB49AS
Lab File ID:	R2949.D		La	b Sample ID: <u>V</u>	/BLK03
Date Analyze	ed: 02/20/97		Tir	ne Analyzed: 1	3:10
GC Column:	RTX502. ID:	0.53 (mm)	H	eated Purge: (Y	/N) <u>N</u>
Instrument II	D: GCMS#5				

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	SBTBAT	130641 1.0	R2950.D	13:47
02	SBFBAR	130637 1.0	R2951.D	14:20

COMMENTS	
	@3/6
	م الرس

### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

VBLK03

Lab Name:	cas-roc				Contract:	EMCON-	M			
Lab Code:	10145	Cas	e No.:	97-2-163	SAS No	.:	SDO	G No.: 3	SB49AS	<u>.</u>
Matrix: (soil/v	water)	WATER			Lat	Sample I	D: <u>V</u>	BLK03		
Sample wt/vo	ol:	5.0	(g/ml)	ML	Lat	File ID:	R	2949.D		
Level: (low/n	ned)	LOW			Da	te Receive	ed:			
% Moisture: r	not dec.				Da	te Analyze	d: <u>0</u>	2/20/97		
GC Column:	RTX50	02. ID: 0.5	<u>3</u> (m	nm)	Dile	ution Facto	or: 1	.0		
Soil Extract \	/olume		_ (uL)		So	il Aliquot V	olum/	ne:		(uL

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	10	U
75-01-4	Vinyl chloride	10	U
75-00-3	Chloroethane	10	U
74-83-9	Bromomethane	10	U
67-64-1	Acetone	10	U
75-35-4	1,1-Dichloroethene	10	U
75-09-2	Methylene chloride	10	U
75-15-0	Carbon disulfide	10	U
75-34-3	1,1-Dichloroethane	10	U
78-93-3	2-Butanone	10	U
540-59-0	1,2-Dichloroethene (total)	10	U
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	U
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon tetrachloride	10	U
71-43-2	Benzene	10	U
79-01-6	Trichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
124-48-1	Dibromochloromethane	10	U
75-25-2	Bromoform	10	U
108-10-1	4-Methyl-2-pentanone	10	U
108-88-3	Toluene	10	U
591-78-6	2-Hexanone	10	U
127-18-4	Tetrachloroethene	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	U
1330-20-7	Xylenes (total)	10	U
100-42-5	Styrene	10	U
108-88-3	1,1,2,2-Tetrachloroethane	10	U

@3/6

#### NYSDEC Sample No.: VBLK03

### 1E - VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES

Lab Code: 10145 Case No.: --Matrix: (soil/water) WATER

Sample wt/vol: 5.0 (g/mL) ML

Level (low/med): LOW

% Moisture:

Column (pack/cap): CAP

Number TIC's found: 0

Contract: EMCON SAS No.: -- SDG No.:SB49AD

Lab Sample ID: VBLK03 Lab File ID: R2949

Date Received: -Date Analyzed: 02/20/97 Dilution Factor: 1.0

Concentration Units: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.				
2.				
3.				
4.				
5.				
6.		·		
7.				
8.				
9				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.		<b>I</b>		

FORM I VOA-TIC B-103

# 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CAS-ROC Contract: EMCON-MAHWA

Lab Code: 10145 Case No.: 97-2-163 SAS No.: SDG No.: SB49AS

Lab File ID (Standard): AQ704.D Date Analyzed: 02/18/97

Instrument ID: GCMS#1 Time Analyzed: 16:43

GC Column: RTX502.2 ID: 0.53 (mm) Heated Purge: (Y/N) Y

		IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
	12 HOUR ST	704341	9.09	3186626	10.79	2376022	17.34
	LOWER LIMIT	352171	8.59	1593313	10.29	1188011	16.84
	UPPER LIMIT	1408682	9.59	6373252	11.29	4752044	17.84
	EPA SAMPLE NO.						
01	VBLK01	641826	9.00	2993030	10.70	2217805	17.32
02	VBLK01MS	673222	9.07	3061203	10.77	2206100	17.44
03	SB50AS	541380	9.08	2573008	10.79	1798255	17.42
04	SB50ASMS	536536	9.11	2525626	10.83	1575363	17.45
05	SB50ASMSD	528829	9.11	2404995	10.83	1460504	17.47

IS1

= Bromochloromethane

IS2

= 1,4-Difluorobenzene

IS3

Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

page 1 of 1

FORM VIII VOA

e 4v

3/90

# 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: cas-roc Contract: EMCON-MAHWA

Lab Code: 10145 Case No.: 97-2-163 SAS No.: SDG No.: SB49AS

Lab File ID (Standard): R2946.D Date Analyzed: 02/20/97

Instrument ID: GCMS#5 Time Analyzed: 11:02

ſ		IS1		IS2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
ſ	12 HOUR ST	124066	9.76	533402	11.49	503602	17.89
Ī	LOWER LIMIT	62033	9.26	266701	10.99	251801	17.39
	UPPER LIMIT	248132	10.26	1066804	11.99	1007204	18.39
ſ	EPA SAMPLE						1
	NO.						
01	VBLK02	128778	9.75	667548	11.49	562492	17.90
02	VBLK02MS	133828	9.79	601597	11.51	566039	17.91
03	VBLK03	130000	9.79	618445	11.52	542600	17.91
04	SBTBAT	128297	9.78	650060	11.50	563227	17.88
05	SBFBAR	136441	9.76	603735	11.49	571761	17.91
06	SB49AS	129543	9.76	592636	11.48	561654	17.91
07	SB49ASDL	135716	9.77	608502	11.48	578114	17.87
08	SB49AD	140211	9.81	635248	11.52	586484	17.91
09	SB49BS	128710	9.78	574179	11.50	553543	17.91
10	SB49BSMS	127431	9.78	657696	11.51	579608	17.91
11	SB49BSMSD	125101	9.81	550431	11.52	542476	17.95

IS1

Bromochloromethane

IS2

= 1.4-Difluorobenzene

153

= Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

#34

FORM VIII VOA

0

page 1 of 1

3/90 0 0 0 8 4

### **4B** SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLK1

Lab Name: Columbia Analytical Services Contract: EMCON SAS No.: SDG No.: SB49AS Lab Code: 10145 Case No.: 9702-163 Lab File ID: DL265.D Lab Sample ID: SBLK1 Instrument ID: MS #4 Date Extracted: 02/13/97 Date Analyzed: 02/28/97 Matrix: (soil/water) WATER LOW Time Analyzed: 18:26 Level: (low/med)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	SBFBAR	130637	DL266.D	02/28/97

COMMENTS:	•

page 1 of 1

FORM IV SV

3/90

### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLK1

Lab Name:	Columb	ia Analytica	al Servic	es	Contract:	EMCON	_	
Lab Code:	10145	Ca	se No.:	9702-163	SAS No	o.: S	DG No.:	SB49AS
Matrix: (soil/v	vater)	WATER	_		Lat	b Sample ID:	SBLK1	
Sample wt/vo	ol:	1000	(g/ml)	ML	Lai	b File ID:	DL265.D	! 
Level: (low/n	ned)	LOW	_		Da	te Received:	02/12/97	
% Moisture:		de	canted:(	Y/N)N	Da	te Extracted:	02/13/97	
Concentrated	Extract	Volume:	1000	(uL)	Da	te Analyzed:	02/28/97	
njection Volu	ıme: <u>2</u>	.0 (uL)			Dil	ution Factor:	1.0	
GPC Cleanup	p: <b>(Y/N)</b>	<u>N</u>	pH: _					

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-95-2	Phenol		10	U
111-44-4	bis(-2-Chloroethyl)Et	ner	10	U
95-57-8	2-Chlorophenol	:	10	Ū
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		10	U
95-50-1	1,2-Dichlorobenzene		10	U
108-60-1	2,2'-oxybis(1-Chlorop	ropane)	10	U
95-48-7	2-Methylphenol		10	U
621-64-7	N-Nitroso-Di-n-propyl	amine	10	U
67-72-1	Hexachloroethane	:	10	U
106-44-5	4-Methylphenol	i	10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	Ū
111-91-1	bis(-2-Chloroethoxy)	Methane	10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenzer	ne	10	U
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene		10	Ü
59-50-7	4-Chloro-3-methylphe		10	U
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopent	adiene	10	U
88-06-2	2,4,6-Trichlorophenol		10	Ū
95-95-4	2,4,5-Trichlorophenol		25	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		25	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethyl Phthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		25	Ū
51-28-5	2,4-Dinitrophenol		25	Ü
132-64-9	Dibenzofuran		10	Ū
121-14-2	2,4-Dinitrotoluene		10	Ü
100-02-7	4-Nitrophenol		25	Ū

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	Columb	ia Analytical Services	Contract: EMC	ON	SE	BLK1
		Case No.: 9702-1			3 No · 5	SB49AS
			-			
Matrix: (soil/	water)	WATER	Lab San	nple ID: S	BLKT	
Sample wt/v	ol:	1000 (g/ml) ML	Lab File	ID: D	L265.D	
Level: (low/	med)	LOW	Date Re	ceived: 0	2/12/97	
% Moisture:		decanted:(Y/N)	N Date Ex	tracted: 0	2/13/97	
Concentrate		Volume: 1000 (uL)		 alyzed: 0		
Injection Vol				Factor: 1		
-			Dilation	1 40.01.		
GPC Cleanu	ıp: (Y/N)					
			CONCENTR	ATION U	NITS:	
CAS NO	Ο.	COMPOUND	(ug/L or ug/h			Q
			(-9/- 0/ -9/	-5/		_
86-73	-7	Fluorene			10	U
7005-	72-3	4-Chlorophenyi-phen	ylether		10	U
84-66	-2	Diethylphthalate			10	U
100-0	1-6	4-Nitroaniline			25	U
534-5	2-1	4,6-Dinitro-2-methylp	henol		25	U
86-30	-6	N-Nitrosodiphenylam			10	U
101-5	5-3	4-Bromophenyl-phen			10	U
118-7	4-1	Hexachlorobenzene			10	U
87-86	-5	Pentachlorophenol			25	U
85-01	-8	Phenanthrene			10	U
120-1	2-7	Anthracene			10	U
86-74	-8	Carbazole			10	U
84-74	-2	Di-n-Butylphthalate		İ	10	U
206-4	4-0	Fluoranthene	-		10	U
129-0	0-0	Pyrene			10	U
85-68	-7	Butyl benzyl phthalat	e		10	Ú
91-94	-1	3,3'-Dichlorobenzidin			10	U
56-55	-3	Benzo(a)Anthracene			10	U
218-0	1-9	Chrysene			10	U
117-8	1-7	Bis(2-Ethylhexyl)Phtl	halate		10	U
117-8	4-0	Di-n-octyl phthalate			10	U
205-9	9-2	Benzo(b)fluoranthene	8		10	U
207-0	8-9	Benzo(k)Fluoranthen			10	U
50-32	-8	Benzo(a)Pyrene			10	U
193-3	9-5	Indeno(1,2,3-cd)Pyre	ne		10	U

Dibenz(a,h)anthracene

Benzo(g,h,i)Perylene

53-70-3

191-24-2

10

10

NYSDEC Sample No: SBLK1

### 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: --SAS No.: -- SDG No.:SB49AS

Lab Sample ID: SBLK1 Matrix: (soil/water) SOIL Lab File ID: DL265 Sample wt/vol: 1000 (g/mL) ML Date Received: --

Level (low/med): LOW Date Extracted: 02/13/97

% Moisture: Extraction: (SepF/Cont/Sonc)SEPF

29. 30.

Date Analyzed: 02/28/97 GPC Cleanup (Y/N) pH

Dilution Factor: 1.0 Number TIC's found: 1 Concentration Units: (ug/L or ug/Kg)UG/L

CAS NUMBER COMPOUND NAME EST.CONC. ______| 112345 Ethanol, 2-(2-butoxyethoxy)-13.23 2. 4. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.

> FORM I SV-TIC NYSDEC B-78

# 4B SEMIVOLATILE METHOD BLANK SUMMARY

EPA	SAMP	LE N	0.
-----	------	------	----

SBLK2

ab Name: Columbia Ana		a Analytica	Analytical Services		Contract: EMCON			35LK2		
Lab Code:	10145	Ca	se No.:	9702-163	SAS No	.: S	DG No.:	SB49AS		
_ab File ID:	DL26	37.D			- Lat	Sample ID:	SBLK2			
nstrument IC	D:	MS #4	•		Dat	e Extracted:	02/14/97	7		
Matrix: (soil/	water)	SOIL			Dat	e Analyzed:	02/28/97	7		
-		LOW	-		Tin	ne Analyzed:	20:01			

### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	SBLK2MS	SBLK2MS	DL268.D	02/28/97
02	SB49AS	130619	DL269.D	02/28/97
03	SB49AD	130620	DL270.D	02/28/97
04	SB50ASMS	130621MS	DL272.D	02/28/97
05	SB50ASMSD	130621MSD	DL273.D	03/01/97
06	SB49ASRE	130619RE	DL280.D	03/05/97

COMMENTS:		

page 1 of 1

FORM IV SV

· 00089

#### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLKZ
-------

Lab Name:	Columb	ia Analytic	al Servic	es	Contract:	EMCON	_	
Lab Code:	10145	c	ase No.:	9702-163	SAS No	o.: S	DG No.:	SB49AS
Matrix: (soil/v	water)	SOIL			Lai	Sample ID:	SBLK2	
Sample wt/vo	ol:	30	_ (g/ml)	G	_ Lal	File ID:	DL267.D	
Level: (low/n	ned)	LOW			Da	te Received:	02/12/97	
% Moisture:	0	d	ecanted:(	Y/N)1	N Da	te Extracted:	02/14/97	
Concentrated	d Extract	Volume:	500	(uL)	Da	te Analyzed:	02/28/97	
Injection Volu	ume: <u>2</u> .	.0 (uL)			Dil	ution Factor:	1.0	
GPC Cleanur	p: (Y/N)	<u>Y</u>	_ pH: _					

### **CONCENTRATION UNITS:**

CAS NO. COMPOUND		(ug/L or ug/Kg)	UG/KG	Q
108-95-2	Phenol		330	U
111-44-4	bis(-2-Chloroethyl)Et	her	330	U
95-57-8	2-Chlorophenol		330	U
541-73-1	1,3-Dichlorobenzene		330	U
106-46-7	1,4-Dichlorobenzene		330	U
95-50-1	1,2-Dichlorobenzene		330	U
108-60-1	2,2'-oxybis(1-Chloro		330	U
95-48-7	2-Methylphenol		330	U
621-64-7	N-Nitroso-Di-n-propy	lamine	330	U
67-72-1	Hexachloroethane		330	U
106-44-5	4-Methylphenol		330	U
98-95-3	Nitrobenzene		330	U
78-59-1	Isophorone		330	U
88-75-5	2-Nitrophenol		330	U
105-67-9	2,4-Dimethylphenol		330	U
111-91-1	bis(-2-Chloroethoxy)	Methane	330	U
120-83-2	2,4-Dichlorophenol		330	U
120-82-1	1,2,4-Trichlorobenze	ne	330	U
91-20-3	Naphthalene		330	U
106-47-8	4-Chloroaniline		330	U
87-68-3	Hexachlorobutadiene	9	330	U
59-50-7	4-Chloro-3-methylph	enol	330	U
91-57-6	2-Methylnaphthalene		330	U
77-47-4	Hexachlorocyclopen	tadiene	330	U
88-06-2	2,4,6-Trichloropheno	1	330	U
95-95-4	2,4,5-Trichloropheno		830	U
91-58-7	2-Chloronaphthalene		330	U
88-74-4	2-Nitroaniline		830	U
208-96-8	Acenaphthylene		330	U
131-11-3	Dimethyl Phthalate		330	U
606-20-2	2,6-Dinitrotoluene		330	U
83-32-9	Acenaphthene		330	U
99-09-2	3-Nitroaniline		830	U
51-28-5	2,4-Dinitrophenol		830	U
132-64-9	Dibenzofuran		330	U
121-14-2	2,4-Dinitrotoluene		330	U
100-02-7	4-Nitrophenol		830	U

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Columbia Analytical Services Contract: EMCON

Lab Code: 10145 Case No.: 9702-163 SAS No.: SDG No.: SB49AS

Matrix: (soil/water) SOIL Lab Sample ID: SBLK2
Sample wt/vol: 30 (g/ml) G Lab File ID: DL267.D

Level: (low/med) LOW Date Received: 02/12/97

% Moisture: 0 decanted:(Y/N) N Date Extracted: 02/14/97

Concentrated Extract Volume: 500 (uL) Date Analyzed: 02/28/97
Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH:

### CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L o	r ug/Kg) <u>UG/KG</u>	Q	
86-73-7	Fluorene	330	U	
7005-72-3	4-Chlorophenyl-phenylether	330	U	
84-66-2	Diethylphthalate	330	U	
100-01-6	4-Nitroaniline	830	U	
534-52-1	4,6-Dinitro-2-methylphenol	830	U	
86-30-6	N-Nitrosodiphenylamine	330	U	
101-55-3	4-Bromophenyl-phenylether	330	U	
118-74-1	Hexachlorobenzene	330	U	
87-86-5	Pentachlorophenol	830	U	
85-01-8	Phenanthrene	46	J	
120-12-7	Anthracene	330	U	
86-74-8	Carbazole	330	U	
84-74-2	Di-n-Butylphthalate	1500		
206-44-0	Fluoranthene	64	J	
129-00-0	Pyrene	120	J	
85-68-7	Butyl benzyl phthalate	330	U	
91-94-1	3,3'-Dichlorobenzidine	330	U	
56-55-3	Benzo(a)Anthracene	330	U	
218-01-9	Chrysene	330	U	
117-81-7	Bis(2-Ethylhexyl)Phthalate	330	U	
117-84-0	Di-n-octyl phthalate	330	U	
205-99-2	Benzo(b)fluoranthene	45	J	
207-08-9	Benzo(k)Fluoranthene	330	U	
50-32-8	Benzo(a)Pyrene	76	J	
193-39-5	Indeno(1,2,3-cd)Pyrene	42	J	
53-70-3	Dibenz(a,h)anthracene	330	U	
191-24-2	Benzo(g,h,i)Perylene	79	J	

NYSDEC Sample No: SBLK2

#### 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: -- SAS No.: -- SDG No.:SB49AS

Lab Sample ID: SBLK2 Lab File ID: DL267 Matrix: (soil/water) SOIL Sample wt/vol: 30 (g/mL) G

Level (low/med): LOW Date Received: --

% Moisture: Date Extracted: 02/12/97 Extraction: (SepF/Cont/Sonc)SONC

Date Analyzed: 02/28/97 Dilution Factor: 1.0 GPC Cleanup (Y/N) pH Number TIC's found: 24 Concentration Units: (ug/L or ug/Kg)UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.	Unknown	6.89	7700	J
2. 3074713	Heptane, 2,3-dimethyl-	7.15	130	JN
3. 3074779	Hexane, 3-ethyl-4-methyl-	7.21	100	JN
4.	Unknown	7.25	220	J
5.	Unknown Hydrocarbon	7.28	170	J
6. 3221612	Octane, 2-methyl-	7.33	120	JN
7.	Unknown	8.30	120	J
8.	Unknown	8.40	220	J
9.	Unknown	8.75	560	J
10.	Unknown	8.83	93	J
11.	Unknown	8.99	1100	J
12.	Unknown	9.24	760	J
13.	Unknown	10.29	380	J
14.	Unknown	11.19	120	J
15	Unknown	11.33	150	J_
16	Unknown	11.45	78	J
17.	Unknown	11.52	220	J
18.	Unknown	11.62	200	J
19.	Unknown	12.36	90	J
20. 112345	Ethanol, 2-(2-butoxyethoxy)-	13.23	98	J
21.	Unknown	17.71	74	J
22.	Unknown	22.14	120	J
23.	Unknown	23.08	7.4	J
24.	Unknown Hydrocarbon	28.31	92	J
25.				
26.				
27.				
28.				
29.				
30.	FORM I GU MIG	ļ		

FORM I SV-TIC NYSDEC B-78

### SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name:	Columbia Analytical Services			Contract:	EMCON	SBLK3
Lab Code:	10145		No.: 9702-16	SAS No	.: s	DG No.: SB49AS
Lab File ID:	DL282	D		Lal	Sample ID:	SBLK3
Instrument II	D:	MS #4		Da	te Extracted:	03/04/97
Matrix: (soil/	water)	SOIL		Da	te Analyzed:	03/05/97
Level: (low/	med) l	OW		Tin	ne Analyzed:	13:33

### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	SB50AS	130621	DL283.D	03/05/97
02	SB50ASRE	130621RE	DL284.D	03/05/97

COMMENTS:		

page 1 of 1

FORM IV SV

° 0 0 0 9 3

### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

_ab Name:	Columb	ia Analyt	ical Servic	es	Contract:	EMCON	SBLKS
_ab Code:	10145		Case No.:	9702-163	SAS No	.: s	DG No.: SB49AS
Matrix: (soil/v	vater)	SOIL			Lat	Sample ID:	SBLK3
Sample wt/vo	ol:	30	(g/ml)	G	_ Lat	File ID:	DL282.D
evel: (low/n	ned)	LOW			Dat	te Received:	02/12/97
% Moisture:	0	(	decanted:(	Y/N)1	N Dat	te Extracted:	03/04/97
Concentrated	Extract	Volume:	500	(uL)	Dat	te Analyzed:	03/05/97
njection Volu	ıme: <u>2</u>	.0 (uL)			Dilu	ution Factor:	1.0
SPC Cleanup	p: <b>(Y/N)</b>	Y	_ pH: _				

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
108-95-2	Phenol	· 1	330	U
111-44-4	bis(-2-Chloroethyl)E	ther	330	Ū
95-57-8	2-Chlorophenol		330	Ü
541-73-1	1,3-Dichlorobenzene		330	U
106-46-7	1,4-Dichlorobenzene		330	
95-50-1	1,2-Dichlorobenzene		330	
108-60-1	2,2'-oxybis(1-Chloro		330	Ü
95-48-7	2-Methylphenol		330	Ū
621-64-7	N-Nitroso-Di-n-propy	/lamine	330	U
67-72-1	Hexachloroethane		330	Ü
106-44-5	4-Methylphenol		330	Ū
98-95-3	Nitrobenzene		330	Ü
78-59-1	Isophorone		330	Ü
88-75-5	2-Nitrophenol		330	Ū
105-67-9	2,4-Dimethylphenol		330	U
111-91-1	bis(-2-Chloroethoxy)	Methane	330	U
120-83-2	2,4-Dichlorophenol		·330	Ū
120-82-1	1,2,4-Trichlorobenze	ene	330	Ū
91-20-3	Naphthalene		330	Ū
106-47-8	4-Chloroaniline		330	Ū
87-68-3	Hexachlorobutadiene	9	330	U
59-50-7	4-Chloro-3-methylph	enol	330	Ū
91-57-6	2-Methylnaphthalene		330	Ū
77-47-4	Hexachlorocyclopen	tadiene	330	U
88-06-2	2,4,6-Trichloropheno	)!	330	Ū
95-95-4	2,4,5-Trichloropheno	l	830	U
91-58-7	2-Chloronaphthalene		330	Ū
88-74-4	2-Nitroaniline		830	U
208-96-8	Acenaphthylene		330	Ü
131-11-3	Dimethyl Phthalate	1	330	U
606-20-2	2,6-Dinitrotoluene		330	U
83-32-9	Acenaphthene		330	U
99-09-2	3-Nitroaniline		830	Ū
51-28-5	2,4-Dinitrophenol		830	Ü
132-64-9	Dibenzofuran		330	Ū
121-14-2	2,4-Dinitrotoluene		330	U
100-02-7	4-Nitrophenol		830	U

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

330

330

Lab Name:	Columb	ia Analytical Services	Contract:	EMCON	S	BLK3
Lab Code:	10145	Case No.: 9702-16	3 SAS No	.: SD	G No.:	SB49AS
Matrix: (soil/	water)	SOIL	 Lai	Sample ID: S	SBLK3	
Sample wt/ve		30 (g/ml) G		b File ID:		
,			-	-		
Level: (low/r				te Received: (		
% Moisture:	0	decanted:(Y/N)	N Da	te Extracted: <u>(</u>	)3/04/97	
Concentrated	d Extract	Volume: 500 (uL)	Da	te Analyzed: 0	3/05/97	
Injection Vol	ume: 2	.0 (uL)	Dil	ution Factor: 1	1.0	
		Y pH:		_		
			CONC	ENTRATION U	INITO:	
CAS NO	<b>)</b> .	COMPOUND		rug/Kg) UG/		Q
			(-3			•
86-73-	-7	Fluorene			330	U
7005-7		4-Chlorophenyl-pheny	lether		330	U
84-66-		Diethylphthalate			330	U
100-01	1-6	4-Nitroaniline			830	U
534-52		4,6-Dinitro-2-methylpl			830	U
86-30-		N-Nitrosodiphenylami			330	U
101-5		4-Bromophenyl-pheny	lether		330	U
118-74		Hexachlorobenzene			330	U
87-86-		Pentachlorophenol			830	U
85-01-		Phenanthrene			330	U
120-12		Anthracene			330	U
86-74-		Carbazole			330	U
84-74-		Di-n-Butylphthalate			330	U
206-44		Fluoranthene	2000		330	U
129-00		Pyrene	···		330	<u>U</u>
85-68-		Butyl benzyl phthalate			330	U
91-94-		3,3'-Dichlorobenzidine	<del>}</del>		330	U
56-55-		Benzo(a)Anthracene			330	U
218-01	1-9	Chrysene			330	U
117-81	1-7	Bis(2-Ethylhexyl)Phth	alate		330	U
117-84		Di-n-octyl phthalate			330	U
205-99		Benzo(b)fluoranthene			330	U
207-08		Benzo(k)Fluoranthene	)		330	U
50-32-	-8	Benzo(a)Pyrene			330	U
193-39	9-5	Indeno(1.2.3-cd)Pyrer	ne		330	U

Dibenz(a,h)anthracene

Benzo(g,h,i)Perylene

53-70-3

191-24-2

NYSDEC Sample No: SBLK3

# 1F - SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COLUMBIA ANALYTICAL SERVICES Contract: EMCON

Lab Code: 10145 Case No.: -- SAS No.: -- SDG No.:SB49AS

Matrix: (soil/water) SOIL Lab Sample ID: SBLK3
Sample wt/vol: 30 (g/mL) G Lab File ID: DL282
Level (low/med): LOW Date Received: --

% Moisture: Date Extracted:03/04/97

Extraction: (SepF/Cont/Sonc)SONC Date Analyzed: 03/05/97 GPC Cleanup (Y/N) pH Dilution Factor: 1.0 Concentration Units:

(ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.	Unknown	8.80	95	J
2.	Unknown	9.10	95	J
3.	Unknown	12.21	340	J
4.	Unknown	14.42	170	J
5.	Unknown	14.47	410	J
6.	Unknown	16.27	200	J
7	Unknown	17.68		J
8.	Unknown	22.14		J
9.	Unknown	23.41	74	J
10.		23.41		<u> </u>
11.				
12.				
13.				
14.				
15.				<b></b>
16.				
17.				
18.				
19.				
20.				
21.				1
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

FORM I SV-TIC NYSDEC B-78

### 8B SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Columbia Analytical Services Contract: EMCON

Lab File ID (Standard): DL260.D Date Analyzed: 02/28/97
Instrument ID: MS #4 Time Analyzed: 14:29

IS1(DCR) IS2(NPT) IS3(ANT)

		IS1(DCB) AREA #	RT #	IS2(NPT) AREA #	RT #	IS3(ANT) AREA #	RT #
	12 HOUR STD	37129	10.58	174618	13.48	127289	17.03
	UPPER LIMIT	74258	11.08	349236	13.98	254578	17.53
	LOWER LIMIT	18565	10.08	87309	12.98	63645	16.53
	EPA SAMPLE						
	NO.						
01	SBLK1	35253	10.57	163923	13.47	121500	17.02
02	SBFBAR	38894	10.57	182883	13.47	135416	17.02
03	SBLK2	37503	10.57	172550	13.47	123195	17.02
04	SBLK2MS	37453	10.57	170029	13.47	121769	17.02
05	SB49AS	37069	10.58	168586	13.47	88890	17.02
06	SB49AD	40148	10.57	181744	13.47	131872	17.02
07	SB50ASMS	38725	10.58	175341	13.47	128377	17.02
80	SB50ASMSD	39064	10.58	177860	13.47	129022	17.02

IS1 (DCB) = d4-1,4-Dichlorobenzene

IS2 (NPT) = d8-Naphthalene

IS3 (ANT) = d10-Acenaphthene

IS4 (PHN) = d10-Phenanthrene

IS5 (CRY) = d12-Chrysene

IS6 (PRY) = d12-Perylene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

page 1 of 2

FORM VIII SV-1

.3/90 00097

### 8C SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Columbia Analytical Services Contract: EMCON

Lab Code: 10145 Case No.: 9702-163 SAS No.: SDG No.: SB49AS

Lab File ID (Standard): DL260.D Date Analyzed: 02/28/97

Instrument ID: MS #4 Time Analyzed: 14:29

		IS4(PHN) AREA	# RT #	IS5(CRY) AREA #	RT #	IS6(PRY) AREA #	RT #
12 H	OUR STD	274356	19.82	293217	24.78	315496	28.69
UPPE	RLIMIT	548712	20.32	586434	25.28	630992	29.19
LOW	ER LIMIT	137178	19.32	146609	24.28	157748	28.19
EPA S	SAMPLE						
	NO.						
01 SBLI	<b>&lt;</b> 1	279916	19.81	319694	24.76	323430	28.67
02 SBF	BAR	311979	19.81	351208	24.75	356884	28.67
03 SBL	⟨2	286139	19.81	320981	24.75	287893	28.68
04 SBL	K2MS	279096	19.81	313118	24.75	243785	28.68
05 SB49	AS	271507	19.81	275882	24.75	22590	28.66
06 SB49	AD	303535	19.81	341706	24.76	333927	28.68
07 SB50	DASMS	296884	19.82	330228	24.76	300607	28.69
08 SB50	DASMSD	301236	19.82	332795	24.76	312538	28.70

- < 10% of 12HR, STD. VALUE

our

IS1 (DCB) = d4-1,4-Dichlorobenzene

IS2 (NPT) = d8-Naphthalene

IS3 (ANT) = d10-Acenaphthene

IS4 (PHN) = d10-Phenanthrene

IS5 (CRY) = d12-Chrysene

IS6 (PRY) = d12-Perylene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

page 2 of 2

FORM VIII SV-2

#### 8B SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Columbia Analytical Services Contract: EMCON

Lab Code: 10145 Case No.: 9702-163 SAS No.: SDG No.: SB49AS

Lab File ID (Standard): DL279.D Date Analyzed: 03/05/97

Instrument ID: MS #4 Time Analyzed: 10:25

		IS1(DCB) AREA #	RT #	IS2(NPT) AREA #	RT #	IS3(ANT) AREA #	RT #
	12 HOUR STD	25378	10.54	123889	13.45	101713	16.99
	UPPER LIMIT	50756	11.04	247778	13.95	203426	17.49
	LOWER LIMIT	12689	10.04	61945	12.95	50857	16.49
	EPA SAMPLE NO.			-			
01	SB49ASRE	33360	10.54	148373	13.44	78837	16.99
02	SBLK3	34192	10.54	148340	13.44	112587	16.99
03	SB50AS	37944	10.54	160184	13.44	106081	16.99
04	SB50ASRE	39942	10.55	166737	13.44	106902	16.99

IS1 (DCB) = d4-1,4-Dichlorobenzene

IS2 (NPT) = d8-Naphthalene

IS3 (ANT) = d10-Acenaphthene

IS4 (PHN) = d10-Phenanthrene

IS5 (CRY) = d12-Chrysene

iS6 (PRY) = d12-Perylene

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

page 1 of 2

FORM VIII SV-1

3/90

^{*} Values outside of contract required QC limits

### 8C SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Columbia Analytical Services Contract: EMCON

Lab Code: 10145 Case No.: 9702-163 SAS No.: SDG No.: SB49AS

Lab File ID (Standard): DL279.D Date Analyzed: 03/05/97

Instrument ID: MS #4 Time Analyzed: 10:25

	IS4(PHN) AREA #	RT #	IS5(CRY) AREA #	RT #	IS6(PRY) AREA #	RT #
12 HOUR STD	237476	19.79	246559	24.73	261857	28.64
UPPER LIMIT	474952	20.29	493118	25.23	523714	29.14
LOWER LIMIT	118738	19.29	123280	24.23	130929	28.14
EPA SAMPLE NO.						
SB49ASRE	256771	19.78	235686	24.72	9426*}	28.60
SBLK3	266183	19.78	286678	24.72	263134	28.63
SB50AS	287731	19.79	304119	24.72	123315*	28.62
SB50ASRE	291949	19.78	305119	24.72	122531	28.62

< 10% of 12HR. STD. VALUE



IS1 (DCB) = d4-1,4-Dichlorobenzene

IS2 (NPT) = d8-Naphthalene

IS3 (ANT) = d10-Acenaphthene

IS4 (PHN) = d10-Phenanthrene

IS5 (CRY) = d12-Chrysene

IS6 (PRY) = d12-Perylene

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

page 2 of 2

FORM VIII SV-2

- 00**1**00

### 4C PESTICIDE METHOD BLANK SUMMARY

EPA SAMPLE NO.

PBLK1

Lab Name:	Columbi	a Analytical Service	s	Contract:	EMCON		L		
Lab Code:	10145	Case No.: 9	9702-163	SAS	lo.:	SDG	No.: SE	B49AS	
Lab Sample I	D: PBLE	(1		Lat	File ID:	FH834	4.D	_	
Matrix: (soil/v	vater)	WATER		Ext	traction: (Sept	F/Cont	/Sonc)	SEPF	
Sulfur Cleanu	up: (Y/N)	Y		Dat	te Extracted:	02/14/	/97	_	
Date Analyze	ed (1):	03/01/97		Dat	te Analyzed (2	2):	03/01/97	·	
Time Analyze	ed (1):	0115		Tin	ne Analyzed (	2):	0115		
Instrument IC	(1):	HP5890-F		Ins	trument ID (2)	): <u> </u>	HP5890-	·F	_
GC Column (	(1): <u>DB</u> -	1701 ID: 0.32 (	(mm)	GC	Column (2) :	DB-1	<u>7</u>	D: <u>0.32</u>	(mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

ĺ	EPA	LAB	DATE	DATE	
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2	
01	SBFBAR	130637	03/01/97	03/01/97	

COMMENTS:		

# 4C PESTICIDE METHOD BLANK SUMMARY

EPA SAMPLE NO.

PBLK2

Lab Name:	Columbi	a Analytical Service	ces	Contract:	EMCON			100112	
Lab Code:	10145	Case No.:	9702-163	SAS	No.:	SDG	No.:	SB49AS	
Lab Sample	ID: PBLK	(2		La	b File ID:	FH83	6.D		
Matrix. (soil/	water)	SOIL		Ex	traction: (Se	pF/Con	/Sonc	) SONC	
Sulfur Clean	up: (Y/N)	Y		Da	te Extracted	: 02/14	/97		
Date Analyzo	ed (1):	03/01/97		Da	te Analyzed	(2):	03/01/	97	
Time Analyz	ed (1):	0222		Tir	ne Analyzed	l (2) :	0222		
Instrument II	D (1) :	HP5890-F		Ins	strument ID (	(2):	HP589	90-F	_
GC Column	(1) : <u>DB</u> -	1701 ID: 0.32	(mm)	GC	Column (2)	) : <u>DB-1</u>	7	ID: 0.32	(mm)

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

Г				
1	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
01	PBLK2MS	PBLK2MS	03/01/97	03/01/97
02	SB51ASDL	130629 1/10	03/01/97	03/01/97
03	SB52AS	130630	03/01/97	03/01/97
04	SB52AD	130633	03/01/97	03/01/97
05	SB53ASDL	130635 1/10	03/01/97	03/01/97
06	SB51AS	130629	03/01/97	03/01/97
07	SB51ASMS	130629MS	03/01/97	03/01/97
08	SB51ASMSD	130629MSD	03/01/97	03/01/97
09	SB53AS	130635	03/01/97	03/01/97

COMMENTS:		

EPA SAMPLE NO.

PBLK1

Lab Name:	Columbi	a Analyti	cal Servi	ces	С	ontract:	EMCON	_		
Lab Code:	10145	c	ase No.:	9702-1	63	SAS No	o.:	SDG N	o.: SB49/	AS
Matrix: (soil/v	vater)	WATER	<u> </u>			La	b Sample IC	: PBL	K1	_
Sample wt/vo	ol:	1000	(g/mi	ML_		La	b File ID:	FH8	34.D	-
% Moisture:			lecanted:	(Y/N)	N	Da	te Received	d: <u>02/1</u> 2	2/97	_
Extraction: (S	SepF/Con	t/Sonc)	SEPF			Da	te Extracted	d: <u>02/1</u> 4	4/97	_
Concentrated	i Extract	Volume:	10000	(uL)		Da	te Anaiyzed	1: 03/0	1/97	_
Injection Volu	ume: <u>1.0</u>	) (uL)				Dif	ution Factor	r: <u>1.0</u>		_
GPC Cleanu	p: (Y/N)	N	_ pH: _		_	Su	lfur Cleanu	o: <b>(</b> Y/N)	<u>Y</u>	

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
319-84-6	alpha-BHC	1	0.050	U
58-89-9	gamma-BHC (Lindane)		0.050	U
76-44-8	Heptachlor		0.050	U
309-00-2	Aldrin		0.050	U
319-85-7	beta-BHC		0.050	U
319-86-8	delta-BHC	1	0.050	U
1024-57-3	Heptachlor Epoxide		0.050	U
959-98-8	Endosulfan I		0.050	U
5103-74-2	gamma-Chlordane		0.050	U
5103-71-9	alpha-Chlordane		0.050	Ų
72-55-9	4,4'-DDE		0.10	U
60-57-1	Dieldrin		0.10	U
72-20-8	Endrin		0.10	U
33213-65-9	Endosulfan II		0.10	U
72-54-8	4,4'-DDD		0.10	U
50-29-3	4,4'-DDT		0.10	U
7421-36-3	Endrin Aldehyde		0.10	U
1031-07-8	Endosulfan Sulfate		0.10	U
72-43-5	Methoxychlor		0.50	U
53494-70-5	Endrin Ketone		0.10	U
12674-11-2	Aroclor-1016		1.0	U
11104-28-2	Aroclor-1221		2.0	U
11141-16-5	Aroclor-1232		1.0	U
53469-21-9	Aroclor-1242		1.0	U
12672-29-6	Aroclor-1248		1.0	U
11097-69-1	Aroclor-1254		1.0	U
11096-82-5	Aroclor-1260		1.0	U
8001-35-2	Toxaphene		5.0	IJ

EPA SAMPLE NO.

PBLK2

Lab Name:	Columb	ia Analytical	Servic	es	Contract:	EMCON		
Lab Code:	10145	Case	No.:	9702-163	SAS No	.: s	DG No.: SB49AS	
Matrix: (soil/v	water)	SOIL			Lat	Sample ID:	PBLK2	
Sample wt/vo	ol:	30	(g/ml)	G	Lat	File ID:	FH836.D	
% Moisture:	0	deca	anted:(	Y/N)1	N Da	te Received:	02/12/97	
Extraction: (S	SepF/Cor	nt/Sonc) S	ONC		Da	te Extracted:	02/14/97	
Concentrated	i Extract	Volume: 50	00	(uL)	Da	te Analyzed:	03/01/97	
Injection Volu	ume: 1.	0 (uL)			Dil	ution Factor:	1.0	
GPC Cleanu	p: <b>(Y/N)</b>	Y	pH: _		Su	lfur Cleanup:	(Y/N) Y	

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
319-84-6	alpha-BHC		1.7	U
58-89-9	gamma-BHC (Lindane)		1.7	U
76-44-8	Heptachlor		1.7	U
309-00-2	Aldrin		1.7	U
319-85-7	beta-BHC		1.7	U
319-86-8	delta-BHC		1.7	U
1024-57-3	Heptachlor Epoxide		1.7	U
959-98-8	Endosulfan I		1.7	U
5103-74-2	gamma-Chlordane		1.7	U
5103-71-9	alpha-Chlordane		1.7	U
72-55-9	4,4'-DDE		3.3	υ
60-57-1	Dieldrin		3.3	U
72-20-8	Endrin		3.3	U
33213-65-9	Endosulfan II		3.3	U
72-54-8	4,4'-DDD		3.3	U
50-29-3	4,4'-DDT		3.3	U
7421-36-3	Endrin Aldehyde		3.3	U
1031-07-8	Endosulfan Sulfate		3.3	U
72-43-5	Methoxychlor		17	U
53494-70-5	Endrin Ketone		3.3	U
12674-11-2	Aroclor-1016		33	U
11104-28-2	Aroclor-1221		67	U
11141-16-5	Aroclor-1232		33	U
53469-21-9	Aroclor-1242		33	U
12672-29-6	Aroclor-1248		33	U
11097-69-1	Aroclor-1254		33	U
11096-82-5	Aroclor-1260		33	U
8001-35-2	Toxaphene		170	U

FORM I PEST

EPA SAMPLE NO.

PIBLK01

_ab Name:	Columbia Ana	lytical Service	ces	Contract:	EMCON	. L	
_ab Code:	10145	Case No.:	9702-163	SAS No	o.: s	DG No.:	SB49AS
Matrix: (soil/w	vater) <u>WAT</u>	ER		Lat	Sample ID:	PIBLK01	
Sample wt/vo	ol: <u>1000</u>	(g/ml)	ML	Lat	b File ID:	FH824.D	)
% Moisture:		decanted:(	(Y/N)N	Da	te Received:	02/12/97	
Extraction: (S	SepF/Cont/Son	c) SEPF	<del></del>	Da	te Extracted:	02/14/97	·
Concentrated	Extract Volum	ne: 10000	(uL)	Da	te Analyzed:	02/28/97	
njection Volu	ıme: <u>1.0</u> (	uL)		Dil	ution Factor:	1.0	
GPC Cleanur	o: (Y/N)N	pH: _		Su	lfur Cleanup:	(Y/N)	N

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
319-84-6	alpha-BHC		0.050	U
58-89-9	gamma-BHC (Lindane)		0.050	U
76-44-8	Heptachlor		0.050	U
309-00-2	Aldrin	į	0.050	U
319-85-7	beta-BHC		0.050	U
319-86-8	delta-BHC		0.050	U
1024-57-3	Heptachlor Epoxide		0.050	U
959-98-8	Endosulfan I		0.050	U
5103-74-2	gamma-Chlordane		0.050	U
5103-71-9	alpha-Chiordane		0.050	U
72-55-9	4,4'-DDE		0.10	U
60-57-1	Dieldrin		0.10	U
72-20-8	Endrin		0.10	U
33213-65-9	Endosulfan II		0.10	U
72-54-8	4,4'-DDD		0.10	U
50-29-3	4,4'-DDT	i	0.10	U
7421-36-3	Endrin Aldehyde		0.10	U
1031-07-8	Endosulfan Sulfate		0.10	U
72-43-5	Methoxychlor		0.50	U
53494-70-5	Endrin Ketone		0.10	U
12674-11-2	Aroclor-1016		1.0	U
11104-28-2	Aroclor-1221		2.0	U
11141-16-5	Aroclor-1232		1.0	U
53469-21-9	Aroclor-1242		1.0	U
12672-29-6	Aroclor-1248		1.0	U
11097-69-1	Aroclor-1254		1.0	U
11096-82-5	Aroclor-1260		1.0	U
8001-35-2	Toxaphene		5.0	U

EPA SAMPLE NO.

PIBLK02

Lab Name:	Columb	ia Analytic	al Servi	ces	Co	ntract:	EMCON	
Lab Code:	10145	Ca	se No.:	9702-163	3 :	SAS No	.: S	DG No.: SB49AS
Matrix: (soil/	water)	WATER			_	Lat	Sample ID:	PIBLK02
Sample wt/v	ol:	1000	(g/ml	ML_	_	Lat	File ID:	FH849.D
% Moisture:		de	canted:	(Y/N)	N	Dat	te Received:	02/12/97
Extraction: (	SepF/Cor	nt/Sonc)	SEPF			- Dat	te Extracted:	02/14/97
Concentrated	d Extract	Volume:	0000	(uL)		Dat	te Analyzed:	03/01/97
Injection Vol	ume: <u>1.0</u>	(uL)				Dile	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:			Sul	fur Cleanup:	(Y/N) N
			_					

# **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
319-84-6	alpha-BHC	<u>-</u>	0.050	U
58-89-9	gamma-BHC (Lindane)		0.050	Ū
76-44-8	Heptachlor		0.050	U
309-00-2	Aldrin		0.050	U
319-85-7	beta-BHC		0.050	U
319-86-8	delta-BHC		0.050	U
1024-57-3	Heptachlor Epoxide		0.050	Ü
959-98-8	Endosulfan I		0.050	U
5103-74-2	gamma-Chlordane		0.050	Ü
5103-71-9	alpha-Chlordane		0.050	Ū
72-55-9	4,4'-DDE		0.10	Ü
60-57-1	Dieldrin		0.10	Ū
72-20-8	Endrin		0.10	Ü
33213-65-9	Endosulfan il		0.10	Ū
72-54-8	4,4'-DDD	į.	0.10	Ū
50-29-3	4,4'-DDT		0.10	Ü
7421-36-3	Endrin Aldehyde		0.10	Ū
1031-07-8	Endosulfan Sulfate		0.10	Ü
72-43-5	Methoxychlor		0.50	Ü
53494-70-5	Endrin Ketone		0.10	Ū
12674-11-2	Aroclor-1016		1.0	Ū
11104-28-2	Aroclor-1221		2.0	Ü
11141-16-5	Aroclor-1232		1.0	Ū
53469-21-9	Aroclor-1242		1.0	Ü
12672-29-6	Aroclor-1248		1.0	Ü
11097-69-1	Aroclor-1254		1.0	U
11096-82-5	Aroclor-1260		1.0	U
8001-35-2	Toxaphene		5.0	U

# SOIL PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Columbia Analytical Services Contract: EMCON

Lab Code: 10145

Case No.: 9702-163 SAS No.: _____ SDG No.: SB49AS

Matrix Spike - EPA Sample No.: SB51AS

	SPIKE	SAMPLE	MS	MS	Q	С	
	ADDED	CONCENTRATION	ONCENTRATION	%	LIM	LIMITS	
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC#	RE	C.	
gamma-BHC (Lindane)	20	0.0	7.5	38 *	46 -	127	
Heptachlor	20	0.0	8.8	44	35 -	130	
Aldrin	20	0.0	8.9	45	34 -	132	
Dieldrin	41	0.0	20	49	31 -	134	
Endrin	41	0.0	17	454	42 -	139	
4,4'-DDT	41	140	88	0 *	23 -	134	

9	
-	Care
_	

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%	QCI	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC#	RPD#	RPD	REC.
gamma-BHC (Lindane)	20	9.8	49	25	50	46 - 127
Heptachlor	20	12	60	31	31	35 - 130
Aldrin	20	12	60	29	43	34 - 132
Dieldrin	41	26	63	25	38	31 - 134
Endrin	41	23	56	31	45	42 - 139
4,4'-DDT	41	110	0 *	0	50	23 - 134

RPD: 0 out of 6 outside limits

Spike Recovery: 4 out of 12 outside limits

COMMENTS:

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

EPA SAMPLE NO.

SB51ASMS

Lab Name:	Columbi	a Analytical	Service	es	Contrac	t: EMCO	1		
Lab Code:	10145	Case	No.:	9702-163	SAS	No.:	_ SD	G No.: <u>SB49</u>	AS
Matrix: (soil/w	vater)	SOIL			t	_ab Sample	ID: <u>1</u>	30629MS	_
Sample wt/vo	ol:	30	(g/ml)	G		.ab File ID:	<u> </u>	H845.D	_
% Moisture:	18	dec	anted:(	Y/N)	<u>N</u> [	Date Recei	ved: <u>0</u>	2/12/97	_
Extraction: (S	SepF/Cor	it/Sonc) <u>S</u>	ONC		(	Date Extra	ted: 0	2/14/97	
Concentrated	Extract	Volume: <u>50</u>	00_	(uL)	l	Date Analyz	zed: <u>0</u>	3/01/97	_
Injection Volu	ıme: <u>1.0</u>	(uL)			I	Dilution Fac	ctor: <u>1</u>	.0	_
GPC Cleanup	o: <b>(Y/N</b> )	<u>Y</u>	pH: 8	3.3	;	Sulfur Clea	nup: (Y	′/N) <u>Y</u>	

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q	
319-84-6	alpha-BHC	i	2.0	U	
58-89-9	gamma-BHC (Lindane)		7.5	P	
76-44-8	Heptachlor		8.8	P	
309-00-2	Aldrin		8.9	P	
319-85-7	beta-BHC		2.0	U	
319-86-8	delta-BHC		2.0	U	
1024-57-3	Heptachlor Epoxide		2.0	U	
959-98-8	Endosulfan I		2.0	U	
5103-74-2	gamma-Chlordane		2.0	U	
5103-71-9	alpha-Chlordane		2.0	U	
72-55-9	4,4'-DDE		33		
60-57-1	Dieldrin		20	P	
72-20-8	Endrin		17		
33213-65-9	Endosulfan II		4.1	U	
72-54-8	4,4'-DDD		2.5	JP	
50-29-3	4,4'-DDT		88	EP	
7421-36-3	Endrin Aldehyde		4.1	U	
1031-07-8	Endosulfan Sulfate		4.1	U	
72-43-5	Methoxychlor		20	J	
53494-70-5	Endrin Ketone		4.1	כ	
12674-11-2	Aroclor-1016		41	٦	
11104-28-2	Aroclor-1221		81	U	
11141-16-5	Aroclor-1232		41	U	
53469-21-9	Aroclor-1242		41	U	
12672-29-6	Aroclor-1248		41	U	
11097-69-1	Aroclor-1254		41	U	
11096-82-5	Aroclor-1260		41	U	
8001-35-2	Toxaphene		200	U	

EPA SAMPLE NO.

SB51ASMSD

Lab Name: Columbia Analytical Services Contract: EMCON Lab Code: 10145 Case No.: 9702-163 SAS No.: SDG No.: SB49AS Matrix: (soil/water) SOIL Lab Sample ID: 130629MSD Sample wt/vol: FH846.D 30 (g/mi) G Lab File ID: % Moisture: 18 decanted:(Y/N) Date Received: 02/12/97 Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 02/14/97 Concentrated Extract Volume: 5000 (uL) Date Analyzed: 03/01/97 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) Y pH: 8.3 Sulfur Cleanup: (Y/N)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
319-84-6	alpha-BHC		2.0	<del>U</del>
58-89-9	gamma-BHC (Lindane)		9.8	
76-44-8	Heptachlor		12	P
309-00-2	Aldrin		12	P
319-85-7	beta-BHC		2.0	U
319-86-8	delta-BHC		2.0	U
1024-57-3	Heptachlor Epoxide		2.0	U
959-98-8	Endosulfan I		2.0	U
5103-74-2	gamma-Chlordane		2.0	U
5103-71-9	alpha-Chlordane		2.0	U
72-55-9	4,4'-DDE		40	
60-57-1	Dieldrin		26	P
72-20-8	Endrin		23	
33213-65-9	Endosulfan II		4.1	Ų
72-54-8	4,4'-DDD		2.4	J
50-29-3	4,4'-DDT		. 110	EP
7421-36-3	Endrin Aldehyde		4.1	U
1031-07-8	Endosulfan Sulfate		4.1	U
72-43-5	Methoxychlor		20	U
53494-70-5	Endrin Ketone		4.1	U
12674-11-2	Aroclor-1016		41	U
11104-28-2	Arocior-1221		81	U
11141-16-5	Aroclor-1232		41	U
53469-21-9	Aroclor-1242		41	U
12672-29-6	Aroclor-1248		41	U
11097-69-1	Aroclor-1254		41	U
11096-82-5	Aroclor-1260		41	U
8001-35-2	Toxaphene		200	U

# SOIL PESTICIDE MATRIX SPIKE BLANK RECOVERY

Lab Name: Columbia Analytical Services Contract: EMCON

Matrix Spike - EPA Sample No.: PBLK2

COMPOUND	SPIKE ADDED (ug/Kg	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENT. (ug/Kg	BS % REC #	QC LIMITS % REC.
gamma-BHC Heptachlor Aldrin	17 17	0.0 0.0 0.0	12 11 12	71 65 71	56-123 40-131 40-120
Dieldrin Endrin 4-4'-DDT	34 34 34	0.0	27 27 30	79 79 79 88	52-126 56-121 38-127

# * Values outside QC limits

Spike	Recovery:	0	out	of	6	outside	limits.
COMMEN	NTS:						

EPA SAMPLE NO.

PBLK2MS Lab Name: Columbia Analytical Services Contract: EMCON SAS No.: SDG No.: SB49AS Case No.: 9702-163

Lab Code: 10145 SOIL Lab Sample ID: PBLK2MS Matrix: (soil/water) 30 Sample wt/vol: (g/ml) G Lab File ID: FH837.D % Moisture: 0 decanted:(Y/N) Date Received: 02/12/97 Ν Date Extracted: 02/14/97 Extraction: (SepF/Cont/Sonc) SONC Concentrated Extract Volume: 5000 (uL) Date Analyzed: 03/01/97 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) Y pH: Sulfur Cleanup: (Y/N)

## CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
319-84-6	alpha-BHC		1.7	U
58-89-9	gamma-BHC (Lindane)		12	
76-44-8	Heptachlor		11	
309-00-2	Aldrin		12	P
319-85-7	beta-BHC		1.7	U
319-86-8	delta-BHC		1.7	U
1024-57-3	Heptachlor Epoxide		1.7	U
959-98-8	Endosulfan I		1.7	U
5103-74-2	gamma-Chlordane		1.7	U
5103-71-9	alpha-Chlordane		1.7	U
72-55-9	4,4'-DDE		0.70	JP
60-57-1	Dieldrin		27	
72-20-8	Endrin		27	
33213-65-9	Endosulfan II		3.3	U
72-54-8	4,4'-DDD	:	0.13	JP
50-29-3	4,4'-DDT		30	•
7421-36-3	Endrin Aldehyde		3.3	U
1031-07-8	Endosulfan Sulfate		3.3	U
72-43-5	Methoxychlor		17	U
53494-70-5	Endrin Ketone		0.52	J
12674-11-2	Aroclor-1016		33	U
11104-28-2	Aroclor-1221		67	U
11141-16-5	Aroclor-1232		33	Ų
53469-21-9	Aroclor-1242		33	U
12672-29-6	Aroclor-1248		33	U
11097-69-1	Aroclor-1254		33	U
11096-82-5	Aroclor-1260		33	U
8001-35-2	Toxaphene		170	U

# APPENDIX D THIRD PARTY DATA VALIDATION

#### DATA USABILITY ASSESSMENT

The purpose of the data usability assessment is to determine whether the analytical results are appropriate for drawing conclusions about the nature and extent of contamination. Data usability is determined based on the analytical reliability (determined in the data validation process) in the context of critical site contaminant issues.

Independent third-party data validation for the project was performed by Environmental Quality Associates, Inc. (EQA) of Middletown, New York. Validation was performed in accordance with the NYSDEC 1995 Analytical Services Protocol (ASP) and USEPA Region II Standard Operating Procedures (SOPs) for Organics Data Review, Inorganics Data Review, and Low-Level Volatiles Data Review. Two data validation reports were prepared for the project, one for all data samples in February and March 1997 (the majority of the project), and one for follow-up groundwater sampling of two wells performed in June 1997. These reports, and associated correspondence, are attached.

All analyses were conducted as specified in the RI/FS Work Plan (Blasland, Bouck & Lee, Inc., January 1997). Dilutions performed by the laboratory were appropriate based on the presence of target compounds.

Sporadic results were qualified as estimated ("J") due to deviations from QC specifications for calibrations and internal standard recoveries for organic fractions, and interference check samples, analytical spikes and serial dilutions for inorganics. No target compound results in site samples were qualified as unusable ("R").

The principal issue noted in the validation review was that several soil and most of the groundwater samples were analyzed for volatile organic compounds (VOCs) between eight and ten days following verified time of sample receipt (VTSR). These holding times exceeded the specified holding time of seven days between VTSR and analysis. Initially, EQA's judgement was that this excursion did not require associated qualification of all the results (i.e., only the aromatic VOCs were qualified). However, at the request of NYSDEC, all VOCs for these samples were subsequently flagged with a "J" to indicate possible low bias. Results of one additional soil sample were also qualified due to extraction beyond the specified five-day holding time.

The qualification of the affected soil and groundwater data not alter overall site conclusions. The target compounds and their general concentrations are confirmed. NYSDEC formally concluded that the data set for the project is usable in correspondence dated July 22, 1997 and September 8, 1997. Copies of these letters are inluded with this Apeendix.

# New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233-7010



July 22, 1997

# LOCKHEED MARTIN OR & SS

JUL 24 1997

Patrick D. Salvador, P.E.
Principal Engineer
Lockheed Martin Corporation
P.O. Box 4840
Syracuse, New York 13221-4840

Environment Safety & Health

Re: Former GE Court Street 5/5A Plant (Site ID# 734070)

Dear Mr. Salvador.

The Department has reviewed Lockheed Martin's June 23, 1997 submission of a data validation package for samples collected in February and March 1997 as part of the Remedial Investigation at the Court Street 5/5A site. The Department has determined that the data obtained is useable. However, as has been discussed previously, some data have been qualified due to extraction holding time excursion. This data must be considered estimated and biased low. Specific comments on the data validation package are presented below:

1. Page 4, Holding Times

Table 2 in Appendix 1 of the Remedial Investigation/Feasibility Study Work Plan for the Court Street 5/5A site clearly specifies the maximum holding time requirement for volatile organics analysis of both soil and groundwater samples as 7 days from VTSR. This criteria must be used for data evaluation and useability determination.

2. Page 14, Holding Times - Soil Samples

Section 4.2 in Appendix 1 of the Remedial Investigation/Feasibility Study Work Plan for the Court Street 5/5A site clearly specifies that samples will be delivered to the laboratory within 24 to 48 hours. Therefore, if "from time of collection" criteria are to be used, the maximum holding time from time of collection is 7 days from VTSR + 48 hours or 9 days, and not the 10 day "from time of collection" criteria used in the validation report.

3. Page 14, Holding Times - Aqueous Samples

The NYSDEC holding time for unpreserved (i.e. without HCL) aqueous samples is 7 days from VTSR for both purgeable aromatics and purgeable halocarbons.

Lockheed Martin's cover letter submitting the data validation package requested that both NYSDEC and USEPA review the package and provide a written useability determination. The data validation package has been provided to USEPA. However, USEPA has declined to provide comment. It is USEPA's prerogative as to whether the agency will review such deliverables within its Onondaga Lake oversight role.

If you have any questions, feel free to contact me at (518) 457-1641.

Sincerely,

Alyse Peterson

Environmental Engineer

Bureau of Central Remedial Action
Division of Environmental Remediation

cc:

R. Heerkens (NYSDOH)

A. Hess (USEPA)

LOCKHEED MARTIN OR & SS

JUL 24 1997

Environment Safety & Health

LOCKHEED MARTIN

September 16, 1997

Ms. Alyse Peterson
Environmental Engineer
Bureau of Central Remedial Action
Division of Environmental Remediation
New York State Department of Environmental Conservation
50 Wolf Road
Albany, NY 12233-7010

Re: Remedial Investigation - Data Validation Former GE Court Street 5/5A Site Town of Dewitt, Onondaga County, New York NYSDEC Site No. 734070

#### Dear Ms. Peterson:

In a July 22, 1997 letter, the New York State Department of Environmental Conservation (NYSDEC) determined that the data from the Remedial Investigation (RI) samples collected in February and March 1997 at the Former GE Court Street 5/5A Site are useable. In addition, the NYSDEC provided Lockheed Martin Corporation (LMC) with three specific comments on the data validation package prepared by Environmental Ouality Associates, Inc. (EOA). LMC's response to each of those comments is as follows:

Response to NYSDEC Comment No. 1: As indicated by NYSDEC, Table 2 of Volume 1 (Field Sampling Plan) of Appendix 1 (Sampling and Analysis Plan) of the RI/FS Work Plan specifies the maximum holding time requirement for volatile organic compound (VOC) analysis of soil and groundwater samples as seven (7) days from the verifiable time of sample receipt (VTSR). However, data validation and qualification is discussed in Volume 2 (Quality Assurance Project Plan) of Appendix 1 of the RI/FS Work Plan. The QAPP specifies that samples analyzed beyond the specified holding times (seven days from VTSR for VOC's) will be qualified. Therefore, LMC acknowledges NYSDEC's comment and the results will be qualified as estimated.

Response to NYSDEC Comment No. 2: As discussed above, LMC acknowledges the requirement of the RI/FS Work Plan to qualify VOC results from soil samples which were analyzed more than seven (7) days from VTSR. These results will be qualified as estimated with potential negative bias suggested.

Response to NYSDEC Comment No. 3: As discussed above, LMC acknowledges the requirement of the RI/FS Work Plan to qualify VOC results from groundwater samples which were analyzed more than seven (7) days from VTSR. These results will be qualified as estimated with potential negative bias suggested.

In response to the NYSDEC's July 22, 1997 letter, LMC requested EQA to consider NYSDEC's comments. As a result, EQA revised page 4 and page 14 of the May 30, 1997 validation report. A copy of the revised data validation report, dated September 3, 1997, is enclosed. This revised validation report will be used for the preparation of the RI Report.

Ms. Alyse Peterson September 16, 1997 Page 2

Please contact me at (315) 456-3199 if you have any questions or require additional information.

Sincerely,

Patrick D. Salvador, P.E.

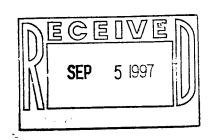
Patrick D. Salvador

Principal Engineer

Enclosure

cc: Robert K. Davies, Esq. - NYSDEC (without enclosure)
Sandra Lee Fenske, Esq. - Lockheed Martin (without enclosure)
Henriette Hamel - Bureau of Environmental Exposure Investigation, NYSDOH (with enclosure)
Kenneth P. Lynch, Esq. - NYSDEC Director, Region 7 (without enclosure)

Virginia C. Robbins, Esq. - Bond, Schoeneck & King, LLP (with enclosure)




# Environmental Quality Associates. Inc.

Specialists in Data Validation and Quality Assurance

September 3, 1997

Mr. Curtis Taylor **EMCON Crossroads Corporate Center** One International Boulevard, Suite 700 Mahwah, New Jersey 07495



Re: Data Validation Report for Lockheed-Martin / Court Street 5/5A; Project No. 86143-001,000

Dear Mr. Taylor,

We are pleased to submit to EMCON, under cover of this letter, our Data Validation Reports (DVR) for Laboratory Submission Nos. 9702000163 and 9703000158 pertaining to the above referenced Site. These data deliverables encompass laboratory Sample Delivery Group (SDG) Nos. SB49AS, MW2D, GW10S and GW14S. Please note that this DVR was revised on 8/18/97, to incorporate the issues addressed in NYSDEC's letter dated July 22, 1997 (Alyse Peterson to Patrick salvador) in regards to Volatiles holding time requirements contained in the site Work Plan.

The associated samples were analyzed by Columbia Analytical Services, Inc., Rochester, New York. The aqueous samples were analyzed for Low-level Volatiles, Semi-volatiles and Total / Dissolved Metals, and the soil samples for Volatiles, Semi-volatiles and Polychlorinated biphenyls per NYSDEC 1995 Analytical Services Protocols. All samples were reviewed and validated in accordance with the above noted protocols, QA guidelines and QC requirements, in conjunction with guidance set forth in USEPA Region II's SOP for Organics Data Review 1 and Inorganics Data Review 2.

#### The DVR is compiled in the following format:

- 1) A Cover Page, summarizing SDG#, associated samples and IDs, sample matrix, collection and VTSR dates, and testing performed.
- 2) An Organics Review Summary, detailing specific areas evaluated for each sample and any non-compliant items found, with description of data qualifiers applied by the reviewer.
- 3) An Inorganics Review Summary, detailing specific areas evaluated for each sample and any non-compliant items found, with description of data qualifiers applied by the reviewer. (Please note that data qualifiers applied have been entered on the associated sample Form Is.
- Summary Tables detailing specific areas of evaluation. 4)

USEPA Region II, SOP No. HW-6, Revision #11, June, 1996

USEPA Region II, SOP No. HW-2, Revision #11, January 1992

5) Laboratory Case Narrative and Sample Summary Sheets, Form Is, and any other SDG Forms / data which have been corrected, qualified or modified from the original SDG.

We trust that the enclosed DVR satisfies your data validation needs and expectations for this phase of the project, and we look forward to fulfilling EMCON's requirements for similar projects in the future. Should you have any questions regarding the contents of this report, please do not hesitate to contact me.

Very truly yours,

Environmental Quality Associates, Inc.

Chris W. Taylor Vice President

CWT/sr

encl.

Page 3 of 23 Revision 1: 8 18 97

for

EMCON, Mahwah, New Jersey

Project: <u>Lockheed-Martin</u>
Lab. Job No.: <u>97-02-163</u>; <u>97-03-158</u>
Lab. Job No.: <u>SB49AS</u>, MW2D, GW10S, GW14S

Sample Summary		SDG No. SI	<u>849AS</u>		
			Date		
Lab. ID No.	Sample ID	<u>Matrix</u>	Collected	<u>VTSR</u>	<u>Analysis</u>
130619	SB49AS	soil	2/11/97	2/12/97	NYSDEC 95-1, 95-2
130620	SB49AD	soil	2/11/97	2/12/97	NYSDEC 95-1, 95-2
130621	SB50AS	soil	2/11/97	2/12/97	NYSDEC 95-1, 95-2
130626	SB49BS	soil	2/11/97	2/12/97	NYSDEC 95-1
130629	SB51AS	soil	2/10/97	2/12/97	NYSDEC 95-3 (PCBs only)
130630	SB52AS	soil	2/10//97	2/12/97	NYSDEC 95-3 (PCBs only)
130633	SB52AD	soil	2/10//97	2/12/97	NYSDEC 95-3 (PCBs only)
130635	SB53AS	soil	2/10//97	2/12/97	NYSDEC 95-3 (PCBs only)
130637	SBFBAR	water	2/10/97	2/12/97	NYSDEC 95-1, 95-2, 95-3 (PCBs)
130641	SBTBAT	water	2/11/97	2/12/97	NYSDEC 95-1

# Organics Review Summary

This section applies to Volatile, Semi-volatile and PCB analyses performed under NYSDEC ASP 95-1, 95-2 and 95-3 methodologies, for soil samples in SDG No. SB49AS. Specific QC parameters evaluated included:

- 1) Data Completeness
- 2) Holding Times
- 3) Sample Preparation / GPC (Semi-volatiles & PCBs)
- 4) GC/MS Tuning (Volatiles & Semi-volatiles)
- 5) Calibration (Initial and Continuing)
- 6) Blanks
- 7) Surrogate Recovery
- 8) Matrix Spike / Matrix Spike Duplicate/ Blank Spike Recovery
- 9) Internal Standard Recovery (Volatiles & Semi-volatiles)
- 10) Compound Identification and Quantitation
- 11) Non-Target Compounds (Volatiles & Semi-volatiles)
- 12) Instrument Detection Limits
- 13) Raw Data
- 14) Calculations and Data Transcription / Reporting

Page 4 of 23 Revision 1: 8:18:97

for

EMCON, Mahwah, New Jersey

Project: Lockheed-Martin
Lab. Job No.: 97-02-163: 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

# Volatiles Analysis

The following information summarizes the areas evaluated and details any non-compliances or items generating reviewer comments or concerns; associated qualifications of sample results are noted.

## Data Completeness

The Data Package for Volatile Organics Analysis was complete as received.

#### Holding Times

The following samples were analyzed eight days from laboratory sample receipt (VTSR), which exceeds the holding time requirement for soil samples stated in the RI / FS work Plan of seven days from VTSR to analysis. Results for these samples are considered estimated, and were 'J' qualified. Potential negative bias is suggested for these samples. SB49AS, SB49AD, SB49BS, SBFBAR, SBTBAT.

#### GC/MS Tuning

All BFB ion abundance ratios were within method-specified limits. All samples were analyzed within 12 hours of associated performance standard injection. Reported results were checked and verified from the raw data.

#### Calibration

The %RSDs and response factors (RF) for the low-level soils method (heated purge) Initial Calibration (ICAL) performed 2/18/97 on GCMS#1were within specified limits, with the exception of 1,1,2,2-tetrachloroethane, which exhibited an average RF of 0.202, below the method requirement of 0.500 for this compound. No qualifiers were applied, since validation guidelines allow a minimum RF of 0.050.

The %D for 1,1,2,2-tetrachloroethane in the Continuing Calibration (CCAL) performed 2/18/97 on GCMS#1 (file AQ704.D) was > |25%| (at -27%); 1,1,2,2-tetrachloroethane results for sample SB50AS are considered estimated and were 'J' qualified.

The %RSDs and response factors (RF) for the aqueous and medium-level soils method (ambient purge) ICAL performed 2/6/97 on GCMS#5 were within specified limits.

The %D for compounds **2-butanone** and **2-hexanone** in the CCAL performed 2/20/97 on GCMS#5 (file R2946.D) were > |25%| (at -55% and -34%, resp.); results for these compounds in samples **SBTBAT**, **SBFBAR**, **SB49ASDL**, **SB49AD** and **SB49BS** are considered estimated and were 'J' qualified. It is noted that these two compounds were not detected in samples; the reported detection limits are potentially affected by this excursion, with positive bias suggested.

Response factor, %RSD and %D for one target compound per each internal standard were verified for each calibration event; please refer to the attached summary tables titled "Verification of VOA Calibration Parameters". Compounds present in associated samples (e.g., trichloroethene, 1,1-dichloroethane) were selected for calibration parameter verification.

Page 5 of 23 *Revision 1; 8 18 97* 

for

EMCON, Mahwah, New Jersey

Project: Lockheed-Martin

Lab. Job No.: <u>97-02-163</u>; <u>97-03-158</u>

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

#### **Blanks**

Method Blanks (VBLK) 01 (low-level soil), 02 (medium-level soil; methanol extraction) and 03 (aqueous) were free of target analytes above their respective established detection limits. VBLK01 exhibited a non-target compound at 2.55 minutes retention time; this compound was not detected in any associated samples.

The Trip and Field Blanks associated with this sampling event were free of target analytes above their respective established detection limits. The Trip Blank (SBTBAT) exhibited a non-target (unknown) compound at 6.81 minutes, with estimated concentration of 6 ug/L; this unknown was not present in other samples.

## System Monitor Compound Recovery

All system monitor compound recoveries were within acceptable limits in all reported samples. One surrogate value from each sample was re-calculated and verified; results are contained in the attached summary table titled "Verification of Volatile System Monitor Compound Recovery".

# Matrix Spike / Matrix Spike Duplicate / Blank Spike Recovery

Matrix spike recovery and precision for SB50AS -MS and -MSD (low-level method) and SB49BS -MS and -MSD (medium-level, methanol extraction method) were within acceptable limits. Blank Spike recoveries for both low- and medium-level methods were also within acceptable limits. Recoveries were verified for all compounds; results are contained in the attached summary table titled "Verification of Volatile Spike Recovery".

#### Internal Standard Recovery

Recoveries of all internal standard compounds were within acceptable limits; internal standard RTs for all samples were within limits. Reported values were checked and verified at the 100% level.

## Compound Identification and Quantitation

All reported concentrations (as qualified) and identifications were in conformance with method requirements.

#### Non-Target Compounds

Several non-target compounds were present in sample SB49AS, with estimated concentrations between 10,000 and 21,000 ug/Kg. This sample also exhibited significant levels of target compounds.

#### **Instrument Detection Limits**

Detection limits for all reported method compounds were below NYSDEC-ASP established CRQLs.

# Calculations and Data Transcription / Reporting

Calculations and transcription of reported parameters were checked on a random basis; no anomalies were discovered.

Page 6 of 23

for

Revision 1; 8/18/97

# EMCON, Mahwah, New Jersey

Project: Lockheed-Martin

Lab. Job No.: 97-02-163; 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

## Sample Dilutions

Samples SB49AS, SB49AD and SB49BS were analyzed by the medium-level (methanol extraction) method, due to high concentrations of several target compounds. Sample SB49AS was reanalyzed at a further 5x dilution due the presence of trichloroethene above calibrated range.

#### Raw Data

Raw data contained within the SDG were found to be complete as received, except as noted herein.

# Semi-volatiles Analysis

The following information summarizes the areas evaluated and details any non-compliances or items generating reviewer comments or concerns; associated qualifications of sample results are noted.

#### **Data Completeness**

The Data Package for Semi-volatile Organics Analysis was complete as received.

## **Holding Times**

Reported samples were extracted within three days of collection, with the exception of sample SB50AS, which was lost during GPC cleanup (see Laboratory Narrative for details) and subsequently re-extracted. The extraction of sample SB50AS was performed on 3/4/97, 21 days after sample collection (2/11/97), with analysis performed on 3/5/97. All samples were analyzed within 20 days from extraction, which is compliant with both the technical and contractual holding time requirements of 40 days from collection to analysis.

Reported results for samples **SB50AS** and **SB50ASRE** are considered <u>estimated</u>, and were 'J' qualified due to extraction holding time excursion. Low bias for positive compounds, and the possibility of false negatives are suggested. The reported values should be considered as the minimum concentrations likely to be present.

#### Sample Preparation / GPC

Extraction logs and GPC calibration / recovery data were reviewed from the raw data; calibration results were acceptable, and no anomalies were noted between raw and reported data.

# **GC/MS Tuning**

All DFTPP ion abundance ratios were within method-specified limits. All samples were analyzed within 12 hours of associated performance standard injection. Reported results were checked and verified from the raw data.

Page 7 of 23

for

Revision 1; 8/18/97

# EMCON, Mahwah, New Jersey

Project: Lockheed-Martin
Lab. Job No.: 97-02-163; 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

#### Calibration

The %RSDs and response factors (RF) for the ICAL performed 2/28/97 on MS#4 were within acceptable validation limits of <30% and >/= 0.05, respectively, and within contractual limits as specified in NYSDEC ASP Method 95-2. The mid-level calibration from the 2/28 ICAL (File ID: DL260.D) was utilized as the CCAL for the associated analytical sequence; all %Ds and RFs were within validation limits of <|25|% and >/= 0.05, respectively, and within specified contractual limits.

The %D for compounds **2,2'-oxybis(1-chloropropane)**, N-nitroso-di-n-propylamine, nitrobenzene, isophorone, hexachlorobutadiene, 2-nitroaniline, 4-nitrophenol and nitrobenzene-d5 (surrogate) in the CCAL performed 3/5/97 on MS#4 (file DL279.D) were > |25%| (see raw data pp. 416, 417 for actual values). Results for these compounds in samples SB49AS-RE, SB50AS and SB50AS-RE, are considered estimated and were 'J' qualified. It is noted that these compounds were not detected in samples; the reported detection limits are potentially affected by this excursion, with positive bias suggested.

Response factor, %RSD and %D for one target compound (or surrogate) per each internal standard were verified for each calibration event; please refer to the attached summary table titled "Verification of SVOA Calibration Parameters".

#### **Blanks**

Method Blank SBLK1 (aqueous; extracted 2/13/97) exhibited a non-target compound at 13.23 minutes retention time (RT); this compound was also detected in associated sample SBFBAR (Field Blank). This compound was negated in the field blank due to concentration, RT and spectral match with SBLK1.

Method Blank SBLK2 (soil; extracted 2/14/97) exhibited the presence of target compounds phenanthrene, di-n-butylphthalate, fluoranthene, pyrene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene, at 46 J, 1500, 64 J, 120 J, 45 J, 76 J, 42 J and 79 J ug/Kg, respectively. Twenty-four non-target compounds were present, with RTs between 6.89 and 28.31 minutes. Non-targets with reasonable RT and spectral matches in associated (i.e., soil) samples with concentrations < 5x SBLK2 concentrations were rejected 'R' and red-lined on the applicable sample Form 1 SV-TIC.

Method Blank SBLK3 (soil; extracted 3/4/97) exhibited the presence of nine non-target compounds, with RTs between 8.80 and 23.41 minutes. Non-targets with reasonable RT and spectral matches in associated samples with concentrations < 5x SBLK2 concentrations were rejected 'R' and red-lined on the applicable sample Form 1 SV-TIC. It is noted that several of the non-target compounds which were 'B' qualified by the laboratory (as present in the associated Method Blank) were poor spectral matches. The B qualifiers in these instances were red-lined out, and the compounds are considered as present in the native samples.

The Field Blank associated with this sampling event contained 1.5 ppb of bis(2-ethylhexyl)phthalate (b2ehp), with Action Level (AL) of 7.4 ppb. The reported concentrations of b2ehp were negated in all samples, and changed to undetected at the appropriate sample CRQL, since all samples contained < AL of b2ehp.

for

Page 8 of 23
Revision 1: 8:18:97

# EMCON, Mahwah, New Jersey

Project: Lockheed-Martin
Lab. Job No.: 97-02-163: 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

#### Surrogate Recovery

Surrogate compound recoveries were within acceptable limits, with the exception of **2-fluorobiphenyl** in samples **SB49AS** and **SB49ASRE** (131 and 131%, resp., vs. 115% high limit). No data qualification was required, since all base/neutral compounds in both samples were non-detects.

It is noted that the surrogate recoveries from the spike and spike-duplicate of sample SB50AS were significantly higher than those of the sample and sample re-analysis. The spiked samples were extracted on 2/14/97; the sample on 3/4/97. This variation is unexplained, but may be due to sample heterogeneity caused by different sub-sampling times.

One surrogate value from each sample was re-calculated and verified; results are contained in the attached summary table titled "Verification of Semi-volatile Surrogate Recovery".

#### Matrix Spike / Matrix Spike Duplicate / Blank Spike Recovery

Matrix spike recovery and precision for SB50AS -MS and -MSD were within acceptable limits. Blank Spike recoveries were within acceptable limits. It is noted that the reported recovery for compound 4-nitrophenol in SB50AS MSD was outside acceptable range (129% vs. 114%); however, the listed spike concentration of 2100 ug/Kg corresponds to a 100 ng spiking level, as opposed to the 150 ng level required for acid (phenolic) compounds. The reviewer has assumed that the spike solution was made correctly, and that the "spike added" concentration given on Form 3 is incorrect; this was verified with the laboratory by reviewing the spike standard solution certification. Calculated on the basis of correct spike added concentration (i.e. 150 ng), the spike recoveries for 4-nitrophenol in (SB50AS)-MS and -MSD are 74 and 87%, resp., vs. reported recoveries of 110 and 129%. The same anomaly is noted for the SBLK2 Blank Spike; the correct recovery of 4-nitrophenol is 66%, vs. 94% reported.

Recoveries were verified for all compounds; results are contained in the attached summary tables titled "Verification of Semi-volatile Spike Recovery".

#### Internal Standard Recovery

Recoveries of internal standard (IS) perylene-d12 were below 50% of the associated CCAL response in samples SB49AS, SB49ASRE, SB50AS and SB50ASRE; perylene-d12 response in SB49AS and SB49ASRE was below 10% of the associated CCAL, at 7% and 3.5%, respectively. Results for the following target compounds, associated with IS perylene-d12 in samples SB50AS and SB50ASRE are considered estimated, and were 'J' qualified: di-n-octyl phthalate, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)- pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Results for these same compounds were rejected 'R' in samples SB49AS and SB49ASRE, due to extremely low IS response. It is noted that the laboratory was contractually compliant in re-analyzing these samples; the cause of the low IS response is unexplained, and may be attributable to sample matrix interference.

Page 9 of 23 Revision 1: 8/18/97

for

EMCON, Mahwah, New Jersey

Project: Lockheed-Martin
Lab. Job No.: 97-02-163; 97-03-158

Laboratory: <u>Columbia Analytical Services, Inc.</u> SDG Nos: <u>SB49AS, MW2D</u>, <u>GW10S</u>, <u>GW14S</u>

#### Compound Identification and Quantitation

All reported concentrations (as qualified) and identifications were in conformance with method requirements.

#### Non-Target Compounds

Non-target compounds were present in all samples, characterized typically as straight-chain and branched hydrocarbons, with estimated concentrations ranging from several hundred to several thousand ug/Kg.

#### **Instrument Detection Limits**

Detection limits for all reported method compounds were below NYSDEC-ASP established CRQLs.

#### Calculations and Data Transcription / Reporting

Calculations and transcription of reported parameters were checked on a random basis; no anomalies were discovered.

## **PCB Analysis**

The following information summarizes the areas evaluated and details any non-compliances or items generating reviewer comments or concerns; associated qualifications of sample results are noted.

#### **Data Completeness**

The PCB chromatograms did not exhibit appropriate scaling for Aroclor standards, which prohibited a precise review of sample chromatograms, since the peak heights typically were app. 10% of full-scale range. Method requirements mandate that the peak heights of standards and samples for multi-component compounds be between 25 and 100% of full-scale; this is due to the fact that identification of PCBs (Aroclors) relies heavily on pattern-recognition techniques in addition to a mere matching of peak retention times. The various Aroclors exhibit significantly different peak-height ratios from one another, which can only be properly discerned when the peaks are correctly scaled on the chromatogram(s). The laboratory was contacted and requested to re-scale the standards and sample chromatograms on an expanded retention time axis between 10 and 20 minutes, in order to allow appropriate confirmation of reported data. It is noted that no PCBs were reported at > MDL levels in project samples; since a large number of peaks were present in the samples within applicable Aroclor retention time regions, and the quantitation software displayed RTs only for calibrated compounds, an expanded RT scale is necessary to enable recognition of potential Aroclor patterns. Please refer to further comments below under 'Compound Identification and Quantitation'.

Re-scaled chromatograms for Aroclor standards and samples were received via fax on 4/21/97. Review of these chromatograms indicated the presence of Aroclor 1260 in samples SB52AS and SB52AD; peakheights of the major peak @ 16.97 minutes in the above-noted samples were ~ 4x that of the corresponding standard peak. The laboratory was again contacted and requested to re-quantitate the affected samples and report the associated Aroclor 1260 concentrations. It is noted that RTs for both samples were within established windows.

Page 10 of 23 Revision 1; 8 18 97

for

EMCON, Mahwah, New Jersey

Project: <u>Lockheed-Martin</u>
Lab. Job No.: <u>97-02-163</u>; <u>97-03-158</u>

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

#### **Holding Times**

All samples were extracted on 2/14/97, and analyzed on 3/1/97, which is compliant with the technical holding time requirements of seven days from collection to extraction and 40 days from extraction to analysis, and also meets the NYSDEC-ASP contractual holding time requirements.

#### Sample Preparation / GPC & Florisil Cleanup

GPC calibration and GPC / Florisil recovery results were acceptable, based upon review of the raw data.

#### Calibration

Method calibration requirements were performed for all TCL analytes. Although only PCBs were analyzed for, per project Work Plan, full method calibration requirements are necessary in order to evaluate GC system performance, including peak resolution, compound breakdown and detector linearity. The method requires that PCBs be calibrated at only one level, and assumes response linearity; the establishment of linear response (i.e., < 20% RSD) for the single-peak pesticides thus becomes a critical indicator of system performance acceptability. All calibration QC acceptance parameters were met, with the exception of  $\alpha$  - BHC and Aldrin %RSDs on Column 2 (DB-17); no data qualification was necessary due to these excursions.

#### Blanks

Method and instrument blanks were free of target analytes at levels greater than one-half analyte CRDLs.

#### Surrogate Recovery

Surrogate recoveries in all samples, blanks and standards were within acceptable advisory recovery range of 30 to 150%, with the exception of the 10x dilutions of samples SB51AS and SB53AS, in which surrogate decachlorobiphenyl (DCBP) was outside range (@ 218%) in both (- DL) runs. Since recoveries were acceptable in the initial (undiluted) analyses, results are considered acceptable and unqualified. Surrogate recoveries from each sample were re-calculated and verified; results are contained in the attached summary table titled "Verification of Pest-PCB Surrogate Recovery".

#### Matrix Spike / Matrix Spike Duplicate / Blank Spike Recovery

Recoveries for 4,4'-DDT were negative in both the spike and spike duplicate of sample SB51AS; this is likely due to native sample DDT concentration of 140 (E) ug/Kg, against DDT spike added concentration of 40 ug/Kg. Also, the recovery of  $\gamma$  - BHC in the -MS was below the acceptable limit (38% vs. 46%). Since Blank Spike recoveries for all compounds, including DDT and  $\gamma$  - BHC were well within acceptable limits, the low recovery of  $\gamma$  - BHC in the -MS and absent recoveries of DDT in both -MS and -MSD are likely attributable to concentration and/or matrix suppression effects. It is noted that Endrin recovery in the -MS was reported as 38%; recalculation from the raw data (column 2 produced the lower result) produced a value of 45%, which is within acceptable recovery range (42 - 139%). The value was corrected on Form 3F (p. 496). Spike recoveries were verified for all compounds; results are contained in the attached summary table titled "Verification of Pest-PCB Spike Recovery".

Page 11 of 23

Revision 1: 8/18/97

for

# EMCON, Mahwah, New Jersey

Project: <u>Lockheed-Martin</u>
Lab. Job No.: <u>97-02-163</u>; <u>97-03-158</u>

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

#### Compound Identification and Quantitation

It is noted that the peaks selected for PCB quantitation in the calibration standards, especially in 1016, 1232, 1242 and 1248, are not unique to a particular Aroclor, i.e., common peaks are used. As an example, the peak at RT 11.89 minutes is used in Aroclors 1016, 1232, 1242 and 1248. PCB analytical requirements mandate that if more than one multicomponent analyte is observed in a sample, different peaks must be chosen for quantitation of each analyte. During calibration of individual Aroclors, the common quant peaks will not cause difficulty, since a known, single compound is being analyzed. However, since unknown samples often exhibit the presence of more than one Aroclor, different peaks should be chosen for calibration. Chromatographic conditions should be selected to provide greater RT separation between the Aroclor series, such that discrete RT bands unique to a particular compound are produced. This is of particular importance for the multi-component analytes, which rely heavily on pattern-recognition techniques for qualitative verification.

It is noted that the laboratory reported PCB (Aroclor) results for all samples as not-detected at the quantitation levels listed on associated Form 1s (i.e., < 33 ug/Kg wet weight, adjusted upwards for % moisture). Based upon examination of revised (re-scaled) chromatograms, Aroclor 1260 was determined by the reviewer to be present in samples SB52AS and SB52AD, at levels significantly above the calibration standard concentration. The laboratory was contacted on 4/21/97 and requested to correct and re-submit the associated Form 1s for these samples. As was noted above, the RTs for Aroclor 1260 peaks present in both samples were well within the established RT windows for this compound; however, the sample quant reports (see pp. 511-512 and 514-515) did not call the peaks as AR1260. The existing calibration method and chromatography software parameters should be evaluated and corrected by the laboratory in order to properly recognize and quantitate the Aroclors, and all other target analytes.

Re-quantitated results for samples SB52AS and SB52AD were received from the laboratory via fax on 4/22/97; Aroclor 1260 results for these samples were 220 and 290 ug/Kg, respectively. Revised results and associated data are appended to the original results forms, and the original forms were corrected by the reviewer to reflect actual AR1260 results.

#### **Instrument Detection Limits**

Detection limit studies were performed for both GC columns; results for all applicable analytes were below the maximum values specified in NYSDEC-ASP Exhibit C (Target Compound Lists and Contract Required Quantitation Limits).

#### Calculations and Data Transcription / Reporting

Reported results were recalculated and verified from the raw data; unless noted elsewhere in this report, no discrepant items were discovered.

Page 12 of 23 Revision 1; 8/18/97

for

# EMCON, Mahwah, New Jersey

Project: <u>Lockheed-Martin</u> Laboratory: <u>Columbia Analytical Services, Inc.</u>
Lab. Job No.: <u>97-02-163</u>; <u>97-03-158</u> SDG Nos: <u>SB49AS, MW2D</u>, <u>GW10S</u>, <u>GW14S</u>

Sample Summary		SDG Nos. M	IW2D, GW108	S, GW14S	
			Date		Requested
Lab. ID No.	Sample ID	<u>Matrix</u>	<u>Collected</u>	<u>VTSR</u>	<u>Analysis</u>
134564	MW16S	water	3/11/97	3/12/97	NYSDEC 95-4
134565	MW16D	water	3/11/97	3/12/97	NYSDEC 95-4
134566	MW8S	water	3/11/97	3/12/97	NYSDEC 95-4 Note: rec'd. broken
134567	MW3D	water	3/11/97	3/12/97	NYSDEC 95-4
134568	MW3S	water	3/11/97	3/12/97	NYSDEC 95-4
134569	MW2D	water	3/11//97	3/12/97	NYSDEC 95-4
134570	TB01	water		3/12/97	NYSDEC 95-4
134868	GW01DS	water	3/12/97	3/13/97	NYSDEC 95-4
134869	GW05DS	water	3/12/97	3/13/97	NYSDEC 95-4
134871	GW015S	water	3/12/97	3/13/97	NYSDEC 95-4
134876	GW010S	water	3/12/97	3/13/97	TAL Metals, Total
134880	GW010S	water	3/12/97	3/13/97	TAL Metals, Dissolved
134870	GW17SS	water	3/12/97	3/13/97	NYSDEC 95-4
134872	GW17DS	water	3/12/97	3/13/97	NYSDEC 95-4
134873	GW013S	water	3/12/97	3/13/97	NYSDEC 95-4
134877	GW07SS	water	3/12/97	3/13/97	NYSDEC 95-4, 95-2, Metals (Total)
134881	GW07SS	water	3/12/97	3/13/97	TAL Metals, Dissolved
134878	GW07SD	water	3/12/97	3/13/97	NYSDEC 95-4, 95-2, Metals (Total)
134882	GW07SD	water	3/12/97	3/13/97	TAL Metals, Dissolved
134874	GW08SS	water	3/12/97	3/13/97	NYSDEC 95-4
134879	GWFB1R	water	3/12/97	3/13/97	NYSDEC 95-4, 95-2, Metals (Total)
134883	GWFB1R	water	3/12/97	3/13/97	TAL Metals, Dissolved
134875	GWTB2T	water		3/13/97	NYSDEC 95-4
135096	OF001S	water	3/13/97	3/14/97	NYSDEC 95-4
135097	OF001D	water	3/13/97	3/14/97	NYSDEC 95-4
135098	SW004S	water	3/13/97	3/14/97	NYSDEC 95-4
135099	OF002S	water	3/13/97	3/14/97	NYSDEC 95-4
135100	SW006S	water	3/13/97	3/14/97	NYSDEC 95-4
135101	GW014S	water	3/13/97	3/14/97	NYSDEC 95-4
135102	GW18SS	water	3/13/97	3/14/97	NYSDEC 95-4
135103	GW18DS	water	3/13/97	3/14/97	NYSDEC 95-4
135104	GW06DS	water	3/13/97	3/14/97	NYSDEC 95-4
135108	GW012S	water	3/13/97	3/14/97	NYSDEC 95-4, 95-2, Metals (Total)
135110	GW012S	water	3/13/97	3/14/97	TAL Metals, Dissolved
135105	OFTB3T	water		3/14/97	NYSDEC 95-4

Page 13 of 23 Revision 1; 8 18 97

for

# EMCON, Mahwah, New Jersey

Project: <u>Lockheed-Martin</u> Laboratory: <u>Columbia Analytical Services, Inc.</u>

Lab. Job No.: <u>97-02-163</u>; <u>97-03-158</u> SDG Nos: <u>SB49AS</u>, <u>MW2D</u>, <u>GW10S</u>, <u>GW14S</u>

# Sample Summary (cont'd.) ...

			Date		Requested
Lab. ID No.	Sample ID	<u>Matrix</u>	<u>Collected</u>	<u>VTSR</u>	<u>Analysis</u>
135116	SS01DS	soil	3/13/97	3/14/97	NYSDEC 95-1, TOC
135118	SS01US	soil	3/13/97	3/14/97	NYSDEC 95-1
135119	SS01UD	soil	3/13/97	3/14/97	NYSDEC 95-1
135121	SS02DS	soil	3/13/97	3/14/97	NYSDEC 95-1, TOC
135123	SS02US	soil	3/13/97	3/14/97	NYSDEC 95-1
135426	GW010S	water	3/14/97	3/15/97	NYSDEC 95-4
135425	GW011S	water	3/14/97	3/15/97	NYSDEC 95-4, Metals (Total)
135428	GW011S	water	3/14/97	3/15/97	TAL Metals, Dissolved
135427	GWTB4T	water	3/14/97	3/15/97	NYSDEC 95-4

# Organics Review Summary

This section applies to Volatile and Semi-volatile analyses performed under NYSDEC ASP 95-1, 95-2 and 95-4 methodologies, respectively. Specific QC parameters evaluated included:

- 1) Data Completeness
- 2) Holding Times
- 3) Sample Preparation / GPC (Semi-volatiles)
- 4) GC/MS Tuning
- 5) Calibration (Initial and Continuing)
- 6) Blanks
- 7) Surrogate Recovery
- 8) Matrix Spike / Matrix Spike Duplicate/ Blank Spike Recovery
- 9) Internal Standard Recovery
- 10) Compound Identification and Quantitation
- 11) Non-Target Compounds
- 12) Instrument Detection Limits
- 13) Raw Data
- 14) Calculations and Data Transcription / Reporting

Page 14 of 23 Revision 1: 8 18 97

for

# EMCON, Mahwah, New Jersey

Project: Lockheed-Martin
Lab. Job No.: 97-02-163; 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

# **Volatiles Analysis**

The following information summarizes the areas evaluated and details any non-compliances or items generating reviewer comments or concerns; associated qualifications of sample results are noted.

# **Data Completeness**

The Data Package for Volatile Organics Analysis for soil samples (NYSDEC 95-1) did not include raw QC data (tunes, blanks and spikes); the laboratory was contacted by phone on 4/23/97 and the missing data requested; the raw QC data were received by mail on 4/26/97. Also, the chain-of-custody indicated that both vials for VOA analysis of sample MW8S (Lab ID: 134566) were received broken.

## Holding Times

All aqueous samples, with the exception of <u>GW2B2T</u>, <u>GW012S</u>, <u>GW011S</u> and <u>GW011S-DL</u>, were analyzed beyond the seven day from VTSR holding time; all aqueous sample results, with the exception of those noted above, are therefore considered <u>estimated</u>, and were '**J**' qualified. Potential negative bias is suggested for these samples.

Positive results should be considered as the minimum levels present in the samples.

#### GC/MS Tuning

All BFB ion abundance ratios were within method-specified limits. All samples were analyzed within 12 hours of associated performance standard injection. Reported results were checked and verified from the raw data. It is noted that the m/z abundance ratios reported on Form 5 for 3/20, 3/21, 3/22 and 3/23 for GCMS#5, and 3/24 for GCMS#1, varied slightly from the raw data; correct ratios were entered manually on Form 5s when the difference between reported and raw values exceeded 0.5%.

### Calibration

#### Soils

The %RSDs and response factors (RF) for the low-level soils method (heated purge) Initial Calibration (ICAL) performed 3/23/97 on GCMS#1 for SDG # GW14S were within specified limits. The %Ds and RFs for the low-level soils Continuing Calibration (CCAL) on 3/24/97 (File ID: ZA253.D) were within acceptable limits. No calibration-related qualifiers were necessary for soil samples in this SDG.

#### Aqueous (low-level)

The %RSDs for the low-level aqueous method (ASP 95-4) ICAL performed 3/19/97 on GCMS#5 for SDG #s MW2D and GW14S were within specified limits. Average RF values for acetone and 2-butanone were below the validation limit of 0.050, at 0.028 and 0.048, respectively. Although only positive results for these compounds require qualification in associated samples, this action was superseded by subsequent similar low response in the CCALs of 3/20, 3/21, 3/22 and 3/23/97. Refer to the narrative on CCALs below.

Page 15 of 23 Revision 1: 8 18 97

for

# EMCON, Mahwah, New Jersey

Project: <u>Lockheed-Martin</u>
Lab. Job No.: <u>97-02-163</u>; <u>97-03-158</u>

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

The RF values for compounds <u>acetone</u> and <u>2-butanone</u> in the CCALs of 3/20, 3/21, 3/22 and 3/23/97 on GCMS#5 (file IDs R3473, 3484, 3496, 3505, 3515 and 3526, resp.) were below the validation level of 0.050; <u>results for these compounds in all samples run under these CCALs in SDGs MW2D and GW14S</u> are considered estimated and were 'J' qualified.

The %D values for chloromethane in the CCAL of 3/21/97 (File R3496.D) and bromomethane in the CCAL of 3/21/97 (File R3505.D) exceeded the validation limit of 30.0%, at 32 and 35%, respectively. Results for chloromethane in associated samples VBLK03, GW07SS, GW01DS, GW05DS, GW17S, GW015S and GW011S, and bromomethane results in associated samples VBLK04, GW17DS, GW013S, GW08SS, GW07SD, GW011SDL and CBLK1, are considered estimated and were 'J' qualified due to these excursions.

Response factors, %RSDs and %Ds were verified for each calibration event; please refer to the attached summary tables titled "Verification of VOA Calibration Parameters". Compounds present in associated samples (e.g., vinyl chloride, trichloroethene) were selected for calibration verification.

#### **Blanks**

Method Blanks (VBLK) -01, -02, -03 and -04 for aqueous samples in SDG# MW2D were free of target and non-target analytes above their respective established detection limits, as were VBLK01 and -02 for aqueous samples in SDG# GW14S.

Method Blank VBLK03 for soil samples in SDG#GW14S was free of target anlytes; it exhibited a non-target at 3.45 minutes RT, with estimated concentration of 13 ug/Kg, of indeterminate structure. Non-targets in associated soil samples with similar RTs and spectra with concentrations below 5x that of VBLK03 were **red-lined** and **rejected.** 

GWTB1T, identified on the C-O-C as TB01, associated with samples collected on 3/11/97, exhibited methylene chloride (MeCL₂) at 1 ug/L; MeCL₂ levels below the Action Limit of 10 ug/L in associated samples were negated (U). The other Trip Blanks associated with this sampling event were free of target analytes above their respective established detection limits. The Field Blank associated with these samples (GWFB1R) exhibited a non-target compound at 22.11 minutes RT, which is a probable siloxane compound from column-bleed. Non-targets at similar RT and spectral configuration in associated samples were red-lined and rejected R.

#### System Monitor Compound Recovery

All system monitor compound (SMC) recoveries were within acceptable limits in all reported samples. One SMC value from each sample was re-calculated and verified; results are contained in the attached summary table titled "Verification of Volatile System Monitor Compound Recovery".

Page 16 of 23

Revision 1: 8/18/97

for

#### EMCON, Mahwah, New Jersey

Project: <u>Lockheed-Martin</u>
Lab. Job No.: 97-02-163; 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

#### Matrix Spike / Matrix Spike Duplicate / Blank Spike Recovery

Matrix spike recovery and precision for GW012S -MS and -MSD (SDG# MW2D), SW004S -MS and -MSD (SDG# GW14S aqueous samples) and SS02DS -MS and -MSD (SDG# GW14S soil samples) were within acceptable limits. Blank Spike recoveries for both aqueous and soil methods were also within acceptable limits. Recoveries were verified for all compounds; results are contained in the attached summary tables titled "Verification of Volatile Spike Recovery".

#### Internal Standard Recovery

Recoveries of all internal standard compounds were within acceptable limits; internal standard RTs for all samples were within limits. Reported values were checked and verified at the 100% level.

# Compound Identification and Quantitation

All reported concentrations (as qualified) and identifications were in conformance with method requirements.

## Non-Target Compounds

Several non-target compounds were present in samples at low levels; RT and spectral matches with blank compounds were rejected. Spectral Ids were reviewed and confirmed, and N qualifiers added to identified compounds to indicate presumptive presence of the particular compound.

## **Instrument Detection Limits**

Detection limits for all reported method compounds were below the ASP Exhibit C established CRQLs.

#### Calculations and Data Transcription / Reporting

Calculations and transcription of reported parameters were checked on a random basis; no anomalies were discovered.

#### Sample Dilutions

The following samples were analyzed at the indicated dilution factors due to the presence of target compounds identified by screening as being greater than the established calibration upper limit of 25 ug/L:

OF001S (10x)

OF001D(10x)

OF002S (2x)

GW18SS (10x)

GW010S (25x)

GW16SS (50x)

GW07SS (50x)

GW07SD (50x)

GW011S-DL (50x). This sample was initially analyzed undiluted.

Page 17 of 23 Revision 1: 8:18:97

for

## EMCON, Mahwah, New Jersey

Project: Lockheed-Martin
Lab. Job No.: 97-02-163; 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

#### Raw Data

Raw data contained within the SDG were found to be complete as received, except as noted herein.

## Semi-volatiles Analysis

The following information summarizes the areas evaluated and details any non-compliances or items generating reviewer comments or concerns; associated qualifications of sample results are noted.

#### Data Completeness

The Data Package for Semi-volatile Organics Analysis was complete as received.

#### Holding Times

Reported samples were extracted within five days of collection, and were analyzed within seven days from extraction, which is compliant with both the technical (validation) holding time requirements of seven days from collection to extraction, and 40 days from extraction to analysis, and ASP requirements of five days from VTSR to extraction, and 40 days from extraction to analysis.

#### Sample Preparation

Extraction conditions were reviewed from the raw data. It is noted that the extraction log (p.00412) does not indicate the L/L extraction stop time, nor the final pH value after H₂SO₄ adjustment; ASP requires 18-hour continuous extraction of aqueous samples, and recording of final pH. Although associated QC parameters (i.e., surrogate recoveries) were within acceptable limits, the laboratory should ensure that proper documentation of extraction times and final pH are performed.

#### GC/MS Tuning

All DFTPP ion abundance ratios were within method-specified limits. All samples were analyzed within 12 hours of associated performance standard injection. Reported results were checked and verified from the raw data.

#### **Calibration**

The %RSDs and response factors (RF) for the ICAL performed 3/24/97 on MS#4 were within acceptable validation limits of <30% and >/=0.05, respectively, and within contractual limits as specified in NYSDEC ASP Method 95-2. The 50 ppb calibration from the 3/24 ICAL (File ID: DL444.D) was utilized as the CCAL for the associated analytical sequence; all %Ds and RFs were within validation limits of <|25|% and >/=0.05, respectively, and within specified contractual limits. No data qualifications were required.

Page 18 of 23 Revision 1: 8/18/97

fo

# EMCON, Mahwah, New Jersey

Project: Lockheed-Martin
Lab. Job No.: 97-02-163; 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

#### Calibration (cont'd.) ...

Response factor, %RSD and %D for one target compound (or surrogate) per each internal standard were verified for each calibration event; please refer to the attached summary table titled "Verification of SVOA Calibration Parameters".

#### Blanks

Method Blank SBLK1 (aqueous; extracted 3/17/97) exhibited the presence of bis(2-ethylhexylphthalate) at 2 J ug/Kg, and two non-target compounds at 11.46 and 21.60 minutes retention time (RT); the compound at 11.46 RT was also detected in Field Blank GWFB1R, and several associated samples. The presence of b2ehp was qualified in associated samples. The non-target compound was negated (red-lined and rejected, **R**) in the associated samples with similar concentration, RT and spectral matches.

#### Surrogate Recovery

Surrogate compound recoveries were within acceptable limits in all samples.

One surrogate value from each sample was re-calculated and verified; results are contained in the attached summary table titled "Verification of Semi-volatile Surrogate Recovery".

# Matrix Spike / Matrix Spike Duplicate / Blank Spike Recovery

Blank Spike recoveries were within acceptable limits. The recoveries for acid-fraction spike compound 4-nitrophenol were outside the high limit of 80% in GW012S -MS and -MSD, at 116 and 113%, respectively. No data qualifications were required due to these excursions.

Recoveries were verified for all compounds; results are contained in the attached summary table titled "Verification of Semi-volatile Spike Recovery".

#### Internal Standard Recovery

Recoveries of all internal standard (IS) compounds were within the required range between +100% and -50% of the associated calibration standard response. RT for all IS compounds were within  $\pm$  0.50 minutes from associated standard values.

#### Compound Identification and Quantitation

All reported concentrations (as qualified) and identifications were in conformance with method requirements.

#### Non-Target Compounds

Non-target compounds were present in all samples, with RT between seven and 27 minutes, characterized typically as unknown hydrocarbons, with estimated concentrations ranging from 2 to 5 ug/L.

#### **Instrument Detection Limits**

Detection limits for all reported method compounds were below NYSDEC-ASP established CRQLs.

Page 19 of 23 Revision 1; 8 18 97

for

# EMCON, Mahwah, New Jersey

Project: Lockheed-Martin
Lab. Job No.: 97-02-163; 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

#### Calculations and Data Transcription / Reporting

Calculations and transcription of reported parameters were checked on a random basis; no anomalies were discovered.

.

# **Inorganics Review Summary / Metals**

This section applies to metals analyses evaluated under NYSDEC ASP and EPA Regon II protocols and guidelines, respectively. Specific QC parameters evaluated included:

- 1) Data Completeness
- 2) Holding Times / Sample Preservation
- 3) Calibration (Initial and Continuing)
- 4) Blanks (Digestion / Preparative and Instrument)
- 5) CRDL Check Samples
- 6) Interference Check Samples (ICP analytes)
- 7) Matrix Spikes
- 8) Duplicates (Laboratory and Field)
- 9) Laboratory Control Samples
- 10) Serial Dilutions (ICP analytes)
- 11) Instrument Detection Limits
- 12) Raw Data (Instrument results, Digestion / Prep. Logs)
- 13) Calculations and Data Transcription / Reporting

The following information summarizes the areas evaluated and details any non-compliances or items generating reviewer comments or concerns; associated qualifications of sample results are noted.

1

Page 20 of 23 Revision 1: 8/18/97

EMCON, Mahwah, New Jersey

Project: Lockheed-Martin
Lab. Job No.: 97-02-163; 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

# Data Completeness

The sample custody chains (C-O-C) did not indicate pH values for aqueous samples. ASP method protocols require aqueous sample preservation with nitric acid to a pH <2, in addition to temperature (4° C ±2) preservation. The laboratory was contacted via fax on 4/23/97 for resolution; it was indicated that metals samples had been acid-preserved, and that supporting documentation would be forthcoming. The laboratory transmitted copies via fax on 5/2/97 of forms titled "Receiving / Breakdown Area Analysis" for 3/13, 3/14 and 3/17/97 indicating pH values of "2 U" for all samples; the reviewer's assumption is that this is equivalent to <2, and is presumptive evidence of proper pH preservation. It is strongly recommended that the measured pH value of all applicable samples be documented upon receipt, either on the chain of custody or a sample receipt checklist.

#### Holding Times / Sample Preservation

Samples were collected between 3/11 and 3/14/97, received at the laboratory between 3/12 and 3/15/97, extracted between 3/18 and 4/3/97, and analyzed between 3/19 and 4/3/97.

The above holding times were within the validation technical holding times of six months maximum from collection to analysis for metals (other than mercury) and 28 days maximum from collection to analysis for mercury.

Refer to comments under Data Completeness above regarding sample preservation.

# Calibration

All initial (ICV) and continuing (CCV) calibration recoveries were within acceptable limits of 90 to 100%. No data qualifiers were required.

#### Blanks (Digestion / Preparative and Instrument)

Prep blanks were free of contamination above the CRDL for all target analytes. Instrument blanks (ICB, CCB) were below CRDLs for all target analytes.

#### **CRDL** Check Samples

Recoveries for all applicable target analytes in the CRDL samples were within acceptable limits of 80 - 120%.

# Interference Check Samples (ICP analytes)

Recoveries of all applicable target analytes in the interference check samples were within acceptable range of 80 - 120%. It is noted that <u>arsenic</u> and <u>thallium</u> exhibited significant negative response in both solutions A and AB (-118; -130, -124, resp.); potential negative bias for arsenic due to incorrect background correction (BGC) and/or interelement correction (IEC) factor settings exists.

Page 21 of 23 Revision 1: 8 18 97

for

#### EMCON, Mahwah, New Jersey

Project: Lockheed-Martin
Lab. Job No.: 97-02-163; 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

#### Interference Check Samples (cont'd.)...

The Form 11 (IEC) summary indicated only IEC determinations for Al, Ca, Fe and Mg; the laboratory was contacted on 5/5/97 and requested to provide a full IEC factor determination, in order to evaluate potential bias for As due to other interferents.

The full IEC factor listing was received via fax on 5/6/97; review indicated no other significant interferent effects for As which would explain the large negative bias exhibited in the ICS A/ICS AB solutions. The possibility of either (a) instrument control parameter drift between IEC determination on 3/11/97 and sample analysis on 3/26/97, or (b) incorrect BGC setting affecting the data is likely.

Reported results for <u>arsenic</u> and <u>thallium</u> in all reported samples are considered <u>estimated</u>, and were 'J' qualified; negative bias is suggested.

#### Matrix Spikes

Recovery for aluminum in spike sample GW012S was outside the acceptable range of 75 - 125%, at 4.9%; this was mitigated by the fact that the Al concentration in the native (unspiked) sample was 5x the spike added concentration. Matrix spike recoveries outside range are not qualified when the concentration in the native sample exceeds that of the spike added by a factor of 4x or greater, nor do these elements require a post-digestion spike. It is noted that sample GW012S was cold-spiked (i.e., post-digestion), with Al recovery at 123%; matrix suppression of Al is suggested, and the reported values for Al may be biased low. It is also noted that calcium, iron and magnesium post-spike results were all low, at -300, 48 and -6%, resp.; this indicates potential inaccuracies in reported results for these analytes in the approximate amount of the spike added, i.e.,  $\pm$  2,000, 1,000 and 2,000 ug/L, respectively. Further, the disparity between the calcium spiked and un-spiked values of 212 and 218 mg/L, resp., indicate a lack of precision at a corresponding level (i.e., 6 - 8 mg/L) for Ca results, which supercede the duplicate sample results of 218 and 221 mg/L.

#### Analytical Spikes

Spike recoveries for selenium by GFAA were outside the acceptable range of 85 - 115% in samples <u>GW010S</u>, <u>GW011S</u>, <u>GW012S</u> and <u>GW07SD</u> (total Se), and <u>GW010S</u> F, <u>GW011S</u> F, and <u>GW07SS</u> F (dissolved Se). Since all results were > IDL, but  $< \frac{1}{2}$  spike concentration, analysis by MSA was not required. Se results for these samples are considered <u>estimated</u> and were 'J' qualified.

#### **Duplicates**

The %RPDs (or absolute difference, as applicable) for all target analytes in duplicate sample GW012S D were within the control limits of 20% for analytes with concentrations > 5x CRDL, or  $\pm$  CRDL for analyte concentrations < 5x CRDL.

Page 22 of 23 Revision 1; 8/18/97

for

#### EMCON, Mahwah, New Jersey

Project: Lockheed-Martin
Lab. Job No.: 97-02-163; 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

#### Field Duplicates

Aqueous sample GW07SD was identified by EMCON as the field duplicate sample of GW07SS. %RPDs were calculated (as for Lab Duplicates); the results are presented in the attached Tables titled "Metals Field Duplicate Precision". Results for all target analytes were within applicable limits, indicating acceptable field collection techniques and analytical system precision.

#### <u>Laboratory Control Samples</u> (LCS)

Recoveries for all analytes in the LCS, which indicate overall system accuracy and efficiency, including the preparative digestion process, were within acceptable limits. Indicated problems with matrix spike recoveries are likely due to sample matrix interference and suppression effects.

#### Serial Dilution

Serial dilution sample recoveries, for ICP analytes present in selected samples at a concentration > 10x IDL, were within acceptable limits (max. 10%D), with the exception of sodium in samples GW012S L (for total metals), and sample GW012SF L (for dissolved metals). Results for **sodium** in all associated samples with concentrations > 10x IDL (i.e., > 675 ug/L) are considered <u>estimated</u> and were 'J' qualified. (Note that the only sample with Na concentration less than 675 ug/L was the filtered Field Blank, GWFB1F).

#### **Instrument Detection Limits**

NYSDEC-ASP Contract Required Detection Limits (CRDLs) were met for all target analytes.

#### Total / Dissolved Metals Correlation

Results for target analytes in corresponding samples were generally well correlated, with dissolved (filtered) results less than total (unfiltered) results. However, the following anomalies were noted:

Ba 134	GW10S F	Ba 279
Zn 14.6		Zn 57.8
Ba 44.7	GW11S F	Ba 231
Zn 7.5		Zn 71.6
Ba 111	GW12S F	Ba 142
Zn 42.6		Zn 48.2
Na 18200	GW7SD F	Na 20300
Tl 2.1 U		Tl 3.9
Zn 17.5		Zn 26.6
Na 18300	GW7SS F	Na 21200
Zn 22.6		Zn 28.5
	Zn 14.6 Ba 44.7 Zn 7.5 Ba 111 Zn 42.6 Na 18200 Tl 2.1 U Zn 17.5 Na 18300	Zn 14.6 Ba 44.7 GW11S F Zn 7.5 Ba 111 GW12S F Zn 42.6 Na 18200 GW7SD F Tl 2.1 U Zn 17.5 Na 18300 GW7SS F

Page 23 of 23

for

Revision 1; 8 18/97

#### EMCON, Mahwah, New Jersey

Project: Lockheed-Martin

Lab. Job No.: 97-02-163; 97-03-158

Laboratory: Columbia Analytical Services, Inc. SDG Nos: SB49AS, MW2D, GW10S, GW14S

Total / Dissolved Metals Correlation (cont'd.)...

Analytes Ba and Zn are consistently higher in the filtered samples versus the un-filtered; results for the filtered vs. unfiltered field blank samples do not exhibit this pattern, which precludes the filtration media as a potential contamination source for these analytes.

#### Raw Data

Raw data submitted with this package are complete, unless noted otherwise elsewhere in this report.

Calculations and Data Transcription / Reporting

Calculations and reported values were verified at random from raw data values; no anomalies were noted.

### **IMPORTANT NOTICE TO DATA USER**

THE DATA RESULTS CONTAINED IN THIS PACKAGE HAVE BEEN TECHNICALLY REVIEWED AND QUALIFIED IN ACCORDANCE WITH METHOD PROTOCOLS AND EPA REGION II GUIDELINES. <u>DATA WHICH DO NOT EXHIBIT EVIDENCE OF QUALIFICATION OR REVIEW SHOULD NOT BE USED.</u>

PLEASE CALL EQA @ (914) 386 - 4705 IF YOU HAVE ANY QUESTIONS PERTAINING TO THE CONTENTS OF THIS DATA DELIVERABLES PACKAGE.

## New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233-7010

### LOCKHEED MARTIN OR & SS



September 8, 1997

SEP 11 1997

environment Safety
& Health

Patrick D. Salvador, P.E.
Principal Engineer
Lockheed Martin Corporation
P.O. Box 4840
Syracuse, New York 13221-4840

Re: Former GE Court Street 5/5A Plant (Site ID# 734070)

Dear Mr. Salvador:

The Department has reviewed Lockheed Martin's August 1, 1997 submission of a data validation package for samples collected in June 1997 as part of the Remedial Investigation at the Court Street 5/5A site. The Department has determined that the data is useable.

If you have any questions, feel free to contact me at (518) 457-1641.

Sincerely,

Alyse Peterson

Environmental Engineer

Bureau of Central Remedial Action Division of Environmental Remediation

cc:

H. Hamel (NYSDOH)

A. Hess (USEPA)

August 1, 1997

William L. Daigle, P.E.
Division of Hazardous Waste Remediation
New York State Department of Environmental Conservation
50 Wolf Road
Albany, NY 12233-7010

Re: Analytical Data and Data Validation Package (MW-17B and MW-19S)
Former GE Court Street 5/5A Plant
Town of Dewitt, Onondaga County, New York
NYSDEC Site No. 734070

Dear Mr. Daigle:

Please find enclosed the laboratory analytical data and the July 22, 1997 data validation package for the samples collected in June 1997 as part of the Remedial Investigation at the above referenced site. The data validation package was prepared by Environmental Quality Associates, Inc. and the laboratory analysis was performed by Columbia Analytical Services, Inc.

LMC requests New York State Department of Environmental Conservation (NYSDEC) and United States Environmental Protection Agency (USEPA) to review the enclosed analytical data and data validation package and provide written confirmation that the data obtained is useable for the Remedial Investigation (RI), Feasibility Study (FS) and Interim Remedial Measures (IRM). Please contact me at (315) 456-3199 if additional information is required.

Sincerely,

Patrick D. Salvador, P.E.

Patrick D. Salvagor

Principal Engineer

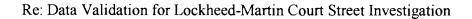
Enclosure

cc: Robert K. Davies, Esq. - NYSDEC (without enclosure)
Sandra Lee Fenske, Esq. - Lockheed Martin Corporation (without enclosure)
Henriette Hamel - NYSDOH (without enclosure)
Kenneth P. Lynch, Esq. - NYSDEC Region 7 Director (without enclosure)
Virginia C. Robbins, Esq. - Bond, Schoeneck & King, LLP (without enclosure)



## Environmental Quality Associates. Inc.

Specialists in Data Validation and Quality Assurance


July 22, 1997

Mr. Curtis Taylor EMCON

Crossroads Corporate Center

One International Boulevard, Suite 700

Mahwah, New Jersey 07495



**M** 2 3 1997

Dear Mr. Taylor,

We are pleased to submit to EMCON, under cover of this letter, our Data Validation Report (DVR) for Laboratory Submission No. 9706000268 pertaining to the above referenced Site. These data deliverables encompass laboratory Sample Delivery Group (SDG) No. MW17B.

The associated samples were analyzed by Columbia Analytical Services, Inc., Rochester, New York. The aqueous samples were analyzed for Low-level Volatiles, per NYSDEC 1995 Analytical Services Protocols. All samples were reviewed and validated in accordance with the above noted protocols, QA guidelines and QC requirements, in conjunction with guidance set forth in USEPA Region II's SOP for Low-level Volatiles Data Review.

The DVR is compiled in the following format:

- 1) A Cover Page, summarizing SDG#, associated samples and IDs, sample matrix, collection and VTSR dates, and testing performed.
- 2) A Volatile Organics Review Summary, detailing specific areas evaluated for each sample and any non-compliant items found, with description of data qualifiers applied by the reviewer.
- 3) Laboratory Case Narrative and Sample Summary Sheets, Form Is, and any other SDG Forms / data which have been corrected, qualified or modified from the original SDG.

We trust that the enclosed DVR satisfies your data validation needs and expectations for this phase of the project, and we look forward to fulfilling EMCON's requirements for similar projects in the future. Should you have any questions regarding the contents of this report, please do not hesitate to contact me.

Very truly yours,

Environmental Quality Associates, Inc.

Vice President

for

#### EMCON, Mahwah, New Jersey

Project: <u>Lockheed-Martin</u> Laboratory: <u>Columbia Analytical Services, Inc.</u>

Lab. Job No.: <u>97-06-268</u> SDG No: <u>MW17B</u>

Sample Summary		SDG No. MW17B			
			Date		Requested
Lab. ID No.	Sample ID	<u>Matrix</u>	<u>Collected</u>	<u>VTSR</u>	<u>Analysis</u>
153411	MW-17B	water	6/17/97	6/18/97	NYSDEC 95-4
153412	FB-01	water	6/17/97	6/18/97	NYSDEC 95-4
153413	MW-19S	water	6/17/97	6/18/97	NYSDEC 95-4
153414	DUP	water	6/17/97	6/18/97	NYSDEC 95-4
153415	TB-01	water	6/17/97	6/18/97	NYSDEC 95-4

#### Organics Review Summary

This section applies to Volatile analyses performed under NYSDEC ASP 95-4 protocols. Specific QC parameters evaluated included:

- 1) Data Completeness
- 2) Holding Times
- 3) GC/MS Tuning
- 4) Calibration (Initial and Continuing)
- 5) Blanks
- 6) Surrogate Recovery
- 7) Matrix Spike / Matrix Spike Duplicate/ LCS Recovery
- 8) Internal Standard Recovery / Retention Times
- 9) Compound Identification and Quantitation
- 10) Non-Target Compounds
- 11) Instrument Detection Limits
- 12) Raw Data
- 13) Calculations and Data Transcription / Reporting

#### **Volatiles Analysis**

The following information summarizes the areas evaluated and details any non-compliances or items generating reviewer comments or concerns; associated qualifications of sample results are noted.

#### **Data Completeness**

The Data Package for Volatile Organics Analysis was complete as received.

for

#### EMCON, Mahwah, New Jersey

Project: <u>Lockheed-Martin</u> Lab. Job No.: 97-06-268 Laboratory: Columbia Analytical Services, Inc.

SDG No: MW17B

#### **Holding Times**

All aqueous samples were analyzed within seven days of sample collection. The NYSDEC ASP specifies maximum holding times from VTSR to analysis for both purgeable halocarbons and aromatics of seven days unpreserved and 10 days preserved (w/ HCl), respectively. USEPA Region II validation guidelines for technical holding time evaluation, are seven and 14 days from collection to analysis for unpreserved and preserved samples, respectively. No qualifications were necessary.

#### GC/MS Tuning

All BFB ion abundance ratios were within method-specified limits. All samples were analyzed within 12 hours of associated performance standard injection. Reported results were checked and verified from the raw data.

#### Calibration

The %RSDs for compounds <u>acetone</u> and <u>2-butanone</u> in the ICAL performed 6/20/97 on GCMS#5 were outside the validation action limit of 30.0%, at 36 and 39%, respectively. Average RF values for <u>acetone</u> and <u>2-butanone</u> were also below the validation limit of 0.050, at 0.013 and 0.023, respectively.

The RF values for compounds <u>acetone</u> and <u>2-butanone</u> in the CCAL of 6/24/97 on GCMS#5 (file ID R4915.D) were below the validation action limit of 0.050, at 0.009 and 0.016, resp.; <u>results for these compounds in all samples</u> are considered <u>estimated</u> and were 'J' qualified. Due to the low response factors and area response for these compounds, low bias (i.e., the potential for false negatives at the reported quantitation level) is suggested.

The %D values for <u>acetone</u> and <u>2-butanone</u> exceeded the validation action limit of 30.0%, at 33 and 31%, resp., in the 6/24/97 CCAL; these compounds are considered <u>estimated</u> and were '**J**' qualified due to these excursions.

#### Blanks

Method Blank VBLK -01 was free of target and non-target analytes above their respective established detection limits.

The trip blank (TB-01) exhibited a non-target compound (possibly furan, CAS # 000110-00-9) at 5.70 minutes RT; this compound was not detected in associated samples.

#### System Monitor Compound Recovery

All system monitor compound (SMC) recoveries were within acceptable limits in all reported samples. One SMC value from each sample was re-calculated and verified; results are contained in the attached summary table titled "Verification of Volatile System Monitor Compound Recovery".

for

#### EMCON, Mahwah, New Jersey

Project: <u>Lockheed-Martin</u> Lab. Job No.: <u>97-06-268</u> Laboratory: <u>Columbia Analytical Services, Inc.</u> SDG No: MW17B

#### Matrix Spike / Matrix Spike Duplicate / LCS Recovery

Compound recovery and precision for spiked analytes in MW-17B -MS and -MSD were within acceptable limits.

Recovery of spiked analytes in the laboratory control sample (LCS) were within acceptable limits.

#### Internal Standard Recovery

Recoveries of all internal standard compounds were within acceptable limits; internal standard RTs for all samples were within limits.

#### Compound Identification and Quantitation

All reported concentrations (as qualified) and identifications were in conformance with method requirements. The laboratory was asked to provide hard-copy confirmation that early-eluting peaks (in the first 3 to 5 minutes of the chromatograms in several samples) had been properly scanned to ensure that no false-negative target compounds were present. The laboratory's faxed response was received by EQA on 7/22/97; see fax transmission from Mark Wilson, Columbia Analytical Services, attached.

#### Non-Target Compounds

Spectral ID was reviewed, and N qualifier added to identified compound to indicate presumptive presence of the particular compound (i.e., furan; sample TB-01).

#### **Instrument Detection Limits**

Detection limits for all reported method compounds were below the ASP Exhibit C established CRQLs.

#### Calculations and Data Transcription / Reporting

Calculations and transcription of reported parameters were checked on a random basis; no anomalies were noted.

Page 5 of 5

for

#### EMCON, Mahwah, New Jersey

Project: Lockheed-Martin Lab. Job No.: 97-06-268

Laboratory: Columbia Analytical Services, Inc.

SDG No: MW17B

#### Sample Dilutions

No sample dilutions were required for this SDG; all target compound results were non-detects at the reported quantitation levels.

#### Raw Data

Raw data contained within the SDG were found to be complete as received.

### **IMPORTANT NOTICE TO DATA USER**

THE DATA RESULTS CONTAINED IN THIS PACKAGE HAVE BEEN TECHNICALLY REVIEWED AND QUALIFIED IN ACCORDANCE WITH METHOD PROTOCOLS AND EPA REGION II GUIDELINES. DATA WHICH DO NOT EXHIBIT EVIDENCE OF QUALIFICATION OR REVIEW SHOULD NOT BE USED.

PLEASE CALL EQA @ (914) 386 - 4705 IF YOU HAVE ANY QUESTIONS PERTAINING TO THE CONTENTS OF THIS DATA DELIVERABLES PACKAGE.

CAS Rochester

REMARKS:

Associates, Inc. RU #5, BOX BOO Middletown, NY 10940



Date: Number of pages including cover sheet:

	1/13	TAYLOR	۲
	E @ 6	}	
<del></del> -			
· · · · · · · · · · · · · · · · · · ·			
Phone:		-,	
Fax phone:	9/V	386	4705
CC:			

Urgent

From:	ARK WIVEN	
Dhana		
Phone:	<u>(716) 288-5380</u>	
Fax phone:	(716) 288-8475	

Please comment

For your review 

Reply ASAP (Please Note that our phone number and fax number are now different Columbia Analytical Services, Inc.

1 Mustard Street, Suite 250 P.O. Box 90859 Rochester, NY 14609-0589

Re: CAS submission # 9706000268 95-4 VOA Analysis
First 3-5 minutes of chromatagrams Have BEEN CHECKED
AND CONFIRMED TO NOT HAVE TARGET COMPOUNDS PRESENT.

#### IMPORTANT NOTE:

The documents accompanying this transmission may contain information which is legally privileged and/or confidential. The information is intended only for the use of the individual or entity named above. If you are not the intended recipient, or the person responsible for delivering it to the intended recipient, you are hereby notified that any disclosure, copying, distribution, or use of any of the information contained in this transmission is sincelly PROHIBITED. If you have received this transmission in error, please immediately notify us by telephone and mail the original transmission to us. Thank you for your cooperation and assistance.

## APPENDIX E ENVIRONMENTAL SETTING CORRESPONDENCE

#### New York State Department of Environmental Conservation Division of Environmental Permits, Suite 206 615 Erie Blvd. W., Syracuse, NY 13204-2400

(315) 426-7438

July 30, 1997



John P. Cahill
Commissioner

Sara Kapp EMCON Crossroads Corporate Center One International Boulevard Suite 700 Mahwah, NJ 07495

RE: Project #86143-001.000

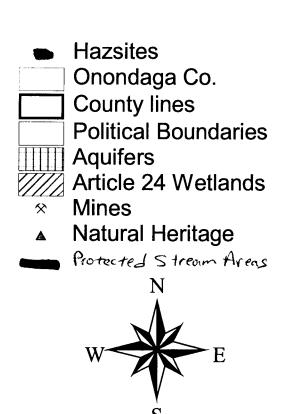
Dear Ms. Kapp:

The Department has reviewed your letter of July 23, 1997 concerning possible environmental impacts on and around (within ½ mile) the old G.E. - Court Street Facility.

Enclosed is a map with various items of concern shown as clarification and in addition, the Department offers the following:

- 1. Natural Heritage including NYS endangered, threatened and rare species or species of concern: None are located on our maps for this area.
- 2. Regulated Wetlands: Are shown in light blue with stripes. Although none appear to be directly on site, two wetlands, SYE-29 & SYE-6 are nearby. These are NYS wetlands, only. We recommend you contact the Army Corps of Engineers for their wetlands determination.
- Protected bodies of water are shown with a dark blue line. One starts just south of the property (Court Street).
- For specifics on aquatic habitats you may wish to contact our Cortland office for assistance: 1-800-388-8244 Fisheries Department or (607) 753-3095.
- 5. A 100-year floodplain lies west of the site and possibly on-site. You should check with the local municipality for any special permits/approvals under the National Flood Insurance Program.
- 6. There are 3 hazardous waste sites located near this site:
  - a) Ley Creek PCB dredgings
  - b) Valenite
  - c) UTC, Carrier

These are shown in red on the map. For more information on these, contact our Hazardous Waste Remediation Division, Charles Branagh, at (315) 426-7551.


- 7. The following do not appear to be on or near the site:
  - a) NYS Agricultural District
  - b) Archaeological/Cultural sites: No sites appear on our circles and squares map
  - c) Primary Aquifer

Thank you for checking with our office. If we can be of further assistance, please let us know.

Sincerely

Joanne L. March

Environmental Analyst I





**PROJECT** 

0.5 0 0.5 1 Miles



### United States Department of the Interior

#### FISH AND WILDLIFE SERVICE 3817 Luker Road Cortland, New York 13045

August 18, 1997

Ms. Sara Kapp Staff Scientist EMCON Crossroads Corporate Center One International Boulevard, Suite 700 Mahwah, NJ 07495

Dear Mr. Kapp:

This responds to your letter of July 23, 1997, requesting information on the presence of endangered or threatened species in the vicinity of the property located on Court Street (former GE Court Street site) in the Town of Dewitt, Onondaga County, New York.

Except for occasional transient individuals, no Federally listed or proposed endangered or threatened species under our jurisdiction are known to exist in the project impact area. Therefore, no Biological Assessment or further Section 7 consultation under the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.) is required with the U.S. Fish and Wildlife Service (Service). Should project plans change, or if additional information on listed or proposed species becomes available, this determination may be reconsidered.

The above comments pertaining to endangered species under our jurisdiction are provided pursuant to the Endangered Species Act. This response does not preclude additional Service comments under the Fish and Wildlife Coordination Act or other legislation.

For additional information on fish and wildlife resources or State-listed species, we suggest you contact:

New York State Department of Environmental Conservation Region 7 1285 Fisher Avenue Cortland, NY 13045-1090 (607) 753-3095 New York State Department of Environmental Conservation Wildlife Resources Center - Information Serv. New York Natural Heritage Program 700 Troy-Schenectady Road Latham, NY 12110-2400 (518) 783-3932

The National Wetlands Inventory (NWI) map of the Syracuse East Quadrangle is available and may show wetlands in the project vicinity. However, while the NWI maps are reasonably accurate, they should not be used in lieu of field surveys for determining the presence of wetlands or delineating wetland boundaries for Federal regulatory purposes.

Work in certain waters and wetlands of the United States may require a permit from the U.S. Army Corps of Engineers (Corps). If a permit is required, in reviewing the application pursuant to the Fish and Wildlife Coordination Act, the Service may concur, with or without stipulations, or recommend denial of the permit depending upon the potential adverse impacts on fish and wildlife resources associated with project implementation. The need for a Corps permit may be determined by contacting Mr. Paul Leuchner, Chief, Regulatory Branch, U.S. Army Corps of Engineers, 1776 Niagara Street, Buffalo, NY 14207 (telephone: [716] 879-4321).

If you require additional information please contact Michael Stoll at (607) 753-9334.

Sincerely,

mark W. Clough ACTING FOR

Sherry W. Morgan Field Supervisor

cc: NYSDEC, Cortland, NY (Env. Permits) NYSDEC, Latham, NY COE, Buffalo, NY New York State Department of Environmental Conservation Wildlife Resources Center 700 Troy-Schenectady Road Latham, New York 12110-2400 (518) 783-3932



John P. Cahill Commissioner

August 6, 1997

Sara Kapp EMCON Crossroads Corporate Center, Suite 700 1 International Blvd. Mahwah, NJ 07495

Dear Ms. Kapp:

We have reviewed the New York Natural Heritage Program files with respect to your recent request for biological information concerning the Court Street property, NYS DEC #734070, site as indicated on your enclosed map, located in the Town of DeWitt, Onondaga County, New York State.

We did not identify any potential impacts to endangered, threatened, or special concern wildlife species, rare plant, animal, or natural community occurrences, or other significant habitat.

The absence of data does not necessarily mean that rare or endangered elements, natural communities or other significant habitats do not exist on or adjacent to the proposed site, but rather that our files currently do not contain any information which indicates the presence of these. Our files are continually growing as new habitats and occurrences of rare species and communities are discovered. In most cases, site-specific or comprehensive surveys for plant and animal occurrences have not been conducted. For these reasons, we cannot provide a definitive statement on the presence or absence of species, habitats or communities. This information should not be substituted for on-site surveys that may be required for environmental assessment.

This response applies only to known occurrences of rare plants and natural communities. You should contact our regional office, Division of Regulatory Affairs, at the address enclosed for information regarding any regulated areas or permits that may be required (e.g., regulated wetlands) under State Law.

If this proposed project is still active one year from now we recommend that you contact us again so that we may update this response.

Sincerely

Mancy Davis Ricays
Nancy Davis-Ricci

Information Services

New York Natural Heritage Program

Encs.

cc: Reg. 7, Wildlife Mgr.

Reg. 7, Fisheries Mgr.

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL PERMITS REGIONAL OFFICES

27.	10101		
REGION	COUNTIES	<u>NAME</u>	ADDRESS AND PHONE NO.
Region 1	Nassau Suffolk	Robert Greene Permit Administrator	Loop Road, Bldg. 40 SUNY Stony Brook, NY 11790-2356 (516) 444-0365
Region 2	New York City	George Danskin Permit Administrator	Hunters Point Plaza 4740 21st Street Long Island City, NY 11101-5407 (718) 482-4997
Region 3	Dutchess Orange Putnam Rockland, Sullivan Ulster, Westchester	Margaret Duke Permit Administrator	21 South Putt Corners Road New Paltz, NY 12561-1696 (914) 256-3059
Region 4	Albany Columbia Delaware Greene, Montgomer Rensselaer, Schenec	William J. Clarke Permit Administrator  y, Otsego stady, Schoharie	1150 N. Westcott Road Schenectady, NY 12306-2014 (518) 357-2234
Region 5	Clinton Essex Franklin Fulton, Hamilton Saratoga, Warren, V	Richard Wild Permit Administrator Vashington	Route 86 Ray Brook, NY 12977 (518) 897-1234
Region 6	Herkimer Jefferson Lewis Oneida, St. Lawren	Randy Vaas Permit Administrator ce	State Office Building 317 Washington Street Watertown, NY 13601 (315) 785-2246
Region 7	Broome Cayuga Chenango Cortland, Madison, Oswego, Tioga, To		615 Erie Blvd. West Syracuse, NY 13204-2400 (315) 426-7439
Region 8	Chemung Genesee Livingston Monroe, Ontario, O Schuyler, Seneca, S Wayne, Yates		6274 East Avon-Lima Road Avon, NY 14414 (716) 226-2466
Region 9	Allegany Cattaraugus Chautauqua Erie, Niagara, Wyo	Steven Doleski Permit Administrator oming	270 Michigan Avenue Buffalo, NY 14203-2999 (716) 851-7165

New York State Department of Environmental Conservation Wildlife Resources Center 700 Troy-Schenectady Road Latham, New York 12110-2400 (518) 783-3932



John P. Cahill Commissioner

August 22, 1997

Sara Kapp Emcon Crossroads Corporate Center 1 International Blvd., Suite 700 Mahwah, NJ 07495

Dear Ms. Kapp:

We have reviewed the New York Natural Heritage Program files with respect to your recent request for biological information concerning the Ecological Impact Assessment on a property on Court Street, site as indicated on your enclosed map, located in the Town of Dewitt, Onondaga County, New York State.

We did not identify any potential impacts to endangered, threatened, or special concern wildlife species, rare plant, animal, or natural community occurrences, or other significant habitat.

The absence of data does not necessarily mean that rare or endangered elements, natural communities or other significant habitats do not exist on or adjacent to the proposed site, but rather that our files currently do not contain any information which indicates the presence of these. Our files are continually growing as new habitats and occurrences of rare species and communities are discovered. In most cases, site-specific or comprehensive surveys for plant and animal occurrences have not been conducted. For these reasons, we cannot provide a definitive statement on the presence or absence of species, habitats or communities. This information should not be substituted for on-site surveys that may be required for environmental assessment.

This response applies only to known occurrences of rare plants and natural communities. You should contact our regional office, Division of Regulatory Affairs, at the address enclosed for information regarding any regulated areas or permits that may be required (e.g., regulated wetlands) under State Law.

If this proposed project is still active one year from now we recommend that you contact us again so that we may update this response.

Sincerely, Deboral Albertyp

Deborah L. Albert Information Services

New York Natural Heritage Program

Enc.

cc: Reg. 7, Wildlife Mgr.

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL PERMITS REGIONAL OFFICES

DIV	IDIOI ( C = - · · · · ·		
REGION	COUNTIES	NAME	ADDRESS AND PHONE NO.
Region 1	Nassau Suffolk	Robert Greene Permit Administrator	Loop Road, Bldg. 40 SUNY Stony Brook, NY 11790-2356 (516) 444-0365
Region 2	New York City	George Danskin Permit Administrator	Hunters Point Plaza 4740 21st Street Long Island City, NY 11101-5407 (718) 482-4997
Region 3	Dutchess Orange Putnam Rockland, Sullivan Ulster, Westchester	Margaret Duke Permit Administrator	21 South Putt Corners Road New Paltz, NY 12561-1696 (914) 256-3059
Region 4	Albany Columbia Delaware Greene, Montgomer Rensselaer, Schenec	William J. Clarke Permit Administrator  y, Otsego tady, Schoharie	1150 N. Westcott Road Schenectady, NY 12306-2014 (518) 357-2234
Region 5	Clinton Essex Franklin Fulton, Hamilton Saratoga, Warren, V	Richard Wild Permit Administrator  Vashington	Route 86 Ray Brook, NY 12977 (518) 897-1234
Region 6	Herkimer Jefferson Lewis Oneida, St. Lawren	Randy Vaas Permit Administrator ce	State Office Building 317 Washington Street Watertown, NY 13601 (315) 785-2246
Region 7	Broome Cayuga Chenango Cortland, Madison, Oswego, Tioga, To		615 Erie Blvd. West Syracuse, NY 13204-2400 (315) 426-7439
Region 8	Chemung Genesee Livingston Monroe, Ontario, O Schuyler, Seneca, S Wayne, Yates	Albert Butkas Permit Administrator Orleans Steuben	6274 East Avon-Lima Road Avon, NY 14414 (716) 226-2466
Region 9	Allegany Cattaraugus Chautauqua Erie, Niagara, Wyo	Steven Doleski Permit Administrator oming	270 Michigan Avenue Buffalo, NY 14203-2999 (716) 851-7165

## New York State Department of Environmental Conservation

Region 7 - Bureau of Fisheries 1285 Fisher Avenue Cortland, New York 13045-1090 (607) 753-3095 FAX: (607) 753-8532



John P. Cahill Commissioner

August 19, 1997

Mr. Sara Kapp EMCON Crossroads Corporate Center, Suite 700 1 International Blvd. Mahwah, NJ 07495

Dear Ms. Kapp:

In your July 23rd letter you requested information about the fisheries of the South Branch of Ley Creek and Sanders Creek, tributary to Onondaga Lake. These streams are small and do not produce a fishery. They contain fish communities dominated by minnow species.

Sincerely,

Leslie R. Wedge

Regional Fisheries Manager

LRW:klw

cc: E. Thomee

# AMERICAN BIRDS

90th Christmas Bird Count

Middletown New York, 19920 Hanson

Kestrel 1; Wild Turkey 2; Ring-billed Gull 66; Herring Gull 407; Glaucous Gull 1; Great Black-backed Gull 22; Rock Dove 252; Mourning Dove 284; Belted Kingfisher 1; Downy Woodpecker 61; Hairy Woodpecker 13: N. (Yel.-sh.) Flicker 2; Horned Lark 1; Blue Jay 118; Am. Crow 8327; Black-capped Chickadee 499; Tufted Titmouse 108; Redbreasted Nuthatch 7; White-breasted Nuthatch 48; Brown Creeper 5; Carolina Wren 1: Winter Wren 2: Golden-crowned Kinglet 3: E. Bluebird 6; Hermit Thrush 2; Am. Robin 1; N. Mockingbird 8; Cedar Waxwing 56; Eur. Starling 1244; N. Cardinal 106; Am. Tree Sparrow 144; Song Sparrow 10; Whitethroated Sparrow 55; Dark-eyed (Slatecol.) Junco 156; Lapland Longspur 3; Snow Bunting 260; Purple Finch 3; House Finch 288; Com. Redpoll 1; Pine Siskin 46; Am. Goldfinch 181; Evening Grosbeak 3; House Sparrow 314.

Total: 53 species; 13799 individuals.

Participants: Compiler—William J. Lee, 2171 Grand Blvd., Schenectady NY 12309; Kate Beale, Robert Boehm, Robert Budliger, John Callanan, Karen Crevier, Michael Crevier, Carl George, Jane Graves, Bernard Grossman, Clifford Lamere, William Lee, Samuel Madison, Bill Quandt, Walton Sabin, Robert Seelye, Nancy Slack, Henry Stebbins, Richard Waugh, Robert Yunick.

#### —— SY NY —— Syracuse, NY

43°06'N 76°05'W, as described 1956, center Collamer. Dec 23; 6:30 a.m. to 5 p.m. Temp 4° to 12°F. Wind var., 3-6 mph. Snow cover 18 in. Still water frozen. Moving water partly open. Clear. Observers: 21 in field in 9-10 parties (non-owling); 0.5 hour and 4.75 miles owling. Total party-hours 68.25; party-miles 441.25; 32.75 hours and 34.25 miles on foot, 35.5 hours and 407 miles by car.

• Am. Black Duck 89; Mallard 402; Gadwall 3; Com. Goldeneye 3; Com. Merganser 208: Bald Eagle 1; (a) 1; Sharp-shinned Hawk 3: Cooper's Hawk 7; Red-tailed Hawk 35: Rough-legged Hawk 2; Am. Kestrel 2; Ring-necked Pheasant 3; Ruffed Grouse 1; Wild Turkey 2; Ring-billed Gull 74; Herring Gull 325; Glaucous Gull 1; Great Blackbacked Gull 55; Rock Dove 1405; Mourning Dove 518; Great Horned Owl 1; Snowy Owl CW; Belted Kingfisher 2; Red-bellied Woodpecker 14; Downy Woodpecker 106; Hairy Woodpecker 24; N. (Yel.-sh.) Flicker 10; Blue Jay 114; Am. Crow 335; Black-capped Chickadee 633; Tufted Titmouse 1; Redbreasted Nuthatch 17; White-breasted Nuthatch 42; Brown Creeper 4; Hermit Thrush 1; Am. Robin 47; N. Mockingbird 4; Cedar Waxwing 114; N. Shrike 1; Eur. Starling 2530; N. Cardinal 193; Am. Tree Sparrow 348; Song Sparrow 8; White-throated Sparrow 5: Dark-eyed (Slate-col.) Junco 57; Snow Bunting 27; Red-winged Blackbird 2; Rusty Blackbird 10; Com. Grackle 1; Brown-headed Cowbird 3; Pine Grosbeak 1; House Finch 1413; Am. Goldfinch 74; House Sparrow 1771.

Total: 53 species; 11052 individuals.

Participants: Compiler—Jeanne L.

Ryan, 3457 Rt. 20 East RD 3, Cazenovia NY

13035: John Adair, Sue Adair, Peg Arinsen. Sue Boettger, Dorothy Crumb, Paul DeBenedictis, Bill Gruenbaum, John Hanyak, Elva Hawken, Gene Huggins, Steve Kahl, Ferd LaFrance, Margaret Napolean, Paul Radway, Tom Riley, John Rogers, David Ryan, Jeanne Ryan, Tom Shuman, Gerald Smith, Judy Wright.

#### – TR NY -Troy, NY

42°50'N 73°40'W, as described 1967, center River & Turner Rds., Schaghticoke. Dec 30; 6:30 a.m. to 4:30 p.m. Temp 8° to 13°F. Wind calm. Snow cover 4 in. Still water frozen. Moving water partly frozen. Cloudy; light snow. Observers: 20 in field in 7 parties (non-owling) plus 1 at feeders (8 hours). Total party-hours 66.5; party-miles 443.5; 23.25 hours and 22.25 miles on foot, 43.25 hours and 421 miles by car.

 Great Blue Heron 1; Mute Swan 1; Canada Goose 9021; Am. Black Duck 504; Mallard 514; Am. Wigeon CW; Ring-necked Duck 1; Lesser Scaup 1; Com. Goldeneve 58; Com. Merganser 403; N. Harrier 2; Sharp-shinned Hawk 2; Cooper's Hawk 4; N. Goshawk 1; Red-tailed Hawk 80; Roughlegged Hawk 21; Am. Kestrel 2; Ruffed Grouse 5; Wild Turkey 11; Ring-billed Gull 3; Herring Gull 1323; Thaver's Gull 1 [IM-Ed.]; Iceland Gull 9; Glaucous Gull 2; Great Black-backed Gull 439; Rock Dove 436; Mourning Dove 521; E. Screech-Owl 1; Great Horned Owl 2; Short-eared Owl 1; Downy Woodpecker 78; Hairy Woodpecker 28; N. (Yel.-sh.) Flicker 5; Pileated Woodpecker 3; Horned Lark 349; Blue Jay 215; Am. Crow 650; Black-capped Chickadee 542: Tufted Titmouse 81; Red-breasted Nuthatch 9; White-breasted Nuthatch 89; Brown Creeper 4; Golden-crowned Kinglet 5; E. Bluebird 2; Hermit Thrush 1; Am. Robin 3; N. Mockingbird 11; Eur. Starling 1495; N. Cardinal 104; Am. Tree Sparrow 165; Savannah Sparrow 1.

Song Sparrow 30; Swamp Sparrow 1; White-throated Sparrow 38; Dark-eyed (Slate-col.) Junco 311; Lapland Longspur 4; Snow Bunting 471; E. Meadowlark 1; Com. Grackle CW; Brown-headed Cowbird 49; House Finch 355; Com. Redpoll 22; Pine Siskin 15; Am. Goldfinch 116; Evening Grosbeak 34; House Sparrow 517.

Total: 64 species; 19174 individuals.

Participants: Compiler—William W. Shuster, P.O. Box 76, Melrose NY 12121; Kenneth Able, Gilbert Banner, Kurt Boluch, Robert Budliger, Patricia Canavan, Marilyn Fancher, Norman Fancher, Betsy Franz, William Gorman, Monte Gruett, Richard Guthrie, Rebecca Holberton, William Lee, Samuel Madison, Walton Sabin, Claire Sack, Nancy Shuster, William Shuster, Scott Terrill, Ned Worrell, Ruthanna Worrell.

#### ---- WA NY -----Watertown, NY

 $44^{\circ}00'N$   $76^{\circ}00'W$ , as described 1969, center Brownville. Dec 16; 8 a.m. to 5 p.m. Temp

6°F. Wind calm. Snow cover 12 in. Still water frozen. Moving water partly open. Clear. Observers: 8 plus 3 at feeders (6 hours). Total party-hours 18; party-miles 229; 1 hour and 1 mile on foot, 17 hours and 228 miles by car.

 Canada Goose 1; Am. Black Duck 16; Mallard 33; Com. Goldeneye 8; Com. Merganser 5; Red-breasted Merganser 4; N. Harrier 1; Sharp-shinned Hawk 1; Cooper's Hawk 1; Red-tailed Hawk 20; Rough-legged Hawk 6; Gray Partridge 10; Ruffed Grouse 2; Herring Gull 61; Rock Dove 447; Mourning Dove 169; Red-bellied Woodpecker 1; Downy Woodpecker 24; Hairy Woodpecker 6; N. (Yel.-sh.) Flicker CW; Horned Lark 80; Blue Jay 92; Am. Crow 81; Black-capped Chickadee 102; Red-breasted Nuthatch 1; White-breasted Nuthatch 16; Brown Creeper 1; Am. Robin 1; N. Mockingbird 1; Cedar Waxwing 61; Eur. Starling 846; N. Cardinal 46; Am. Tree Sparrow 96; Song Sparrow 8; White-throated Sparrow 10; Dark-eyed (Slate-col.) Junco 22; Snow Bunting 60; Com. Grackle 4; Brown-headed Cowbird 11; Pine Grosbeak CW; House Finch 261; White-winged Crossbill 38; Com. Redpoll 50: Pine Siskin 1: Am. Goldfinch 33: Evening Grosbeak 88; House Sparrow 266.

Total: 45 species; 3092 individuals.

Participants: Compiler—Glen D. Snell, HC 31, Box 5, Watertown NY 13601; Marion Brouse, Richard Brouse, Lee Chamberlaine, Alice Cooper, Deborah Litwhiler, Stephen Litwhiler, June Walker, Robert Walker.

#### ----- WG NY ------Watkins Glen, NY

42°22'N 76°52'W, as described 1975, center Franklin & Fourth Sts. Dec 30; 7:30 a.m. to 5 p.m. Temp 30° to 34°F. Wind NW, 0-8 mph. Snow cover 8 in. Water partly open. Cloudy. Observers: 5 in field in 5 parties (non-owling) plus 7 at feeders (15 hours); 3 hours and 8 miles owling. Total partyhours 34; party-miles 179; 23 hours and 19 miles on foot, 11 hours and 160 miles by

 Com. Loon 1; Pied-billed Grebe 5; Horned Grebe 1; Canada Goose 165; Wood Duck 1; Am. Black Duck 44; Mallard 587; Gadwall 2: Redhead 27: Greater Scaup 93: Lesser Scaup 1; Com. Goldeneye 11; Bufflehead 3; Com. Merganser 57; N. Harrier 1; Sharp-shinned Hawk 3; Cooper's Hawk 2; Red-tailed Hawk 13; Rough-legged Hawk 6; Am. Kestrel 2; Ring-necked Pheasant 13; Ruffed Grouse 9; Wild Turkey 22; Am. Coot 113; Ring-billed Gull 296; Herring Gull 100; Great Black-backed Gull 7; Rock Dove 127; Mourning Dove 262; Great Horned Owl 8: Long-eared Owl 1; Short-eared Owl 1; Redbellied Woodpecker 10; Downy Woodpecker 64; Hairy Woodpecker 11; N. (Yel.-sh.) Flicker 2; Pileated Woodpecker 1; Horned Lark 52; Blue Jay 137; Am. Crow 606; Black-capped Chickadee 297; Tufted Titmouse 21; Red-breasted Nuthatch 4; White-breasted Nuthatch 43; Brown Creeper 2; Carolina Wren 11; Goldencrowned Kinglet 1; E. Bluebird 6; Am. Robin 29; N. Mockingbird 2; Cedar Waxwing 70.